123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683 |
- /*
- * Copyright (c) 2015, Freescale Semiconductor, Inc.
- * Copyright 2016-2017 NXP
- *
- * Redistribution and use in source and binary forms, with or without modification,
- * are permitted provided that the following conditions are met:
- *
- * o Redistributions of source code must retain the above copyright notice, this list
- * of conditions and the following disclaimer.
- *
- * o Redistributions in binary form must reproduce the above copyright notice, this
- * list of conditions and the following disclaimer in the documentation and/or
- * other materials provided with the distribution.
- *
- * o Neither the name of the copyright holder nor the names of its
- * contributors may be used to endorse or promote products derived from this
- * software without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
- * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
- * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
- * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
- * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- */
- #include "fsl_pwm.h"
- /*******************************************************************************
- * Prototypes
- ******************************************************************************/
- /*!
- * @brief Get the instance from the base address
- *
- * @param base PWM peripheral base address
- *
- * @return The PWM module instance
- */
- static uint32_t PWM_GetInstance(PWM_Type *base);
- /*******************************************************************************
- * Variables
- ******************************************************************************/
- /*! @brief Pointers to PWM bases for each instance. */
- static PWM_Type *const s_pwmBases[] = PWM_BASE_PTRS;
- #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
- /*! @brief Pointers to PWM clocks for each PWM submodule. */
- static const clock_ip_name_t s_pwmClocks[][FSL_FEATURE_PWM_SUBMODULE_COUNT] = PWM_CLOCKS;
- #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
- /*******************************************************************************
- * Code
- ******************************************************************************/
- static uint32_t PWM_GetInstance(PWM_Type *base)
- {
- uint32_t instance;
- /* Find the instance index from base address mappings. */
- for (instance = 0; instance < ARRAY_SIZE(s_pwmBases); instance++)
- {
- if (s_pwmBases[instance] == base)
- {
- break;
- }
- }
- assert(instance < ARRAY_SIZE(s_pwmBases));
- return instance;
- }
- status_t PWM_Init(PWM_Type *base, pwm_submodule_t subModule, const pwm_config_t *config)
- {
- assert(config);
- uint16_t reg;
- /* Source clock for submodule 0 cannot be itself */
- if ((config->clockSource == kPWM_Submodule0Clock) && (subModule == kPWM_Module_0))
- {
- return kStatus_Fail;
- }
- /* Reload source select clock for submodule 0 cannot be master reload */
- if ((config->reloadSelect == kPWM_MasterReload) && (subModule == kPWM_Module_0))
- {
- return kStatus_Fail;
- }
- #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
- /* Ungate the PWM submodule clock*/
- CLOCK_EnableClock(s_pwmClocks[PWM_GetInstance(base)][subModule]);
- #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
- /* Clear the fault status flags */
- base->FSTS |= PWM_FSTS_FFLAG_MASK;
- reg = base->SM[subModule].CTRL2;
- /* Setup the submodule clock-source, control source of the INIT signal,
- * source of the force output signal, operation in debug & wait modes and reload source select
- */
- reg &= ~(PWM_CTRL2_CLK_SEL_MASK | PWM_CTRL2_FORCE_SEL_MASK | PWM_CTRL2_INIT_SEL_MASK | PWM_CTRL2_INDEP_MASK |
- PWM_CTRL2_WAITEN_MASK | PWM_CTRL2_DBGEN_MASK | PWM_CTRL2_RELOAD_SEL_MASK);
- reg |= (PWM_CTRL2_CLK_SEL(config->clockSource) | PWM_CTRL2_FORCE_SEL(config->forceTrigger) |
- PWM_CTRL2_INIT_SEL(config->initializationControl) | PWM_CTRL2_DBGEN(config->enableDebugMode) |
- PWM_CTRL2_WAITEN(config->enableWait) | PWM_CTRL2_RELOAD_SEL(config->reloadSelect));
- /* Setup PWM A & B to be independent or a complementary-pair */
- switch (config->pairOperation)
- {
- case kPWM_Independent:
- reg |= PWM_CTRL2_INDEP_MASK;
- break;
- case kPWM_ComplementaryPwmA:
- base->MCTRL &= ~(1U << (PWM_MCTRL_IPOL_SHIFT + subModule));
- break;
- case kPWM_ComplementaryPwmB:
- base->MCTRL |= (1U << (PWM_MCTRL_IPOL_SHIFT + subModule));
- break;
- default:
- break;
- }
- base->SM[subModule].CTRL2 = reg;
- reg = base->SM[subModule].CTRL;
- /* Setup the clock prescale, load mode and frequency */
- reg &= ~(PWM_CTRL_PRSC_MASK | PWM_CTRL_LDFQ_MASK | PWM_CTRL_LDMOD_MASK);
- reg |= (PWM_CTRL_PRSC(config->prescale) | PWM_CTRL_LDFQ(config->reloadFrequency));
- /* Setup register reload logic */
- switch (config->reloadLogic)
- {
- case kPWM_ReloadImmediate:
- reg |= PWM_CTRL_LDMOD_MASK;
- break;
- case kPWM_ReloadPwmHalfCycle:
- reg |= PWM_CTRL_HALF_MASK;
- reg &= ~PWM_CTRL_FULL_MASK;
- break;
- case kPWM_ReloadPwmFullCycle:
- reg &= ~PWM_CTRL_HALF_MASK;
- reg |= PWM_CTRL_FULL_MASK;
- break;
- case kPWM_ReloadPwmHalfAndFullCycle:
- reg |= PWM_CTRL_HALF_MASK;
- reg |= PWM_CTRL_FULL_MASK;
- break;
- default:
- break;
- }
- base->SM[subModule].CTRL = reg;
- /* Setup the fault filter */
- if (base->FFILT & PWM_FFILT_FILT_PER_MASK)
- {
- /* When changing values for fault period from a non-zero value, first write a value of 0
- * to clear the filter
- */
- base->FFILT &= ~(PWM_FFILT_FILT_PER_MASK);
- }
- base->FFILT = (PWM_FFILT_FILT_CNT(config->faultFilterCount) | PWM_FFILT_FILT_PER(config->faultFilterPeriod));
- /* Issue a Force trigger event when configured to trigger locally */
- if (config->forceTrigger == kPWM_Force_Local)
- {
- base->SM[subModule].CTRL2 |= PWM_CTRL2_FORCE(1U);
- }
- return kStatus_Success;
- }
- void PWM_Deinit(PWM_Type *base, pwm_submodule_t subModule)
- {
- /* Stop the submodule */
- base->MCTRL &= ~(1U << (PWM_MCTRL_RUN_SHIFT + subModule));
- #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
- /* Gate the PWM submodule clock*/
- CLOCK_DisableClock(s_pwmClocks[PWM_GetInstance(base)][subModule]);
- #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
- }
- void PWM_GetDefaultConfig(pwm_config_t *config)
- {
- assert(config);
- /* PWM is paused in debug mode */
- config->enableDebugMode = false;
- /* PWM is paused in wait mode */
- config->enableWait = false;
- /* PWM module uses the local reload signal to reload registers */
- config->reloadSelect = kPWM_LocalReload;
- /* Fault filter count is set to 0 */
- config->faultFilterCount = 0;
- /* Fault filter period is set to 0 which disables the fault filter */
- config->faultFilterPeriod = 0;
- /* Use the IP Bus clock as source clock for the PWM submodule */
- config->clockSource = kPWM_BusClock;
- /* Clock source prescale is set to divide by 1*/
- config->prescale = kPWM_Prescale_Divide_1;
- /* Local sync causes initialization */
- config->initializationControl = kPWM_Initialize_LocalSync;
- /* The local force signal, CTRL2[FORCE], from the submodule is used to force updates */
- config->forceTrigger = kPWM_Force_Local;
- /* PWM reload frequency, reload opportunity is PWM half cycle or full cycle.
- * This field is not used in Immediate reload mode
- */
- config->reloadFrequency = kPWM_LoadEveryOportunity;
- /* Buffered-registers get loaded with new values as soon as LDOK bit is set */
- config->reloadLogic = kPWM_ReloadImmediate;
- /* PWM A & PWM B operate as 2 independent channels */
- config->pairOperation = kPWM_Independent;
- }
- status_t PWM_SetupPwm(PWM_Type *base,
- pwm_submodule_t subModule,
- const pwm_signal_param_t *chnlParams,
- uint8_t numOfChnls,
- pwm_mode_t mode,
- uint32_t pwmFreq_Hz,
- uint32_t srcClock_Hz)
- {
- assert(chnlParams);
- assert(pwmFreq_Hz);
- assert(numOfChnls);
- assert(srcClock_Hz);
- uint32_t pwmClock;
- uint16_t pulseCnt = 0, pwmHighPulse = 0;
- int16_t modulo = 0;
- uint8_t i, polarityShift = 0, outputEnableShift = 0;
- if (numOfChnls > 2)
- {
- /* Each submodule has 2 signals; PWM A & PWM B */
- return kStatus_Fail;
- }
- /* Divide the clock by the prescale value */
- pwmClock = (srcClock_Hz / (1U << ((base->SM[subModule].CTRL & PWM_CTRL_PRSC_MASK) >> PWM_CTRL_PRSC_SHIFT)));
- pulseCnt = (pwmClock / pwmFreq_Hz);
- /* Setup each PWM channel */
- for (i = 0; i < numOfChnls; i++)
- {
- /* Calculate pulse width */
- pwmHighPulse = (pulseCnt * chnlParams->dutyCyclePercent) / 100;
- /* Setup the different match registers to generate the PWM signal */
- switch (mode)
- {
- case kPWM_SignedCenterAligned:
- /* Setup the PWM period for a signed center aligned signal */
- modulo = pulseCnt >> 1;
- /* Indicates the start of the PWM period */
- base->SM[subModule].INIT = (-modulo);
- /* Indicates the center value */
- base->SM[subModule].VAL0 = 0;
- /* Indicates the end of the PWM period */
- base->SM[subModule].VAL1 = modulo;
- /* Setup the PWM dutycycle */
- if (chnlParams->pwmChannel == kPWM_PwmA)
- {
- base->SM[subModule].VAL2 = (-(pwmHighPulse / 2));
- base->SM[subModule].VAL3 = (pwmHighPulse / 2);
- }
- else
- {
- base->SM[subModule].VAL4 = (-(pwmHighPulse / 2));
- base->SM[subModule].VAL5 = (pwmHighPulse / 2);
- }
- break;
- case kPWM_CenterAligned:
- /* Setup the PWM period for an unsigned center aligned signal */
- /* Indicates the start of the PWM period */
- base->SM[subModule].INIT = 0;
- /* Indicates the center value */
- base->SM[subModule].VAL0 = (pulseCnt / 2);
- /* Indicates the end of the PWM period */
- base->SM[subModule].VAL1 = pulseCnt;
- /* Setup the PWM dutycycle */
- if (chnlParams->pwmChannel == kPWM_PwmA)
- {
- base->SM[subModule].VAL2 = ((pulseCnt - pwmHighPulse) / 2);
- base->SM[subModule].VAL3 = ((pulseCnt + pwmHighPulse) / 2);
- }
- else
- {
- base->SM[subModule].VAL4 = ((pulseCnt - pwmHighPulse) / 2);
- base->SM[subModule].VAL5 = ((pulseCnt + pwmHighPulse) / 2);
- }
- break;
- case kPWM_SignedEdgeAligned:
- /* Setup the PWM period for a signed edge aligned signal */
- modulo = pulseCnt >> 1;
- /* Indicates the start of the PWM period */
- base->SM[subModule].INIT = (-modulo);
- /* Indicates the center value */
- base->SM[subModule].VAL0 = 0;
- /* Indicates the end of the PWM period */
- base->SM[subModule].VAL1 = modulo;
- /* Setup the PWM dutycycle */
- if (chnlParams->pwmChannel == kPWM_PwmA)
- {
- base->SM[subModule].VAL2 = (-modulo);
- base->SM[subModule].VAL3 = (-modulo + pwmHighPulse);
- }
- else
- {
- base->SM[subModule].VAL4 = (-modulo);
- base->SM[subModule].VAL5 = (-modulo + pwmHighPulse);
- }
- break;
- case kPWM_EdgeAligned:
- /* Setup the PWM period for a unsigned edge aligned signal */
- /* Indicates the start of the PWM period */
- base->SM[subModule].INIT = 0;
- /* Indicates the center value */
- base->SM[subModule].VAL0 = (pulseCnt / 2);
- /* Indicates the end of the PWM period */
- base->SM[subModule].VAL1 = pulseCnt;
- /* Setup the PWM dutycycle */
- if (chnlParams->pwmChannel == kPWM_PwmA)
- {
- base->SM[subModule].VAL2 = 0;
- base->SM[subModule].VAL3 = pwmHighPulse;
- }
- else
- {
- base->SM[subModule].VAL4 = 0;
- base->SM[subModule].VAL5 = pwmHighPulse;
- }
- break;
- default:
- break;
- }
- /* Setup register shift values based on the channel being configured.
- * Also setup the deadtime value
- */
- if (chnlParams->pwmChannel == kPWM_PwmA)
- {
- polarityShift = PWM_OCTRL_POLA_SHIFT;
- outputEnableShift = PWM_OUTEN_PWMA_EN_SHIFT;
- base->SM[subModule].DTCNT0 = PWM_DTCNT0_DTCNT0(chnlParams->deadtimeValue);
- }
- else
- {
- polarityShift = PWM_OCTRL_POLB_SHIFT;
- outputEnableShift = PWM_OUTEN_PWMB_EN_SHIFT;
- base->SM[subModule].DTCNT1 = PWM_DTCNT1_DTCNT1(chnlParams->deadtimeValue);
- }
- /* Setup signal active level */
- if (chnlParams->level == kPWM_HighTrue)
- {
- base->SM[subModule].OCTRL &= ~(1U << polarityShift);
- }
- else
- {
- base->SM[subModule].OCTRL |= (1U << polarityShift);
- }
- /* Enable PWM output */
- base->OUTEN |= (1U << (outputEnableShift + subModule));
- /* Get the next channel parameters */
- chnlParams++;
- }
- return kStatus_Success;
- }
- void PWM_UpdatePwmDutycycle(PWM_Type *base,
- pwm_submodule_t subModule,
- pwm_channels_t pwmSignal,
- pwm_mode_t currPwmMode,
- uint8_t dutyCyclePercent)
- {
- assert(dutyCyclePercent <= 100);
- assert(pwmSignal < 2);
- uint16_t pulseCnt = 0, pwmHighPulse = 0;
- int16_t modulo = 0;
- switch (currPwmMode)
- {
- case kPWM_SignedCenterAligned:
- modulo = base->SM[subModule].VAL1;
- pulseCnt = modulo * 2;
- /* Calculate pulse width */
- pwmHighPulse = (pulseCnt * dutyCyclePercent) / 100;
- /* Setup the PWM dutycycle */
- if (pwmSignal == kPWM_PwmA)
- {
- base->SM[subModule].VAL2 = (-(pwmHighPulse / 2));
- base->SM[subModule].VAL3 = (pwmHighPulse / 2);
- }
- else
- {
- base->SM[subModule].VAL4 = (-(pwmHighPulse / 2));
- base->SM[subModule].VAL5 = (pwmHighPulse / 2);
- }
- break;
- case kPWM_CenterAligned:
- pulseCnt = base->SM[subModule].VAL1;
- /* Calculate pulse width */
- pwmHighPulse = (pulseCnt * dutyCyclePercent) / 100;
- /* Setup the PWM dutycycle */
- if (pwmSignal == kPWM_PwmA)
- {
- base->SM[subModule].VAL2 = ((pulseCnt - pwmHighPulse) / 2);
- base->SM[subModule].VAL3 = ((pulseCnt + pwmHighPulse) / 2);
- }
- else
- {
- base->SM[subModule].VAL4 = ((pulseCnt - pwmHighPulse) / 2);
- base->SM[subModule].VAL5 = ((pulseCnt + pwmHighPulse) / 2);
- }
- break;
- case kPWM_SignedEdgeAligned:
- modulo = base->SM[subModule].VAL1;
- pulseCnt = modulo * 2;
- /* Calculate pulse width */
- pwmHighPulse = (pulseCnt * dutyCyclePercent) / 100;
- /* Setup the PWM dutycycle */
- if (pwmSignal == kPWM_PwmA)
- {
- base->SM[subModule].VAL2 = (-modulo);
- base->SM[subModule].VAL3 = (-modulo + pwmHighPulse);
- }
- else
- {
- base->SM[subModule].VAL4 = (-modulo);
- base->SM[subModule].VAL5 = (-modulo + pwmHighPulse);
- }
- break;
- case kPWM_EdgeAligned:
- pulseCnt = base->SM[subModule].VAL1;
- /* Calculate pulse width */
- pwmHighPulse = (pulseCnt * dutyCyclePercent) / 100;
- /* Setup the PWM dutycycle */
- if (pwmSignal == kPWM_PwmA)
- {
- base->SM[subModule].VAL2 = 0;
- base->SM[subModule].VAL3 = pwmHighPulse;
- }
- else
- {
- base->SM[subModule].VAL4 = 0;
- base->SM[subModule].VAL5 = pwmHighPulse;
- }
- break;
- default:
- break;
- }
- }
- void PWM_SetupInputCapture(PWM_Type *base,
- pwm_submodule_t subModule,
- pwm_channels_t pwmChannel,
- const pwm_input_capture_param_t *inputCaptureParams)
- {
- uint32_t reg = 0;
- switch (pwmChannel)
- {
- case kPWM_PwmA:
- /* Setup the capture paramters for PWM A pin */
- reg = (PWM_CAPTCTRLA_INP_SELA(inputCaptureParams->captureInputSel) |
- PWM_CAPTCTRLA_EDGA0(inputCaptureParams->edge0) | PWM_CAPTCTRLA_EDGA1(inputCaptureParams->edge1) |
- PWM_CAPTCTRLA_ONESHOTA(inputCaptureParams->enableOneShotCapture) |
- PWM_CAPTCTRLA_CFAWM(inputCaptureParams->fifoWatermark));
- /* Enable the edge counter if using the output edge counter */
- if (inputCaptureParams->captureInputSel)
- {
- reg |= PWM_CAPTCTRLA_EDGCNTA_EN_MASK;
- }
- /* Enable input capture operation */
- reg |= PWM_CAPTCTRLA_ARMA_MASK;
- base->SM[subModule].CAPTCTRLA = reg;
- /* Setup the compare value when using the edge counter as source */
- base->SM[subModule].CAPTCOMPA = PWM_CAPTCOMPA_EDGCMPA(inputCaptureParams->edgeCompareValue);
- /* Setup PWM A pin for input capture */
- base->OUTEN &= ~(1U << (PWM_OUTEN_PWMA_EN_SHIFT + subModule));
- break;
- case kPWM_PwmB:
- /* Setup the capture paramters for PWM B pin */
- reg = (PWM_CAPTCTRLB_INP_SELB(inputCaptureParams->captureInputSel) |
- PWM_CAPTCTRLB_EDGB0(inputCaptureParams->edge0) | PWM_CAPTCTRLB_EDGB1(inputCaptureParams->edge1) |
- PWM_CAPTCTRLB_ONESHOTB(inputCaptureParams->enableOneShotCapture) |
- PWM_CAPTCTRLB_CFBWM(inputCaptureParams->fifoWatermark));
- /* Enable the edge counter if using the output edge counter */
- if (inputCaptureParams->captureInputSel)
- {
- reg |= PWM_CAPTCTRLB_EDGCNTB_EN_MASK;
- }
- /* Enable input capture operation */
- reg |= PWM_CAPTCTRLB_ARMB_MASK;
- base->SM[subModule].CAPTCTRLB = reg;
- /* Setup the compare value when using the edge counter as source */
- base->SM[subModule].CAPTCOMPB = PWM_CAPTCOMPB_EDGCMPB(inputCaptureParams->edgeCompareValue);
- /* Setup PWM B pin for input capture */
- base->OUTEN &= ~(1U << (PWM_OUTEN_PWMB_EN_SHIFT + subModule));
- break;
- case kPWM_PwmX:
- reg = (PWM_CAPTCTRLX_INP_SELX(inputCaptureParams->captureInputSel) |
- PWM_CAPTCTRLX_EDGX0(inputCaptureParams->edge0) | PWM_CAPTCTRLX_EDGX1(inputCaptureParams->edge1) |
- PWM_CAPTCTRLX_ONESHOTX(inputCaptureParams->enableOneShotCapture) |
- PWM_CAPTCTRLX_CFXWM(inputCaptureParams->fifoWatermark));
- /* Enable the edge counter if using the output edge counter */
- if (inputCaptureParams->captureInputSel)
- {
- reg |= PWM_CAPTCTRLX_EDGCNTX_EN_MASK;
- }
- /* Enable input capture operation */
- reg |= PWM_CAPTCTRLX_ARMX_MASK;
- base->SM[subModule].CAPTCTRLX = reg;
- /* Setup the compare value when using the edge counter as source */
- base->SM[subModule].CAPTCOMPX = PWM_CAPTCOMPX_EDGCMPX(inputCaptureParams->edgeCompareValue);
- /* Setup PWM X pin for input capture */
- base->OUTEN &= ~(1U << (PWM_OUTEN_PWMX_EN_SHIFT + subModule));
- break;
- default:
- break;
- }
- }
- void PWM_SetupFaults(PWM_Type *base, pwm_fault_input_t faultNum, const pwm_fault_param_t *faultParams)
- {
- assert(faultParams);
- uint16_t reg;
- reg = base->FCTRL;
- /* Set the faults level-settting */
- if (faultParams->faultLevel)
- {
- reg |= (1U << (PWM_FCTRL_FLVL_SHIFT + faultNum));
- }
- else
- {
- reg &= ~(1U << (PWM_FCTRL_FLVL_SHIFT + faultNum));
- }
- /* Set the fault clearing mode */
- if (faultParams->faultClearingMode)
- {
- /* Use manual fault clearing */
- reg &= ~(1U << (PWM_FCTRL_FAUTO_SHIFT + faultNum));
- if (faultParams->faultClearingMode == kPWM_ManualSafety)
- {
- /* Use manual fault clearing with safety mode enabled */
- reg |= (1U << (PWM_FCTRL_FSAFE_SHIFT + faultNum));
- }
- else
- {
- /* Use manual fault clearing with safety mode disabled */
- reg &= ~(1U << (PWM_FCTRL_FSAFE_SHIFT + faultNum));
- }
- }
- else
- {
- /* Use automatic fault clearing */
- reg |= (1U << (PWM_FCTRL_FAUTO_SHIFT + faultNum));
- }
- base->FCTRL = reg;
- /* Set the combinational path option */
- if (faultParams->enableCombinationalPath)
- {
- /* Combinational path from the fault input to the PWM output is available */
- base->FCTRL2 &= ~(1U << faultNum);
- }
- else
- {
- /* No combinational path available, only fault filter & latch signal can disable PWM output */
- base->FCTRL2 |= (1U << faultNum);
- }
- /* Initially clear both recovery modes */
- reg = base->FSTS;
- reg &= ~((1U << (PWM_FSTS_FFULL_SHIFT + faultNum)) | (1U << (PWM_FSTS_FHALF_SHIFT + faultNum)));
- /* Setup fault recovery */
- switch (faultParams->recoverMode)
- {
- case kPWM_NoRecovery:
- break;
- case kPWM_RecoverHalfCycle:
- reg |= (1U << (PWM_FSTS_FHALF_SHIFT + faultNum));
- break;
- case kPWM_RecoverFullCycle:
- reg |= (1U << (PWM_FSTS_FFULL_SHIFT + faultNum));
- break;
- case kPWM_RecoverHalfAndFullCycle:
- reg |= (1U << (PWM_FSTS_FHALF_SHIFT + faultNum));
- reg |= (1U << (PWM_FSTS_FFULL_SHIFT + faultNum));
- break;
- default:
- break;
- }
- base->FSTS = reg;
- }
- void PWM_SetupForceSignal(PWM_Type *base, pwm_submodule_t subModule, pwm_channels_t pwmChannel, pwm_force_signal_t mode)
- {
- uint16_t shift;
- uint16_t reg;
- /* DTSRCSEL register has 4 bits per submodule; 2 bits for PWM A and 2 bits for PWM B */
- shift = subModule * 4 + pwmChannel * 2;
- /* Setup the signal to be passed upon occurrence of a FORCE_OUT signal */
- reg = base->DTSRCSEL;
- reg &= ~(0x3U << shift);
- reg |= (uint16_t)((uint16_t)mode << shift);
- base->DTSRCSEL = reg;
- }
- void PWM_EnableInterrupts(PWM_Type *base, pwm_submodule_t subModule, uint32_t mask)
- {
- /* Upper 16 bits are for related to the submodule */
- base->SM[subModule].INTEN |= (mask & 0xFFFFU);
- /* Fault related interrupts */
- base->FCTRL |= ((mask >> 16U) & PWM_FCTRL_FIE_MASK);
- }
- void PWM_DisableInterrupts(PWM_Type *base, pwm_submodule_t subModule, uint32_t mask)
- {
- base->SM[subModule].INTEN &= ~(mask & 0xFFFF);
- base->FCTRL &= ~((mask >> 16U) & PWM_FCTRL_FIE_MASK);
- }
- uint32_t PWM_GetEnabledInterrupts(PWM_Type *base, pwm_submodule_t subModule)
- {
- uint32_t enabledInterrupts;
- enabledInterrupts = base->SM[subModule].INTEN;
- enabledInterrupts |= ((uint32_t)(base->FCTRL & PWM_FCTRL_FIE_MASK) << 16U);
- return enabledInterrupts;
- }
- uint32_t PWM_GetStatusFlags(PWM_Type *base, pwm_submodule_t subModule)
- {
- uint32_t statusFlags;
- statusFlags = base->SM[subModule].STS;
- statusFlags |= ((uint32_t)(base->FSTS & PWM_FSTS_FFLAG_MASK) << 16U);
- return statusFlags;
- }
- void PWM_ClearStatusFlags(PWM_Type *base, pwm_submodule_t subModule, uint32_t mask)
- {
- uint16_t reg;
- base->SM[subModule].STS = (mask & 0xFFFFU);
- reg = base->FSTS;
- /* Clear the fault flags and set only the ones we wish to clear as the fault flags are cleared
- * by writing a login one
- */
- reg &= ~(PWM_FSTS_FFLAG_MASK);
- reg |= ((mask >> 16U) & PWM_FSTS_FFLAG_MASK);
- base->FSTS = reg;
- }
|