cpuport.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476
  1. /*
  2. * File : cpuport.c
  3. * This file is part of RT-Thread RTOS
  4. * COPYRIGHT (C) 2006 - 2018, RT-Thread Development Team
  5. *
  6. * The license and distribution terms for this file may be
  7. * found in the file LICENSE in this distribution or at
  8. * http://www.rt-thread.org/license/LICENSE
  9. *
  10. * Change Logs:
  11. * Date Author Notes
  12. * 2011-10-21 Bernard the first version.
  13. * 2011-10-27 aozima update for cortex-M4 FPU.
  14. * 2011-12-31 aozima fixed stack align issues.
  15. * 2012-01-01 aozima support context switch load/store FPU register.
  16. * 2012-12-11 lgnq fixed the coding style.
  17. * 2012-12-23 aozima stack addr align to 8byte.
  18. * 2012-12-29 Bernard Add exception hook.
  19. * 2013-06-23 aozima support lazy stack optimized.
  20. * 2018-07-24 aozima enhancement hard fault exception handler.
  21. */
  22. #include <rtthread.h>
  23. #define USE_FPU /* ARMCC */ ( (defined ( __CC_ARM ) && defined ( __TARGET_FPU_VFP )) \
  24. /* IAR */ || (defined ( __ICCARM__ ) && defined ( __ARMVFP__ )) \
  25. /* GNU */ || (defined ( __GNUC__ ) && defined ( __VFP_FP__ ) && !defined(__SOFTFP__)) )
  26. /* exception and interrupt handler table */
  27. rt_uint32_t rt_interrupt_from_thread;
  28. rt_uint32_t rt_interrupt_to_thread;
  29. rt_uint32_t rt_thread_switch_interrupt_flag;
  30. /* exception hook */
  31. static rt_err_t (*rt_exception_hook)(void *context) = RT_NULL;
  32. struct exception_stack_frame
  33. {
  34. rt_uint32_t r0;
  35. rt_uint32_t r1;
  36. rt_uint32_t r2;
  37. rt_uint32_t r3;
  38. rt_uint32_t r12;
  39. rt_uint32_t lr;
  40. rt_uint32_t pc;
  41. rt_uint32_t psr;
  42. };
  43. struct stack_frame
  44. {
  45. #if USE_FPU
  46. rt_uint32_t flag;
  47. #endif /* USE_FPU */
  48. /* r4 ~ r11 register */
  49. rt_uint32_t r4;
  50. rt_uint32_t r5;
  51. rt_uint32_t r6;
  52. rt_uint32_t r7;
  53. rt_uint32_t r8;
  54. rt_uint32_t r9;
  55. rt_uint32_t r10;
  56. rt_uint32_t r11;
  57. struct exception_stack_frame exception_stack_frame;
  58. };
  59. struct exception_stack_frame_fpu
  60. {
  61. rt_uint32_t r0;
  62. rt_uint32_t r1;
  63. rt_uint32_t r2;
  64. rt_uint32_t r3;
  65. rt_uint32_t r12;
  66. rt_uint32_t lr;
  67. rt_uint32_t pc;
  68. rt_uint32_t psr;
  69. #if USE_FPU
  70. /* FPU register */
  71. rt_uint32_t S0;
  72. rt_uint32_t S1;
  73. rt_uint32_t S2;
  74. rt_uint32_t S3;
  75. rt_uint32_t S4;
  76. rt_uint32_t S5;
  77. rt_uint32_t S6;
  78. rt_uint32_t S7;
  79. rt_uint32_t S8;
  80. rt_uint32_t S9;
  81. rt_uint32_t S10;
  82. rt_uint32_t S11;
  83. rt_uint32_t S12;
  84. rt_uint32_t S13;
  85. rt_uint32_t S14;
  86. rt_uint32_t S15;
  87. rt_uint32_t FPSCR;
  88. rt_uint32_t NO_NAME;
  89. #endif
  90. };
  91. struct stack_frame_fpu
  92. {
  93. rt_uint32_t flag;
  94. /* r4 ~ r11 register */
  95. rt_uint32_t r4;
  96. rt_uint32_t r5;
  97. rt_uint32_t r6;
  98. rt_uint32_t r7;
  99. rt_uint32_t r8;
  100. rt_uint32_t r9;
  101. rt_uint32_t r10;
  102. rt_uint32_t r11;
  103. #if USE_FPU
  104. /* FPU register s16 ~ s31 */
  105. rt_uint32_t s16;
  106. rt_uint32_t s17;
  107. rt_uint32_t s18;
  108. rt_uint32_t s19;
  109. rt_uint32_t s20;
  110. rt_uint32_t s21;
  111. rt_uint32_t s22;
  112. rt_uint32_t s23;
  113. rt_uint32_t s24;
  114. rt_uint32_t s25;
  115. rt_uint32_t s26;
  116. rt_uint32_t s27;
  117. rt_uint32_t s28;
  118. rt_uint32_t s29;
  119. rt_uint32_t s30;
  120. rt_uint32_t s31;
  121. #endif
  122. struct exception_stack_frame_fpu exception_stack_frame;
  123. };
  124. rt_uint8_t *rt_hw_stack_init(void *tentry,
  125. void *parameter,
  126. rt_uint8_t *stack_addr,
  127. void *texit)
  128. {
  129. struct stack_frame *stack_frame;
  130. rt_uint8_t *stk;
  131. unsigned long i;
  132. stk = stack_addr + sizeof(rt_uint32_t);
  133. stk = (rt_uint8_t *)RT_ALIGN_DOWN((rt_uint32_t)stk, 8);
  134. stk -= sizeof(struct stack_frame);
  135. stack_frame = (struct stack_frame *)stk;
  136. /* init all register */
  137. for (i = 0; i < sizeof(struct stack_frame) / sizeof(rt_uint32_t); i ++)
  138. {
  139. ((rt_uint32_t *)stack_frame)[i] = 0xdeadbeef;
  140. }
  141. stack_frame->exception_stack_frame.r0 = (unsigned long)parameter; /* r0 : argument */
  142. stack_frame->exception_stack_frame.r1 = 0; /* r1 */
  143. stack_frame->exception_stack_frame.r2 = 0; /* r2 */
  144. stack_frame->exception_stack_frame.r3 = 0; /* r3 */
  145. stack_frame->exception_stack_frame.r12 = 0; /* r12 */
  146. stack_frame->exception_stack_frame.lr = (unsigned long)texit; /* lr */
  147. stack_frame->exception_stack_frame.pc = (unsigned long)tentry; /* entry point, pc */
  148. stack_frame->exception_stack_frame.psr = 0x01000000L; /* PSR */
  149. #if USE_FPU
  150. stack_frame->flag = 0;
  151. #endif /* USE_FPU */
  152. /* return task's current stack address */
  153. return stk;
  154. }
  155. /**
  156. * This function set the hook, which is invoked on fault exception handling.
  157. *
  158. * @param exception_handle the exception handling hook function.
  159. */
  160. void rt_hw_exception_install(rt_err_t (*exception_handle)(void *context))
  161. {
  162. rt_exception_hook = exception_handle;
  163. }
  164. #define SCB_CFSR (*(volatile const unsigned *)0xE000ED28) /* Configurable Fault Status Register */
  165. #define SCB_HFSR (*(volatile const unsigned *)0xE000ED2C) /* HardFault Status Register */
  166. #define SCB_MMAR (*(volatile const unsigned *)0xE000ED34) /* MemManage Fault Address register */
  167. #define SCB_BFAR (*(volatile const unsigned *)0xE000ED38) /* Bus Fault Address Register */
  168. #define SCB_CFSR_MFSR (*(volatile const unsigned char*)0xE000ED28) /* Memory-management Fault Status Register */
  169. #define SCB_CFSR_BFSR (*(volatile const unsigned char*)0xE000ED29) /* Bus Fault Status Register */
  170. #define SCB_CFSR_UFSR (*(volatile const unsigned short*)0xE000ED2A) /* Usage Fault Status Register */
  171. #ifdef RT_USING_FINSH
  172. static void usage_fault_track(void)
  173. {
  174. rt_kprintf("usage fault:\n");
  175. rt_kprintf("SCB_CFSR_UFSR:0x%02X ", SCB_CFSR_UFSR);
  176. if(SCB_CFSR_UFSR & (1<<0))
  177. {
  178. /* [0]:UNDEFINSTR */
  179. rt_kprintf("UNDEFINSTR ");
  180. }
  181. if(SCB_CFSR_UFSR & (1<<1))
  182. {
  183. /* [1]:INVSTATE */
  184. rt_kprintf("INVSTATE ");
  185. }
  186. if(SCB_CFSR_UFSR & (1<<2))
  187. {
  188. /* [2]:INVPC */
  189. rt_kprintf("INVPC ");
  190. }
  191. if(SCB_CFSR_UFSR & (1<<3))
  192. {
  193. /* [3]:NOCP */
  194. rt_kprintf("NOCP ");
  195. }
  196. if(SCB_CFSR_UFSR & (1<<8))
  197. {
  198. /* [8]:UNALIGNED */
  199. rt_kprintf("UNALIGNED ");
  200. }
  201. if(SCB_CFSR_UFSR & (1<<9))
  202. {
  203. /* [9]:DIVBYZERO */
  204. rt_kprintf("DIVBYZERO ");
  205. }
  206. rt_kprintf("\n");
  207. }
  208. static void bus_fault_track(void)
  209. {
  210. rt_kprintf("bus fault:\n");
  211. rt_kprintf("SCB_CFSR_BFSR:0x%02X ", SCB_CFSR_BFSR);
  212. if(SCB_CFSR_BFSR & (1<<0))
  213. {
  214. /* [0]:IBUSERR */
  215. rt_kprintf("IBUSERR ");
  216. }
  217. if(SCB_CFSR_BFSR & (1<<1))
  218. {
  219. /* [1]:PRECISERR */
  220. rt_kprintf("PRECISERR ");
  221. }
  222. if(SCB_CFSR_BFSR & (1<<2))
  223. {
  224. /* [2]:IMPRECISERR */
  225. rt_kprintf("IMPRECISERR ");
  226. }
  227. if(SCB_CFSR_BFSR & (1<<3))
  228. {
  229. /* [3]:UNSTKERR */
  230. rt_kprintf("UNSTKERR ");
  231. }
  232. if(SCB_CFSR_BFSR & (1<<4))
  233. {
  234. /* [4]:STKERR */
  235. rt_kprintf("STKERR ");
  236. }
  237. if(SCB_CFSR_BFSR & (1<<7))
  238. {
  239. rt_kprintf("SCB->BFAR:%08X\n", SCB_BFAR);
  240. }
  241. else
  242. {
  243. rt_kprintf("\n");
  244. }
  245. }
  246. static void mem_manage_fault_track(void)
  247. {
  248. rt_kprintf("mem manage fault:\n");
  249. rt_kprintf("SCB_CFSR_MFSR:0x%02X ", SCB_CFSR_MFSR);
  250. if(SCB_CFSR_MFSR & (1<<0))
  251. {
  252. /* [0]:IACCVIOL */
  253. rt_kprintf("IACCVIOL ");
  254. }
  255. if(SCB_CFSR_MFSR & (1<<1))
  256. {
  257. /* [1]:DACCVIOL */
  258. rt_kprintf("DACCVIOL ");
  259. }
  260. if(SCB_CFSR_MFSR & (1<<3))
  261. {
  262. /* [3]:MUNSTKERR */
  263. rt_kprintf("MUNSTKERR ");
  264. }
  265. if(SCB_CFSR_MFSR & (1<<4))
  266. {
  267. /* [4]:MSTKERR */
  268. rt_kprintf("MSTKERR ");
  269. }
  270. if(SCB_CFSR_MFSR & (1<<7))
  271. {
  272. /* [7]:MMARVALID */
  273. rt_kprintf("SCB->MMAR:%08X\n", SCB_MMAR);
  274. }
  275. else
  276. {
  277. rt_kprintf("\n");
  278. }
  279. }
  280. static void hard_fault_track(void)
  281. {
  282. if(SCB_HFSR & (1UL<<1))
  283. {
  284. /* [1]:VECTBL, Indicates hard fault is caused by failed vector fetch. */
  285. rt_kprintf("failed vector fetch\n");
  286. }
  287. if(SCB_HFSR & (1UL<<30))
  288. {
  289. /* [30]:FORCED, Indicates hard fault is taken because of bus fault,
  290. memory management fault, or usage fault. */
  291. if(SCB_CFSR_BFSR)
  292. {
  293. bus_fault_track();
  294. }
  295. if(SCB_CFSR_MFSR)
  296. {
  297. mem_manage_fault_track();
  298. }
  299. if(SCB_CFSR_UFSR)
  300. {
  301. usage_fault_track();
  302. }
  303. }
  304. if(SCB_HFSR & (1UL<<31))
  305. {
  306. /* [31]:DEBUGEVT, Indicates hard fault is triggered by debug event. */
  307. rt_kprintf("debug event\n");
  308. }
  309. }
  310. #endif /* RT_USING_FINSH */
  311. struct exception_info
  312. {
  313. rt_uint32_t exc_return;
  314. struct stack_frame stack_frame;
  315. };
  316. void rt_hw_hard_fault_exception(struct exception_info *exception_info)
  317. {
  318. extern long list_thread(void);
  319. struct exception_stack_frame *exception_stack = &exception_info->stack_frame.exception_stack_frame;
  320. struct stack_frame *context = &exception_info->stack_frame;
  321. if (rt_exception_hook != RT_NULL)
  322. {
  323. rt_err_t result;
  324. result = rt_exception_hook(exception_stack);
  325. if (result == RT_EOK) return;
  326. }
  327. rt_kprintf("psr: 0x%08x\n", context->exception_stack_frame.psr);
  328. rt_kprintf("r00: 0x%08x\n", context->exception_stack_frame.r0);
  329. rt_kprintf("r01: 0x%08x\n", context->exception_stack_frame.r1);
  330. rt_kprintf("r02: 0x%08x\n", context->exception_stack_frame.r2);
  331. rt_kprintf("r03: 0x%08x\n", context->exception_stack_frame.r3);
  332. rt_kprintf("r04: 0x%08x\n", context->r4);
  333. rt_kprintf("r05: 0x%08x\n", context->r5);
  334. rt_kprintf("r06: 0x%08x\n", context->r6);
  335. rt_kprintf("r07: 0x%08x\n", context->r7);
  336. rt_kprintf("r08: 0x%08x\n", context->r8);
  337. rt_kprintf("r09: 0x%08x\n", context->r9);
  338. rt_kprintf("r10: 0x%08x\n", context->r10);
  339. rt_kprintf("r11: 0x%08x\n", context->r11);
  340. rt_kprintf("r12: 0x%08x\n", context->exception_stack_frame.r12);
  341. rt_kprintf(" lr: 0x%08x\n", context->exception_stack_frame.lr);
  342. rt_kprintf(" pc: 0x%08x\n", context->exception_stack_frame.pc);
  343. if (exception_info->exc_return & (1 << 2))
  344. {
  345. rt_kprintf("hard fault on thread: %s\r\n\r\n", rt_thread_self()->name);
  346. #ifdef RT_USING_FINSH
  347. list_thread();
  348. #endif
  349. }
  350. else
  351. {
  352. rt_kprintf("hard fault on handler\r\n\r\n");
  353. }
  354. if ( (exception_info->exc_return & 0x10) == 0)
  355. {
  356. rt_kprintf("FPU active!\r\n");
  357. }
  358. #ifdef RT_USING_FINSH
  359. hard_fault_track();
  360. #endif /* RT_USING_FINSH */
  361. while (1);
  362. }
  363. /**
  364. * shutdown CPU
  365. */
  366. void rt_hw_cpu_shutdown(void)
  367. {
  368. rt_kprintf("shutdown...\n");
  369. RT_ASSERT(0);
  370. }
  371. #ifdef RT_USING_CPU_FFS
  372. /**
  373. * This function finds the first bit set (beginning with the least significant bit)
  374. * in value and return the index of that bit.
  375. *
  376. * Bits are numbered starting at 1 (the least significant bit). A return value of
  377. * zero from any of these functions means that the argument was zero.
  378. *
  379. * @return return the index of the first bit set. If value is 0, then this function
  380. * shall return 0.
  381. */
  382. #if defined(__CC_ARM)
  383. __asm int __rt_ffs(int value)
  384. {
  385. CMP r0, #0x00
  386. BEQ exit
  387. RBIT r0, r0
  388. CLZ r0, r0
  389. ADDS r0, r0, #0x01
  390. exit
  391. BX lr
  392. }
  393. #elif defined(__IAR_SYSTEMS_ICC__)
  394. int __rt_ffs(int value)
  395. {
  396. if (value == 0) return value;
  397. asm("RBIT %0, %1" : "=r"(value) : "r"(value));
  398. asm("CLZ %0, %1" : "=r"(value) : "r"(value));
  399. asm("ADDS %0, %1, #0x01" : "=r"(value) : "r"(value));
  400. return value;
  401. }
  402. #elif defined(__GNUC__)
  403. int __rt_ffs(int value)
  404. {
  405. return __builtin_ffs(value);
  406. }
  407. #endif
  408. #endif