drv_can.c 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932
  1. /*
  2. * Copyright (c) 2006-2018, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2018-08-05 Xeon Xu the first version
  9. * 2019-01-22 YLZ port from stm324xx-HAL to bsp stm3210x-HAL
  10. * 2019-02-19 YLZ add support EXTID RTR Frame. modify send, recv functions.
  11. * fix bug.port to BSP [stm32]
  12. * 2019-03-27 YLZ support double can channels, support stm32F4xx (only Legacy mode).
  13. * 2019-06-17 YLZ port to new STM32F1xx HAL V1.1.3.
  14. */
  15. #include "drv_can.h"
  16. #ifdef BSP_USING_CAN
  17. #define LOG_TAG "drv_can"
  18. #include <drv_log.h>
  19. /* attention !!! baud calculation example: Tclk / ((ss + bs1 + bs2) * brp) 36 / ((1 + 8 + 3) * 3) = 1MHz*/
  20. #if defined (SOC_SERIES_STM32F1)/* APB1 36MHz(max) */
  21. static const struct stm32_baud_rate_tab can_baud_rate_tab[] =
  22. {
  23. {CAN1MBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ | CAN_BS2_3TQ | 3)},
  24. {CAN800kBaud, (CAN_SJW_2TQ | CAN_BS1_5TQ | CAN_BS2_3TQ | 5)},
  25. {CAN500kBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ | CAN_BS2_3TQ | 6)},
  26. {CAN250kBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ | CAN_BS2_3TQ | 12)},
  27. {CAN125kBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ | CAN_BS2_3TQ | 24)},
  28. {CAN100kBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ | CAN_BS2_3TQ | 30)},
  29. {CAN50kBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ | CAN_BS2_3TQ | 60)},
  30. {CAN20kBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ | CAN_BS2_3TQ | 150)},
  31. {CAN10kBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ | CAN_BS2_3TQ | 300)}
  32. };
  33. #elif defined (SOC_SERIES_STM32F4)/* APB1 45MHz(max) */
  34. static const struct stm32_baud_rate_tab can_baud_rate_tab[] =
  35. {
  36. {CAN1MBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_5TQ | 3)},
  37. {CAN800kBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ | CAN_BS2_5TQ | 4)},
  38. {CAN500kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_5TQ | 6)},
  39. {CAN250kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_5TQ | 12)},
  40. {CAN125kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_5TQ | 24)},
  41. {CAN100kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_5TQ | 30)},
  42. {CAN50kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_5TQ | 60)},
  43. {CAN20kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_5TQ | 150)},
  44. {CAN10kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_5TQ | 300)}
  45. };
  46. #elif defined (SOC_SERIES_STM32F7)/* APB1 54MHz(max) */
  47. static const struct stm32_baud_rate_tab can_baud_rate_tab[] =
  48. {
  49. {CAN1MBaud, (CAN_SJW_2TQ | CAN_BS1_10TQ | CAN_BS2_7TQ | 3)},
  50. {CAN800kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_7TQ | 4)},
  51. {CAN500kBaud, (CAN_SJW_2TQ | CAN_BS1_10TQ | CAN_BS2_7TQ | 6)},
  52. {CAN250kBaud, (CAN_SJW_2TQ | CAN_BS1_10TQ | CAN_BS2_7TQ | 12)},
  53. {CAN125kBaud, (CAN_SJW_2TQ | CAN_BS1_10TQ | CAN_BS2_7TQ | 24)},
  54. {CAN100kBaud, (CAN_SJW_2TQ | CAN_BS1_10TQ | CAN_BS2_7TQ | 30)},
  55. {CAN50kBaud, (CAN_SJW_2TQ | CAN_BS1_10TQ | CAN_BS2_7TQ | 60)},
  56. {CAN20kBaud, (CAN_SJW_2TQ | CAN_BS1_10TQ | CAN_BS2_7TQ | 150)},
  57. {CAN10kBaud, (CAN_SJW_2TQ | CAN_BS1_10TQ | CAN_BS2_7TQ | 300)}
  58. };
  59. #elif defined (SOC_SERIES_STM32L4)/* APB1 80MHz(max) */
  60. static const struct stm32_baud_rate_tab can_baud_rate_tab[] =
  61. {
  62. {CAN1MBaud, (CAN_SJW_2TQ | CAN_BS1_5TQ | CAN_BS2_2TQ | 10)},
  63. {CAN800kBaud, (CAN_SJW_2TQ | CAN_BS1_14TQ | CAN_BS2_5TQ | 5)},
  64. {CAN500kBaud, (CAN_SJW_2TQ | CAN_BS1_7TQ | CAN_BS2_2TQ | 16)},
  65. {CAN250kBaud, (CAN_SJW_2TQ | CAN_BS1_13TQ | CAN_BS2_2TQ | 20)},
  66. {CAN125kBaud, (CAN_SJW_2TQ | CAN_BS1_13TQ | CAN_BS2_2TQ | 40)},
  67. {CAN100kBaud, (CAN_SJW_2TQ | CAN_BS1_13TQ | CAN_BS2_2TQ | 50)},
  68. {CAN50kBaud, (CAN_SJW_2TQ | CAN_BS1_13TQ | CAN_BS2_2TQ | 100)},
  69. {CAN20kBaud, (CAN_SJW_2TQ | CAN_BS1_13TQ | CAN_BS2_2TQ | 250)},
  70. {CAN10kBaud, (CAN_SJW_2TQ | CAN_BS1_13TQ | CAN_BS2_2TQ | 500)}
  71. };
  72. #endif
  73. #ifdef BSP_USING_CAN1
  74. static struct stm32_can drv_can1 =
  75. {
  76. .name = "can1",
  77. .CanHandle.Instance = CAN1,
  78. };
  79. #endif
  80. #ifdef BSP_USING_CAN2
  81. static struct stm32_can drv_can2 =
  82. {
  83. "can2",
  84. .CanHandle.Instance = CAN2,
  85. };
  86. #endif
  87. static rt_uint32_t get_can_baud_index(rt_uint32_t baud)
  88. {
  89. rt_uint32_t len, index;
  90. len = sizeof(can_baud_rate_tab) / sizeof(can_baud_rate_tab[0]);
  91. for (index = 0; index < len; index++)
  92. {
  93. if (can_baud_rate_tab[index].baud_rate == baud)
  94. return index;
  95. }
  96. return 0; /* default baud is CAN1MBaud */
  97. }
  98. static rt_err_t _can_config(struct rt_can_device *can, struct can_configure *cfg)
  99. {
  100. struct stm32_can *drv_can;
  101. rt_uint32_t baud_index;
  102. RT_ASSERT(can);
  103. RT_ASSERT(cfg);
  104. drv_can = (struct stm32_can *)can->parent.user_data;
  105. RT_ASSERT(drv_can);
  106. drv_can->CanHandle.Init.TimeTriggeredMode = DISABLE;
  107. drv_can->CanHandle.Init.AutoBusOff = ENABLE;
  108. drv_can->CanHandle.Init.AutoWakeUp = DISABLE;
  109. drv_can->CanHandle.Init.AutoRetransmission = DISABLE;
  110. drv_can->CanHandle.Init.ReceiveFifoLocked = DISABLE;
  111. drv_can->CanHandle.Init.TransmitFifoPriority = ENABLE;
  112. switch (cfg->mode)
  113. {
  114. case RT_CAN_MODE_NORMAL:
  115. drv_can->CanHandle.Init.Mode = CAN_MODE_NORMAL;
  116. break;
  117. case RT_CAN_MODE_LISEN:
  118. drv_can->CanHandle.Init.Mode = CAN_MODE_SILENT;
  119. break;
  120. case RT_CAN_MODE_LOOPBACK:
  121. drv_can->CanHandle.Init.Mode = CAN_MODE_LOOPBACK;
  122. break;
  123. case RT_CAN_MODE_LOOPBACKANLISEN:
  124. drv_can->CanHandle.Init.Mode = CAN_MODE_SILENT_LOOPBACK;
  125. break;
  126. }
  127. baud_index = get_can_baud_index(cfg->baud_rate);
  128. drv_can->CanHandle.Init.SyncJumpWidth = BAUD_DATA(SJW, baud_index);
  129. drv_can->CanHandle.Init.TimeSeg1 = BAUD_DATA(BS1, baud_index);
  130. drv_can->CanHandle.Init.TimeSeg2 = BAUD_DATA(BS2, baud_index);
  131. drv_can->CanHandle.Init.Prescaler = BAUD_DATA(RRESCL, baud_index);
  132. /* init can */
  133. if (HAL_CAN_Init(&drv_can->CanHandle) != HAL_OK)
  134. {
  135. return -RT_ERROR;
  136. }
  137. /* default filter config */
  138. HAL_CAN_ConfigFilter(&drv_can->CanHandle, &drv_can->FilterConfig);
  139. /* can start */
  140. HAL_CAN_Start(&drv_can->CanHandle);
  141. return RT_EOK;
  142. }
  143. static rt_err_t _can_control(struct rt_can_device *can, int cmd, void *arg)
  144. {
  145. rt_uint32_t argval;
  146. struct stm32_can *drv_can;
  147. struct rt_can_filter_config *filter_cfg;
  148. RT_ASSERT(can != RT_NULL);
  149. drv_can = (struct stm32_can *)can->parent.user_data;
  150. RT_ASSERT(drv_can != RT_NULL);
  151. switch (cmd)
  152. {
  153. case RT_DEVICE_CTRL_CLR_INT:
  154. argval = (rt_uint32_t) arg;
  155. if (argval == RT_DEVICE_FLAG_INT_RX)
  156. {
  157. if (CAN1 == drv_can->CanHandle.Instance)
  158. {
  159. HAL_NVIC_DisableIRQ(CAN1_RX0_IRQn);
  160. HAL_NVIC_DisableIRQ(CAN1_RX1_IRQn);
  161. }
  162. #ifdef CAN2
  163. if (CAN2 == drv_can->CanHandle.Instance)
  164. {
  165. HAL_NVIC_DisableIRQ(CAN2_RX0_IRQn);
  166. HAL_NVIC_DisableIRQ(CAN2_RX1_IRQn);
  167. }
  168. #endif
  169. __HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO0_MSG_PENDING);
  170. __HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO0_FULL);
  171. __HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO0_OVERRUN);
  172. __HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO1_MSG_PENDING);
  173. __HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO1_FULL);
  174. __HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO1_OVERRUN);
  175. }
  176. else if (argval == RT_DEVICE_FLAG_INT_TX)
  177. {
  178. if (CAN1 == drv_can->CanHandle.Instance)
  179. {
  180. HAL_NVIC_DisableIRQ(CAN1_TX_IRQn);
  181. }
  182. #ifdef CAN2
  183. if (CAN2 == drv_can->CanHandle.Instance)
  184. {
  185. HAL_NVIC_DisableIRQ(CAN2_TX_IRQn);
  186. }
  187. #endif
  188. __HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_TX_MAILBOX_EMPTY);
  189. }
  190. else if (argval == RT_DEVICE_CAN_INT_ERR)
  191. {
  192. if (CAN1 == drv_can->CanHandle.Instance)
  193. {
  194. NVIC_DisableIRQ(CAN1_SCE_IRQn);
  195. }
  196. #ifdef CAN2
  197. if (CAN2 == drv_can->CanHandle.Instance)
  198. {
  199. NVIC_DisableIRQ(CAN2_SCE_IRQn);
  200. }
  201. #endif
  202. __HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_ERROR_WARNING);
  203. __HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_ERROR_PASSIVE);
  204. __HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_BUSOFF);
  205. __HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_LAST_ERROR_CODE);
  206. __HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_ERROR);
  207. }
  208. break;
  209. case RT_DEVICE_CTRL_SET_INT:
  210. argval = (rt_uint32_t) arg;
  211. if (argval == RT_DEVICE_FLAG_INT_RX)
  212. {
  213. __HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO0_MSG_PENDING);
  214. __HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO0_FULL);
  215. __HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO0_OVERRUN);
  216. __HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO1_MSG_PENDING);
  217. __HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO1_FULL);
  218. __HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO1_OVERRUN);
  219. if (CAN1 == drv_can->CanHandle.Instance)
  220. {
  221. HAL_NVIC_SetPriority(CAN1_RX0_IRQn, 1, 0);
  222. HAL_NVIC_EnableIRQ(CAN1_RX0_IRQn);
  223. HAL_NVIC_SetPriority(CAN1_RX1_IRQn, 1, 0);
  224. HAL_NVIC_EnableIRQ(CAN1_RX1_IRQn);
  225. }
  226. #ifdef CAN2
  227. if (CAN2 == drv_can->CanHandle.Instance)
  228. {
  229. HAL_NVIC_SetPriority(CAN2_RX0_IRQn, 1, 0);
  230. HAL_NVIC_EnableIRQ(CAN2_RX0_IRQn);
  231. HAL_NVIC_SetPriority(CAN2_RX1_IRQn, 1, 0);
  232. HAL_NVIC_EnableIRQ(CAN2_RX1_IRQn);
  233. }
  234. #endif
  235. }
  236. else if (argval == RT_DEVICE_FLAG_INT_TX)
  237. {
  238. __HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_TX_MAILBOX_EMPTY);
  239. if (CAN1 == drv_can->CanHandle.Instance)
  240. {
  241. HAL_NVIC_SetPriority(CAN1_TX_IRQn, 1, 0);
  242. HAL_NVIC_EnableIRQ(CAN1_TX_IRQn);
  243. }
  244. #ifdef CAN2
  245. if (CAN2 == drv_can->CanHandle.Instance)
  246. {
  247. HAL_NVIC_SetPriority(CAN2_TX_IRQn, 1, 0);
  248. HAL_NVIC_EnableIRQ(CAN2_TX_IRQn);
  249. }
  250. #endif
  251. }
  252. else if (argval == RT_DEVICE_CAN_INT_ERR)
  253. {
  254. __HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_ERROR_WARNING);
  255. __HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_ERROR_PASSIVE);
  256. __HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_BUSOFF);
  257. __HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_LAST_ERROR_CODE);
  258. __HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_ERROR);
  259. if (CAN1 == drv_can->CanHandle.Instance)
  260. {
  261. HAL_NVIC_SetPriority(CAN1_SCE_IRQn, 1, 0);
  262. HAL_NVIC_EnableIRQ(CAN1_SCE_IRQn);
  263. }
  264. #ifdef CAN2
  265. if (CAN2 == drv_can->CanHandle.Instance)
  266. {
  267. HAL_NVIC_SetPriority(CAN2_SCE_IRQn, 1, 0);
  268. HAL_NVIC_EnableIRQ(CAN2_SCE_IRQn);
  269. }
  270. #endif
  271. }
  272. break;
  273. case RT_CAN_CMD_SET_FILTER:
  274. if (RT_NULL == arg)
  275. {
  276. /* default filter config */
  277. HAL_CAN_ConfigFilter(&drv_can->CanHandle, &drv_can->FilterConfig);
  278. }
  279. else
  280. {
  281. filter_cfg = (struct rt_can_filter_config *)arg;
  282. /* get default filter */
  283. for (int i = 0; i < filter_cfg->count; i++)
  284. {
  285. if (filter_cfg->items[i].hdr == -1)
  286. {
  287. drv_can->FilterConfig.FilterBank = i;
  288. }
  289. else
  290. {
  291. drv_can->FilterConfig.FilterBank = filter_cfg->items[i].hdr;
  292. }
  293. drv_can->FilterConfig.FilterBank = filter_cfg->items[i].hdr;
  294. drv_can->FilterConfig.FilterIdHigh = (filter_cfg->items[i].id >> 13) & 0xFFFF;
  295. drv_can->FilterConfig.FilterIdLow = ((filter_cfg->items[i].id << 3) |
  296. (filter_cfg->items[i].ide << 2) |
  297. (filter_cfg->items[i].rtr << 1)) & 0xFFFF;
  298. drv_can->FilterConfig.FilterMaskIdHigh = (filter_cfg->items[i].mask >> 16) & 0xFFFF;
  299. drv_can->FilterConfig.FilterMaskIdLow = filter_cfg->items[i].mask & 0xFFFF;
  300. drv_can->FilterConfig.FilterMode = filter_cfg->items[i].mode;
  301. /* Filter conf */
  302. HAL_CAN_ConfigFilter(&drv_can->CanHandle, &drv_can->FilterConfig);
  303. }
  304. }
  305. break;
  306. case RT_CAN_CMD_SET_MODE:
  307. argval = (rt_uint32_t) arg;
  308. if (argval != RT_CAN_MODE_NORMAL &&
  309. argval != RT_CAN_MODE_LISEN &&
  310. argval != RT_CAN_MODE_LOOPBACK &&
  311. argval != RT_CAN_MODE_LOOPBACKANLISEN)
  312. {
  313. return -RT_ERROR;
  314. }
  315. if (argval != drv_can->device.config.mode)
  316. {
  317. drv_can->device.config.mode = argval;
  318. return _can_config(&drv_can->device, &drv_can->device.config);
  319. }
  320. break;
  321. case RT_CAN_CMD_SET_BAUD:
  322. argval = (rt_uint32_t) arg;
  323. if (argval != CAN1MBaud &&
  324. argval != CAN800kBaud &&
  325. argval != CAN500kBaud &&
  326. argval != CAN250kBaud &&
  327. argval != CAN125kBaud &&
  328. argval != CAN100kBaud &&
  329. argval != CAN50kBaud &&
  330. argval != CAN20kBaud &&
  331. argval != CAN10kBaud)
  332. {
  333. return -RT_ERROR;
  334. }
  335. if (argval != drv_can->device.config.baud_rate)
  336. {
  337. drv_can->device.config.baud_rate = argval;
  338. return _can_config(&drv_can->device, &drv_can->device.config);
  339. }
  340. break;
  341. case RT_CAN_CMD_SET_PRIV:
  342. argval = (rt_uint32_t) arg;
  343. if (argval != RT_CAN_MODE_PRIV &&
  344. argval != RT_CAN_MODE_NOPRIV)
  345. {
  346. return -RT_ERROR;
  347. }
  348. if (argval != drv_can->device.config.privmode)
  349. {
  350. drv_can->device.config.privmode = argval;
  351. return _can_config(&drv_can->device, &drv_can->device.config);
  352. }
  353. break;
  354. case RT_CAN_CMD_GET_STATUS:
  355. {
  356. rt_uint32_t errtype;
  357. errtype = drv_can->CanHandle.Instance->ESR;
  358. drv_can->device.status.rcverrcnt = errtype >> 24;
  359. drv_can->device.status.snderrcnt = (errtype >> 16 & 0xFF);
  360. drv_can->device.status.lasterrtype = errtype & 0x70;
  361. drv_can->device.status.errcode = errtype & 0x07;
  362. rt_memcpy(arg, &drv_can->device.status, sizeof(drv_can->device.status));
  363. }
  364. break;
  365. }
  366. return RT_EOK;
  367. }
  368. static int _can_sendmsg(struct rt_can_device *can, const void *buf, rt_uint32_t box_num)
  369. {
  370. CAN_HandleTypeDef *hcan;
  371. hcan = &((struct stm32_can *) can->parent.user_data)->CanHandle;
  372. struct rt_can_msg *pmsg = (struct rt_can_msg *) buf;
  373. CAN_TxHeaderTypeDef txheader = {0};
  374. HAL_CAN_StateTypeDef state = hcan->State;
  375. /* Check the parameters */
  376. RT_ASSERT(IS_CAN_DLC(pmsg->len));
  377. if ((state == HAL_CAN_STATE_READY) ||
  378. (state == HAL_CAN_STATE_LISTENING))
  379. {
  380. /*check select mailbox is empty */
  381. switch (1 << box_num)
  382. {
  383. case CAN_TX_MAILBOX0:
  384. if (HAL_IS_BIT_SET(hcan->Instance->TSR, CAN_TSR_TME0) != SET)
  385. {
  386. /* Change CAN state */
  387. hcan->State = HAL_CAN_STATE_ERROR;
  388. /* Return function status */
  389. return -RT_ERROR;
  390. }
  391. break;
  392. case CAN_TX_MAILBOX1:
  393. if (HAL_IS_BIT_SET(hcan->Instance->TSR, CAN_TSR_TME1) != SET)
  394. {
  395. /* Change CAN state */
  396. hcan->State = HAL_CAN_STATE_ERROR;
  397. /* Return function status */
  398. return -RT_ERROR;
  399. }
  400. break;
  401. case CAN_TX_MAILBOX2:
  402. if (HAL_IS_BIT_SET(hcan->Instance->TSR, CAN_TSR_TME2) != SET)
  403. {
  404. /* Change CAN state */
  405. hcan->State = HAL_CAN_STATE_ERROR;
  406. /* Return function status */
  407. return -RT_ERROR;
  408. }
  409. break;
  410. default:
  411. RT_ASSERT(0);
  412. break;
  413. }
  414. if (RT_CAN_STDID == pmsg->ide)
  415. {
  416. txheader.IDE = CAN_ID_STD;
  417. RT_ASSERT(IS_CAN_STDID(pmsg->id));
  418. txheader.StdId = pmsg->id;
  419. }
  420. else
  421. {
  422. txheader.IDE = CAN_ID_EXT;
  423. RT_ASSERT(IS_CAN_EXTID(pmsg->id));
  424. txheader.ExtId = pmsg->id;
  425. }
  426. if (RT_CAN_DTR == pmsg->rtr)
  427. {
  428. txheader.RTR = CAN_RTR_DATA;
  429. }
  430. else
  431. {
  432. txheader.RTR = CAN_RTR_REMOTE;
  433. }
  434. /* clear TIR */
  435. hcan->Instance->sTxMailBox[box_num].TIR &= CAN_TI0R_TXRQ;
  436. /* Set up the Id */
  437. if (RT_CAN_STDID == pmsg->ide)
  438. {
  439. hcan->Instance->sTxMailBox[box_num].TIR |= (txheader.StdId << CAN_TI0R_STID_Pos) | txheader.RTR;
  440. }
  441. else
  442. {
  443. hcan->Instance->sTxMailBox[box_num].TIR |= (txheader.ExtId << CAN_TI0R_EXID_Pos) | txheader.IDE | txheader.RTR;
  444. }
  445. /* Set up the DLC */
  446. hcan->Instance->sTxMailBox[box_num].TDTR = pmsg->len & 0x0FU;
  447. /* Set up the data field */
  448. WRITE_REG(hcan->Instance->sTxMailBox[box_num].TDHR,
  449. ((uint32_t)pmsg->data[7] << CAN_TDH0R_DATA7_Pos) |
  450. ((uint32_t)pmsg->data[6] << CAN_TDH0R_DATA6_Pos) |
  451. ((uint32_t)pmsg->data[5] << CAN_TDH0R_DATA5_Pos) |
  452. ((uint32_t)pmsg->data[4] << CAN_TDH0R_DATA4_Pos));
  453. WRITE_REG(hcan->Instance->sTxMailBox[box_num].TDLR,
  454. ((uint32_t)pmsg->data[3] << CAN_TDL0R_DATA3_Pos) |
  455. ((uint32_t)pmsg->data[2] << CAN_TDL0R_DATA2_Pos) |
  456. ((uint32_t)pmsg->data[1] << CAN_TDL0R_DATA1_Pos) |
  457. ((uint32_t)pmsg->data[0] << CAN_TDL0R_DATA0_Pos));
  458. /* Request transmission */
  459. SET_BIT(hcan->Instance->sTxMailBox[box_num].TIR, CAN_TI0R_TXRQ);
  460. return RT_EOK;
  461. }
  462. else
  463. {
  464. /* Update error code */
  465. hcan->ErrorCode |= HAL_CAN_ERROR_NOT_INITIALIZED;
  466. return -RT_ERROR;
  467. }
  468. }
  469. static int _can_recvmsg(struct rt_can_device *can, void *buf, rt_uint32_t fifo)
  470. {
  471. HAL_StatusTypeDef status;
  472. CAN_HandleTypeDef *hcan;
  473. struct rt_can_msg *pmsg;
  474. CAN_RxHeaderTypeDef rxheader = {0};
  475. RT_ASSERT(can);
  476. hcan = &((struct stm32_can *)can->parent.user_data)->CanHandle;
  477. pmsg = (struct rt_can_msg *) buf;
  478. /* get data */
  479. status = HAL_CAN_GetRxMessage(hcan, fifo, &rxheader, pmsg->data);
  480. if (HAL_OK != status)
  481. return -RT_ERROR;
  482. /* get id */
  483. if (CAN_ID_STD == rxheader.IDE)
  484. {
  485. pmsg->ide = RT_CAN_STDID;
  486. pmsg->id = rxheader.StdId;
  487. }
  488. else
  489. {
  490. pmsg->ide = RT_CAN_EXTID;
  491. pmsg->id = rxheader.ExtId;
  492. }
  493. /* get type */
  494. if (CAN_RTR_DATA == rxheader.RTR)
  495. {
  496. pmsg->rtr = RT_CAN_DTR;
  497. }
  498. else
  499. {
  500. pmsg->rtr = RT_CAN_RTR;
  501. }
  502. /* get len */
  503. pmsg->len = rxheader.DLC;
  504. /* get hdr */
  505. if (hcan->Instance == CAN1)
  506. {
  507. pmsg->hdr = (rxheader.FilterMatchIndex + 1) >> 1;
  508. }
  509. #ifdef CAN2
  510. else if (hcan->Instance == CAN2)
  511. {
  512. pmsg->hdr = (rxheader.FilterMatchIndex >> 1) + 14;
  513. }
  514. #endif
  515. return RT_EOK;
  516. }
  517. static const struct rt_can_ops _can_ops =
  518. {
  519. _can_config,
  520. _can_control,
  521. _can_sendmsg,
  522. _can_recvmsg,
  523. };
  524. static void _can_rx_isr(struct rt_can_device *can, rt_uint32_t fifo)
  525. {
  526. CAN_HandleTypeDef *hcan;
  527. RT_ASSERT(can);
  528. hcan = &((struct stm32_can *) can->parent.user_data)->CanHandle;
  529. switch (fifo)
  530. {
  531. case CAN_RX_FIFO0:
  532. /* save to user list */
  533. if (HAL_CAN_GetRxFifoFillLevel(hcan, CAN_RX_FIFO0) && __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_RX_FIFO0_MSG_PENDING))
  534. {
  535. rt_hw_can_isr(can, RT_CAN_EVENT_RX_IND | fifo << 8);
  536. }
  537. /* Check FULL flag for FIFO0 */
  538. if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_FF0) && __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_RX_FIFO0_FULL))
  539. {
  540. /* Clear FIFO0 FULL Flag */
  541. __HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_FF0);
  542. }
  543. /* Check Overrun flag for FIFO0 */
  544. if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_FOV0) && __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_RX_FIFO0_OVERRUN))
  545. {
  546. /* Clear FIFO0 Overrun Flag */
  547. __HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_FOV0);
  548. rt_hw_can_isr(can, RT_CAN_EVENT_RXOF_IND | fifo << 8);
  549. }
  550. break;
  551. case CAN_RX_FIFO1:
  552. /* save to user list */
  553. if (HAL_CAN_GetRxFifoFillLevel(hcan, CAN_RX_FIFO1) && __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_RX_FIFO1_MSG_PENDING))
  554. {
  555. rt_hw_can_isr(can, RT_CAN_EVENT_RX_IND | fifo << 8);
  556. }
  557. /* Check FULL flag for FIFO1 */
  558. if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_FF1) && __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_RX_FIFO1_FULL))
  559. {
  560. /* Clear FIFO1 FULL Flag */
  561. __HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_FF1);
  562. }
  563. /* Check Overrun flag for FIFO1 */
  564. if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_FOV1) && __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_RX_FIFO1_OVERRUN))
  565. {
  566. /* Clear FIFO1 Overrun Flag */
  567. __HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_FOV1);
  568. rt_hw_can_isr(can, RT_CAN_EVENT_RXOF_IND | fifo << 8);
  569. }
  570. break;
  571. }
  572. }
  573. #ifdef BSP_USING_CAN1
  574. /**
  575. * @brief This function handles CAN1 TX interrupts. transmit fifo0/1/2 is empty can trigger this interrupt
  576. */
  577. void CAN1_TX_IRQHandler(void)
  578. {
  579. rt_interrupt_enter();
  580. CAN_HandleTypeDef *hcan;
  581. hcan = &drv_can1.CanHandle;
  582. if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_RQCP0))
  583. {
  584. if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_TXOK0))
  585. {
  586. rt_hw_can_isr(&drv_can1.device, RT_CAN_EVENT_TX_DONE | 0 << 8);
  587. }
  588. else
  589. {
  590. rt_hw_can_isr(&drv_can1.device, RT_CAN_EVENT_TX_FAIL | 0 << 8);
  591. }
  592. /* Write 0 to Clear transmission status flag RQCPx */
  593. SET_BIT(hcan->Instance->TSR, CAN_TSR_RQCP0);
  594. }
  595. else if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_RQCP1))
  596. {
  597. if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_TXOK1))
  598. {
  599. rt_hw_can_isr(&drv_can1.device, RT_CAN_EVENT_TX_DONE | 1 << 8);
  600. }
  601. else
  602. {
  603. rt_hw_can_isr(&drv_can1.device, RT_CAN_EVENT_TX_FAIL | 1 << 8);
  604. }
  605. /* Write 0 to Clear transmission status flag RQCPx */
  606. SET_BIT(hcan->Instance->TSR, CAN_TSR_RQCP1);
  607. }
  608. else if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_RQCP2))
  609. {
  610. if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_TXOK2))
  611. {
  612. rt_hw_can_isr(&drv_can1.device, RT_CAN_EVENT_TX_DONE | 2 << 8);
  613. }
  614. else
  615. {
  616. rt_hw_can_isr(&drv_can1.device, RT_CAN_EVENT_TX_FAIL | 2 << 8);
  617. }
  618. /* Write 0 to Clear transmission status flag RQCPx */
  619. SET_BIT(hcan->Instance->TSR, CAN_TSR_RQCP2);
  620. }
  621. rt_interrupt_leave();
  622. }
  623. /**
  624. * @brief This function handles CAN1 RX0 interrupts.
  625. */
  626. void CAN1_RX0_IRQHandler(void)
  627. {
  628. rt_interrupt_enter();
  629. _can_rx_isr(&drv_can1.device, CAN_RX_FIFO0);
  630. rt_interrupt_leave();
  631. }
  632. /**
  633. * @brief This function handles CAN1 RX1 interrupts.
  634. */
  635. void CAN1_RX1_IRQHandler(void)
  636. {
  637. rt_interrupt_enter();
  638. _can_rx_isr(&drv_can1.device, CAN_RX_FIFO1);
  639. rt_interrupt_leave();
  640. }
  641. /**
  642. * @brief This function handles CAN1 SCE interrupts.
  643. */
  644. void CAN1_SCE_IRQHandler(void)
  645. {
  646. rt_uint32_t errtype;
  647. CAN_HandleTypeDef *hcan;
  648. hcan = &drv_can1.CanHandle;
  649. errtype = hcan->Instance->ESR;
  650. rt_interrupt_enter();
  651. HAL_CAN_IRQHandler(hcan);
  652. switch ((errtype & 0x70) >> 4)
  653. {
  654. case RT_CAN_BUS_BIT_PAD_ERR:
  655. drv_can1.device.status.bitpaderrcnt++;
  656. break;
  657. case RT_CAN_BUS_FORMAT_ERR:
  658. drv_can1.device.status.formaterrcnt++;
  659. break;
  660. case RT_CAN_BUS_ACK_ERR:/* attention !!! test ack err's unit is transmit unit */
  661. drv_can1.device.status.ackerrcnt++;
  662. if (!READ_BIT(drv_can1.CanHandle.Instance->TSR, CAN_FLAG_TXOK0))
  663. rt_hw_can_isr(&drv_can1.device, RT_CAN_EVENT_TX_FAIL | 0 << 8);
  664. else if (!READ_BIT(drv_can1.CanHandle.Instance->TSR, CAN_FLAG_TXOK1))
  665. rt_hw_can_isr(&drv_can1.device, RT_CAN_EVENT_TX_FAIL | 1 << 8);
  666. else if (!READ_BIT(drv_can1.CanHandle.Instance->TSR, CAN_FLAG_TXOK2))
  667. rt_hw_can_isr(&drv_can1.device, RT_CAN_EVENT_TX_FAIL | 2 << 8);
  668. break;
  669. case RT_CAN_BUS_IMPLICIT_BIT_ERR:
  670. case RT_CAN_BUS_EXPLICIT_BIT_ERR:
  671. drv_can1.device.status.biterrcnt++;
  672. break;
  673. case RT_CAN_BUS_CRC_ERR:
  674. drv_can1.device.status.crcerrcnt++;
  675. break;
  676. }
  677. drv_can1.device.status.lasterrtype = errtype & 0x70;
  678. drv_can1.device.status.rcverrcnt = errtype >> 24;
  679. drv_can1.device.status.snderrcnt = (errtype >> 16 & 0xFF);
  680. drv_can1.device.status.errcode = errtype & 0x07;
  681. hcan->Instance->MSR |= CAN_MSR_ERRI;
  682. rt_interrupt_leave();
  683. }
  684. #endif /* BSP_USING_CAN1 */
  685. #ifdef BSP_USING_CAN2
  686. /**
  687. * @brief This function handles CAN2 TX interrupts.
  688. */
  689. void CAN2_TX_IRQHandler(void)
  690. {
  691. rt_interrupt_enter();
  692. CAN_HandleTypeDef *hcan;
  693. hcan = &drv_can2.CanHandle;
  694. if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_RQCP0))
  695. {
  696. if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_TXOK0))
  697. {
  698. rt_hw_can_isr(&drv_can2.device, RT_CAN_EVENT_TX_DONE | 0 << 8);
  699. }
  700. else
  701. {
  702. rt_hw_can_isr(&drv_can2.device, RT_CAN_EVENT_TX_FAIL | 0 << 8);
  703. }
  704. /* Write 0 to Clear transmission status flag RQCPx */
  705. SET_BIT(hcan->Instance->TSR, CAN_TSR_RQCP0);
  706. }
  707. else if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_RQCP1))
  708. {
  709. if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_TXOK1))
  710. {
  711. rt_hw_can_isr(&drv_can2.device, RT_CAN_EVENT_TX_DONE | 1 << 8);
  712. }
  713. else
  714. {
  715. rt_hw_can_isr(&drv_can2.device, RT_CAN_EVENT_TX_FAIL | 1 << 8);
  716. }
  717. /* Write 0 to Clear transmission status flag RQCPx */
  718. SET_BIT(hcan->Instance->TSR, CAN_TSR_RQCP1);
  719. }
  720. else if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_RQCP2))
  721. {
  722. if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_TXOK2))
  723. {
  724. rt_hw_can_isr(&drv_can2.device, RT_CAN_EVENT_TX_DONE | 2 << 8);
  725. }
  726. else
  727. {
  728. rt_hw_can_isr(&drv_can2.device, RT_CAN_EVENT_TX_FAIL | 2 << 8);
  729. }
  730. /* Write 0 to Clear transmission status flag RQCPx */
  731. SET_BIT(hcan->Instance->TSR, CAN_TSR_RQCP2);
  732. }
  733. rt_interrupt_leave();
  734. }
  735. /**
  736. * @brief This function handles CAN2 RX0 interrupts.
  737. */
  738. void CAN2_RX0_IRQHandler(void)
  739. {
  740. rt_interrupt_enter();
  741. _can_rx_isr(&drv_can2.device, CAN_RX_FIFO0);
  742. rt_interrupt_leave();
  743. }
  744. /**
  745. * @brief This function handles CAN2 RX1 interrupts.
  746. */
  747. void CAN2_RX1_IRQHandler(void)
  748. {
  749. rt_interrupt_enter();
  750. _can_rx_isr(&drv_can2.device, CAN_RX_FIFO1);
  751. rt_interrupt_leave();
  752. }
  753. /**
  754. * @brief This function handles CAN2 SCE interrupts.
  755. */
  756. void CAN2_SCE_IRQHandler(void)
  757. {
  758. rt_uint32_t errtype;
  759. CAN_HandleTypeDef *hcan;
  760. hcan = &drv_can2.CanHandle;
  761. errtype = hcan->Instance->ESR;
  762. rt_interrupt_enter();
  763. HAL_CAN_IRQHandler(hcan);
  764. switch ((errtype & 0x70) >> 4)
  765. {
  766. case RT_CAN_BUS_BIT_PAD_ERR:
  767. drv_can2.device.status.bitpaderrcnt++;
  768. break;
  769. case RT_CAN_BUS_FORMAT_ERR:
  770. drv_can2.device.status.formaterrcnt++;
  771. break;
  772. case RT_CAN_BUS_ACK_ERR:
  773. drv_can2.device.status.ackerrcnt++;
  774. if (!READ_BIT(drv_can2.CanHandle.Instance->TSR, CAN_FLAG_TXOK0))
  775. rt_hw_can_isr(&drv_can2.device, RT_CAN_EVENT_TX_FAIL | 0 << 8);
  776. else if (!READ_BIT(drv_can2.CanHandle.Instance->TSR, CAN_FLAG_TXOK1))
  777. rt_hw_can_isr(&drv_can2.device, RT_CAN_EVENT_TX_FAIL | 1 << 8);
  778. else if (!READ_BIT(drv_can2.CanHandle.Instance->TSR, CAN_FLAG_TXOK2))
  779. rt_hw_can_isr(&drv_can2.device, RT_CAN_EVENT_TX_FAIL | 2 << 8);
  780. break;
  781. case RT_CAN_BUS_IMPLICIT_BIT_ERR:
  782. case RT_CAN_BUS_EXPLICIT_BIT_ERR:
  783. drv_can2.device.status.biterrcnt++;
  784. break;
  785. case RT_CAN_BUS_CRC_ERR:
  786. drv_can2.device.status.crcerrcnt++;
  787. break;
  788. }
  789. drv_can2.device.status.lasterrtype = errtype & 0x70;
  790. drv_can2.device.status.rcverrcnt = errtype >> 24;
  791. drv_can2.device.status.snderrcnt = (errtype >> 16 & 0xFF);
  792. drv_can2.device.status.errcode = errtype & 0x07;
  793. hcan->Instance->MSR |= CAN_MSR_ERRI;
  794. rt_interrupt_leave();
  795. }
  796. #endif /* BSP_USING_CAN2 */
  797. /**
  798. * @brief Error CAN callback.
  799. * @param hcan pointer to a CAN_HandleTypeDef structure that contains
  800. * the configuration information for the specified CAN.
  801. * @retval None
  802. */
  803. void HAL_CAN_ErrorCallback(CAN_HandleTypeDef *hcan)
  804. {
  805. __HAL_CAN_ENABLE_IT(hcan, CAN_IT_ERROR_WARNING |
  806. CAN_IT_ERROR_PASSIVE |
  807. CAN_IT_BUSOFF |
  808. CAN_IT_LAST_ERROR_CODE |
  809. CAN_IT_ERROR |
  810. CAN_IT_RX_FIFO0_MSG_PENDING |
  811. CAN_IT_RX_FIFO0_OVERRUN |
  812. CAN_IT_RX_FIFO0_FULL |
  813. CAN_IT_RX_FIFO1_MSG_PENDING |
  814. CAN_IT_RX_FIFO1_OVERRUN |
  815. CAN_IT_RX_FIFO1_FULL |
  816. CAN_IT_TX_MAILBOX_EMPTY);
  817. }
  818. int rt_hw_can_init(void)
  819. {
  820. struct can_configure config = CANDEFAULTCONFIG;
  821. config.privmode = RT_CAN_MODE_NOPRIV;
  822. config.ticks = 50;
  823. #ifdef RT_CAN_USING_HDR
  824. config.maxhdr = 14;
  825. #ifdef CAN2
  826. config.maxhdr = 28;
  827. #endif
  828. #endif
  829. /* config default filter */
  830. CAN_FilterTypeDef filterConf = {0};
  831. filterConf.FilterIdHigh = 0x0000;
  832. filterConf.FilterIdLow = 0x0000;
  833. filterConf.FilterMaskIdHigh = 0x0000;
  834. filterConf.FilterMaskIdLow = 0x0000;
  835. filterConf.FilterFIFOAssignment = CAN_FILTER_FIFO0;
  836. filterConf.FilterBank = 0;
  837. filterConf.FilterMode = CAN_FILTERMODE_IDMASK;
  838. filterConf.FilterScale = CAN_FILTERSCALE_32BIT;
  839. filterConf.FilterActivation = ENABLE;
  840. filterConf.SlaveStartFilterBank = 14;
  841. #ifdef BSP_USING_CAN1
  842. filterConf.FilterBank = 0;
  843. drv_can1.FilterConfig = filterConf;
  844. drv_can1.device.config = config;
  845. /* register CAN1 device */
  846. rt_hw_can_register(&drv_can1.device,
  847. drv_can1.name,
  848. &_can_ops,
  849. &drv_can1);
  850. #endif /* BSP_USING_CAN1 */
  851. #ifdef BSP_USING_CAN2
  852. filterConf.FilterBank = filterConf.SlaveStartFilterBank;
  853. drv_can2.FilterConfig = filterConf;
  854. drv_can2.device.config = config;
  855. /* register CAN2 device */
  856. rt_hw_can_register(&drv_can2.device,
  857. drv_can2.name,
  858. &_can_ops,
  859. &drv_can2);
  860. #endif /* BSP_USING_CAN2 */
  861. return 0;
  862. }
  863. INIT_BOARD_EXPORT(rt_hw_can_init);
  864. #endif /* BSP_USING_CAN */
  865. /************************** end of file ******************/