fsl_snvs_lp.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623
  1. /*
  2. * Copyright (c) 2017, Freescale Semiconductor, Inc.
  3. * Copyright 2016-2017 NXP
  4. *
  5. * Redistribution and use in source and binary forms, with or without modification,
  6. * are permitted provided that the following conditions are met:
  7. *
  8. * o Redistributions of source code must retain the above copyright notice, this list
  9. * of conditions and the following disclaimer.
  10. *
  11. * o Redistributions in binary form must reproduce the above copyright notice, this
  12. * list of conditions and the following disclaimer in the documentation and/or
  13. * other materials provided with the distribution.
  14. *
  15. * o Neither the name of the copyright holder nor the names of its
  16. * contributors may be used to endorse or promote products derived from this
  17. * software without specific prior written permission.
  18. *
  19. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
  20. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
  21. * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  22. * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
  23. * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
  24. * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  25. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
  26. * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  27. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  28. * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  29. */
  30. #include "fsl_snvs_lp.h"
  31. /*******************************************************************************
  32. * Definitions
  33. ******************************************************************************/
  34. #define SECONDS_IN_A_DAY (86400U)
  35. #define SECONDS_IN_A_HOUR (3600U)
  36. #define SECONDS_IN_A_MINUTE (60U)
  37. #define DAYS_IN_A_YEAR (365U)
  38. #define YEAR_RANGE_START (1970U)
  39. #define YEAR_RANGE_END (2099U)
  40. /*******************************************************************************
  41. * Prototypes
  42. ******************************************************************************/
  43. /*!
  44. * @brief Checks whether the date and time passed in is valid
  45. *
  46. * @param datetime Pointer to structure where the date and time details are stored
  47. *
  48. * @return Returns false if the date & time details are out of range; true if in range
  49. */
  50. static bool SNVS_LP_CheckDatetimeFormat(const snvs_lp_srtc_datetime_t *datetime);
  51. /*!
  52. * @brief Converts time data from datetime to seconds
  53. *
  54. * @param datetime Pointer to datetime structure where the date and time details are stored
  55. *
  56. * @return The result of the conversion in seconds
  57. */
  58. static uint32_t SNVS_LP_ConvertDatetimeToSeconds(const snvs_lp_srtc_datetime_t *datetime);
  59. /*!
  60. * @brief Converts time data from seconds to a datetime structure
  61. *
  62. * @param seconds Seconds value that needs to be converted to datetime format
  63. * @param datetime Pointer to the datetime structure where the result of the conversion is stored
  64. */
  65. static void SNVS_LP_ConvertSecondsToDatetime(uint32_t seconds, snvs_lp_srtc_datetime_t *datetime);
  66. /*!
  67. * @brief Returns SRTC time in seconds.
  68. *
  69. * This function is used internally to get actual SRTC time in seconds.
  70. *
  71. * @param base SNVS peripheral base address
  72. *
  73. * @return SRTC time in seconds
  74. */
  75. static uint32_t SNVS_LP_SRTC_GetSeconds(SNVS_Type *base);
  76. #if (!(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && \
  77. defined(SNVS_LP_CLOCKS))
  78. /*!
  79. * @brief Get the SNVS instance from peripheral base address.
  80. *
  81. * @param base SNVS peripheral base address.
  82. *
  83. * @return SNVS instance.
  84. */
  85. static uint32_t SNVS_LP_GetInstance(SNVS_Type *base);
  86. #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
  87. /*******************************************************************************
  88. * Variables
  89. ******************************************************************************/
  90. #if (!(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && \
  91. defined(SNVS_LP_CLOCKS))
  92. /*! @brief Pointer to snvs_lp clock. */
  93. const clock_ip_name_t s_snvsLpClock[] = SNVS_LP_CLOCKS;
  94. #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
  95. /*******************************************************************************
  96. * Code
  97. ******************************************************************************/
  98. static bool SNVS_LP_CheckDatetimeFormat(const snvs_lp_srtc_datetime_t *datetime)
  99. {
  100. assert(datetime);
  101. /* Table of days in a month for a non leap year. First entry in the table is not used,
  102. * valid months start from 1
  103. */
  104. uint8_t daysPerMonth[] = {0U, 31U, 28U, 31U, 30U, 31U, 30U, 31U, 31U, 30U, 31U, 30U, 31U};
  105. /* Check year, month, hour, minute, seconds */
  106. if ((datetime->year < YEAR_RANGE_START) || (datetime->year > YEAR_RANGE_END) || (datetime->month > 12U) ||
  107. (datetime->month < 1U) || (datetime->hour >= 24U) || (datetime->minute >= 60U) || (datetime->second >= 60U))
  108. {
  109. /* If not correct then error*/
  110. return false;
  111. }
  112. /* Adjust the days in February for a leap year */
  113. if ((((datetime->year & 3U) == 0) && (datetime->year % 100 != 0)) || (datetime->year % 400 == 0))
  114. {
  115. daysPerMonth[2] = 29U;
  116. }
  117. /* Check the validity of the day */
  118. if ((datetime->day > daysPerMonth[datetime->month]) || (datetime->day < 1U))
  119. {
  120. return false;
  121. }
  122. return true;
  123. }
  124. static uint32_t SNVS_LP_ConvertDatetimeToSeconds(const snvs_lp_srtc_datetime_t *datetime)
  125. {
  126. assert(datetime);
  127. /* Number of days from begin of the non Leap-year*/
  128. /* Number of days from begin of the non Leap-year*/
  129. uint16_t monthDays[] = {0U, 0U, 31U, 59U, 90U, 120U, 151U, 181U, 212U, 243U, 273U, 304U, 334U};
  130. uint32_t seconds;
  131. /* Compute number of days from 1970 till given year*/
  132. seconds = (datetime->year - 1970U) * DAYS_IN_A_YEAR;
  133. /* Add leap year days */
  134. seconds += ((datetime->year / 4) - (1970U / 4));
  135. /* Add number of days till given month*/
  136. seconds += monthDays[datetime->month];
  137. /* Add days in given month. We subtract the current day as it is
  138. * represented in the hours, minutes and seconds field*/
  139. seconds += (datetime->day - 1);
  140. /* For leap year if month less than or equal to Febraury, decrement day counter*/
  141. if ((!(datetime->year & 3U)) && (datetime->month <= 2U))
  142. {
  143. seconds--;
  144. }
  145. seconds = (seconds * SECONDS_IN_A_DAY) + (datetime->hour * SECONDS_IN_A_HOUR) +
  146. (datetime->minute * SECONDS_IN_A_MINUTE) + datetime->second;
  147. return seconds;
  148. }
  149. static void SNVS_LP_ConvertSecondsToDatetime(uint32_t seconds, snvs_lp_srtc_datetime_t *datetime)
  150. {
  151. assert(datetime);
  152. uint32_t x;
  153. uint32_t secondsRemaining, days;
  154. uint16_t daysInYear;
  155. /* Table of days in a month for a non leap year. First entry in the table is not used,
  156. * valid months start from 1
  157. */
  158. uint8_t daysPerMonth[] = {0U, 31U, 28U, 31U, 30U, 31U, 30U, 31U, 31U, 30U, 31U, 30U, 31U};
  159. /* Start with the seconds value that is passed in to be converted to date time format */
  160. secondsRemaining = seconds;
  161. /* Calcuate the number of days, we add 1 for the current day which is represented in the
  162. * hours and seconds field
  163. */
  164. days = secondsRemaining / SECONDS_IN_A_DAY + 1;
  165. /* Update seconds left*/
  166. secondsRemaining = secondsRemaining % SECONDS_IN_A_DAY;
  167. /* Calculate the datetime hour, minute and second fields */
  168. datetime->hour = secondsRemaining / SECONDS_IN_A_HOUR;
  169. secondsRemaining = secondsRemaining % SECONDS_IN_A_HOUR;
  170. datetime->minute = secondsRemaining / 60U;
  171. datetime->second = secondsRemaining % SECONDS_IN_A_MINUTE;
  172. /* Calculate year */
  173. daysInYear = DAYS_IN_A_YEAR;
  174. datetime->year = YEAR_RANGE_START;
  175. while (days > daysInYear)
  176. {
  177. /* Decrease day count by a year and increment year by 1 */
  178. days -= daysInYear;
  179. datetime->year++;
  180. /* Adjust the number of days for a leap year */
  181. if (datetime->year & 3U)
  182. {
  183. daysInYear = DAYS_IN_A_YEAR;
  184. }
  185. else
  186. {
  187. daysInYear = DAYS_IN_A_YEAR + 1;
  188. }
  189. }
  190. /* Adjust the days in February for a leap year */
  191. if (!(datetime->year & 3U))
  192. {
  193. daysPerMonth[2] = 29U;
  194. }
  195. for (x = 1U; x <= 12U; x++)
  196. {
  197. if (days <= daysPerMonth[x])
  198. {
  199. datetime->month = x;
  200. break;
  201. }
  202. else
  203. {
  204. days -= daysPerMonth[x];
  205. }
  206. }
  207. datetime->day = days;
  208. }
  209. #if (!(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && \
  210. defined(SNVS_LP_CLOCKS))
  211. static uint32_t SNVS_LP_GetInstance(SNVS_Type *base)
  212. {
  213. return 0U;
  214. }
  215. #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
  216. void SNVS_LP_SRTC_Init(SNVS_Type *base, const snvs_lp_srtc_config_t *config)
  217. {
  218. assert(config);
  219. #if (!(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && \
  220. defined(SNVS_LP_CLOCKS))
  221. uint32_t instance = SNVS_LP_GetInstance(base);
  222. CLOCK_EnableClock(s_snvsLpClock[instance]);
  223. #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
  224. int pin;
  225. if (config->srtcCalEnable)
  226. {
  227. base->LPCR = SNVS_LPCR_LPCALB_VAL_MASK & (config->srtcCalValue << SNVS_LPCR_LPCALB_VAL_SHIFT);
  228. base->LPCR |= SNVS_LPCR_LPCALB_EN_MASK;
  229. }
  230. for (pin = kSNVS_ExternalTamper1; pin <= SNVS_LP_MAX_TAMPER; pin++)
  231. {
  232. SNVS_LP_DisableExternalTamper(SNVS, (snvs_lp_external_tamper_t)pin);
  233. SNVS_LP_ClearExternalTamperStatus(SNVS, (snvs_lp_external_tamper_t)pin);
  234. }
  235. }
  236. void SNVS_LP_SRTC_Deinit(SNVS_Type *base)
  237. {
  238. base->LPCR &= ~SNVS_LPCR_SRTC_ENV_MASK;
  239. #if (!(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && \
  240. defined(SNVS_LP_CLOCKS))
  241. uint32_t instance = SNVS_LP_GetInstance(base);
  242. CLOCK_DisableClock(s_snvsLpClock[instance]);
  243. #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
  244. }
  245. void SNVS_LP_SRTC_GetDefaultConfig(snvs_lp_srtc_config_t *config)
  246. {
  247. assert(config);
  248. config->srtcCalEnable = false;
  249. config->srtcCalValue = 0U;
  250. }
  251. static uint32_t SNVS_LP_SRTC_GetSeconds(SNVS_Type *base)
  252. {
  253. uint32_t seconds = 0;
  254. uint32_t tmp = 0;
  255. /* Do consecutive reads until value is correct */
  256. do
  257. {
  258. seconds = tmp;
  259. tmp = (base->LPSRTCMR << 17U) | (base->LPSRTCLR >> 15U);
  260. } while (tmp != seconds);
  261. return seconds;
  262. }
  263. status_t SNVS_LP_SRTC_SetDatetime(SNVS_Type *base, const snvs_lp_srtc_datetime_t *datetime)
  264. {
  265. assert(datetime);
  266. uint32_t seconds = 0U;
  267. uint32_t tmp = base->LPCR;
  268. /* disable RTC */
  269. SNVS_LP_SRTC_StopTimer(base);
  270. /* Return error if the time provided is not valid */
  271. if (!(SNVS_LP_CheckDatetimeFormat(datetime)))
  272. {
  273. return kStatus_InvalidArgument;
  274. }
  275. /* Set time in seconds */
  276. seconds = SNVS_LP_ConvertDatetimeToSeconds(datetime);
  277. base->LPSRTCMR = (uint32_t)(seconds >> 17U);
  278. base->LPSRTCLR = (uint32_t)(seconds << 15U);
  279. /* reenable SRTC in case that it was enabled before */
  280. if (tmp & SNVS_LPCR_SRTC_ENV_MASK)
  281. {
  282. SNVS_LP_SRTC_StartTimer(base);
  283. }
  284. return kStatus_Success;
  285. }
  286. void SNVS_LP_SRTC_GetDatetime(SNVS_Type *base, snvs_lp_srtc_datetime_t *datetime)
  287. {
  288. assert(datetime);
  289. SNVS_LP_ConvertSecondsToDatetime(SNVS_LP_SRTC_GetSeconds(base), datetime);
  290. }
  291. status_t SNVS_LP_SRTC_SetAlarm(SNVS_Type *base, const snvs_lp_srtc_datetime_t *alarmTime)
  292. {
  293. assert(alarmTime);
  294. uint32_t alarmSeconds = 0U;
  295. uint32_t currSeconds = 0U;
  296. uint32_t tmp = base->LPCR;
  297. /* Return error if the alarm time provided is not valid */
  298. if (!(SNVS_LP_CheckDatetimeFormat(alarmTime)))
  299. {
  300. return kStatus_InvalidArgument;
  301. }
  302. alarmSeconds = SNVS_LP_ConvertDatetimeToSeconds(alarmTime);
  303. currSeconds = SNVS_LP_SRTC_GetSeconds(base);
  304. /* Return error if the alarm time has passed */
  305. if (alarmSeconds <= currSeconds)
  306. {
  307. return kStatus_Fail;
  308. }
  309. /* disable SRTC alarm interrupt */
  310. base->LPCR &= ~SNVS_LPCR_LPTA_EN_MASK;
  311. while (base->LPCR & SNVS_LPCR_LPTA_EN_MASK)
  312. {
  313. }
  314. /* Set alarm in seconds*/
  315. base->LPTAR = alarmSeconds;
  316. /* reenable SRTC alarm interrupt in case that it was enabled before */
  317. base->LPCR = tmp;
  318. return kStatus_Success;
  319. }
  320. void SNVS_LP_SRTC_GetAlarm(SNVS_Type *base, snvs_lp_srtc_datetime_t *datetime)
  321. {
  322. assert(datetime);
  323. uint32_t alarmSeconds = 0U;
  324. /* Get alarm in seconds */
  325. alarmSeconds = base->LPTAR;
  326. SNVS_LP_ConvertSecondsToDatetime(alarmSeconds, datetime);
  327. }
  328. uint32_t SNVS_LP_SRTC_GetStatusFlags(SNVS_Type *base)
  329. {
  330. uint32_t flags = 0U;
  331. if (base->LPSR & SNVS_LPSR_LPTA_MASK)
  332. {
  333. flags |= kSNVS_SRTC_AlarmInterruptFlag;
  334. }
  335. return flags;
  336. }
  337. void SNVS_LP_SRTC_ClearStatusFlags(SNVS_Type *base, uint32_t mask)
  338. {
  339. if (mask & kSNVS_SRTC_AlarmInterruptFlag)
  340. {
  341. base->LPSR |= SNVS_LPSR_LPTA_MASK;
  342. }
  343. }
  344. void SNVS_LP_SRTC_EnableInterrupts(SNVS_Type *base, uint32_t mask)
  345. {
  346. if (mask & kSNVS_SRTC_AlarmInterruptEnable)
  347. {
  348. base->LPCR |= SNVS_LPCR_LPTA_EN_MASK;
  349. }
  350. }
  351. void SNVS_LP_SRTC_DisableInterrupts(SNVS_Type *base, uint32_t mask)
  352. {
  353. if (mask & kSNVS_SRTC_AlarmInterruptEnable)
  354. {
  355. base->LPCR &= ~SNVS_LPCR_LPTA_EN_MASK;
  356. }
  357. }
  358. uint32_t SNVS_LP_SRTC_GetEnabledInterrupts(SNVS_Type *base)
  359. {
  360. uint32_t val = 0U;
  361. if (base->LPCR & SNVS_LPCR_LPTA_EN_MASK)
  362. {
  363. val |= kSNVS_SRTC_AlarmInterruptFlag;
  364. }
  365. return val;
  366. }
  367. void SNVS_LP_EnableExternalTamper(SNVS_Type *base,
  368. snvs_lp_external_tamper_t pin,
  369. snvs_lp_external_tamper_polarity_t polarity)
  370. {
  371. switch (pin)
  372. {
  373. case (kSNVS_ExternalTamper1):
  374. base->LPTDCR = (base->LPTDCR & ~(1U << SNVS_LPTDCR_ET1P_SHIFT)) | (polarity << SNVS_LPTDCR_ET1P_SHIFT);
  375. base->LPTDCR |= SNVS_LPTDCR_ET1_EN_MASK;
  376. break;
  377. #if defined(FSL_FEATURE_SNVS_HAS_MULTIPLE_TAMPER) && (FSL_FEATURE_SNVS_HAS_MULTIPLE_TAMPER > 1)
  378. case (kSNVS_ExternalTamper2):
  379. base->LPTDCR = (base->LPTDCR & ~(1U << SNVS_LPTDCR_ET2P_SHIFT)) | (polarity << SNVS_LPTDCR_ET2P_SHIFT);
  380. base->LPTDCR |= SNVS_LPTDCR_ET2_EN_MASK;
  381. break;
  382. case (kSNVS_ExternalTamper3):
  383. base->LPTDC2R = (base->LPTDC2R & ~(1U << SNVS_LPTDC2R_ET3P_SHIFT)) | (polarity << SNVS_LPTDC2R_ET3P_SHIFT);
  384. base->LPTDC2R |= SNVS_LPTDC2R_ET3_EN_MASK;
  385. break;
  386. case (kSNVS_ExternalTamper4):
  387. base->LPTDC2R = (base->LPTDC2R & ~(1U << SNVS_LPTDC2R_ET4P_SHIFT)) | (polarity << SNVS_LPTDC2R_ET4P_SHIFT);
  388. base->LPTDC2R |= SNVS_LPTDC2R_ET4_EN_MASK;
  389. break;
  390. case (kSNVS_ExternalTamper5):
  391. base->LPTDC2R = (base->LPTDC2R & ~(1U << SNVS_LPTDC2R_ET5P_SHIFT)) | (polarity << SNVS_LPTDC2R_ET5P_SHIFT);
  392. base->LPTDC2R |= SNVS_LPTDC2R_ET5_EN_MASK;
  393. break;
  394. case (kSNVS_ExternalTamper6):
  395. base->LPTDC2R = (base->LPTDC2R & ~(1U << SNVS_LPTDC2R_ET6P_SHIFT)) | (polarity << SNVS_LPTDC2R_ET6P_SHIFT);
  396. base->LPTDC2R |= SNVS_LPTDC2R_ET6_EN_MASK;
  397. break;
  398. case (kSNVS_ExternalTamper7):
  399. base->LPTDC2R = (base->LPTDC2R & ~(1U << SNVS_LPTDC2R_ET7P_SHIFT)) | (polarity << SNVS_LPTDC2R_ET7P_SHIFT);
  400. base->LPTDC2R |= SNVS_LPTDC2R_ET7_EN_MASK;
  401. break;
  402. case (kSNVS_ExternalTamper8):
  403. base->LPTDC2R = (base->LPTDC2R & ~(1U << SNVS_LPTDC2R_ET8P_SHIFT)) | (polarity << SNVS_LPTDC2R_ET8P_SHIFT);
  404. base->LPTDC2R |= SNVS_LPTDC2R_ET8_EN_MASK;
  405. break;
  406. case (kSNVS_ExternalTamper9):
  407. base->LPTDC2R = (base->LPTDC2R & ~(1U << SNVS_LPTDC2R_ET9P_SHIFT)) | (polarity << SNVS_LPTDC2R_ET9P_SHIFT);
  408. base->LPTDC2R |= SNVS_LPTDC2R_ET9_EN_MASK;
  409. break;
  410. case (kSNVS_ExternalTamper10):
  411. base->LPTDC2R =
  412. (base->LPTDC2R & ~(1U << SNVS_LPTDC2R_ET10P_SHIFT)) | (polarity << SNVS_LPTDC2R_ET10P_SHIFT);
  413. base->LPTDC2R |= SNVS_LPTDC2R_ET10_EN_MASK;
  414. break;
  415. #endif
  416. default:
  417. break;
  418. }
  419. }
  420. void SNVS_LP_DisableExternalTamper(SNVS_Type *base, snvs_lp_external_tamper_t pin)
  421. {
  422. switch (pin)
  423. {
  424. case (kSNVS_ExternalTamper1):
  425. base->LPTDCR &= ~SNVS_LPTDCR_ET1_EN_MASK;
  426. break;
  427. #if defined(FSL_FEATURE_SNVS_HAS_MULTIPLE_TAMPER) && (FSL_FEATURE_SNVS_HAS_MULTIPLE_TAMPER > 1)
  428. case (kSNVS_ExternalTamper2):
  429. base->LPTDCR &= ~SNVS_LPTDCR_ET2_EN_MASK;
  430. break;
  431. case (kSNVS_ExternalTamper3):
  432. base->LPTDC2R &= ~SNVS_LPTDC2R_ET3_EN_MASK;
  433. break;
  434. case (kSNVS_ExternalTamper4):
  435. base->LPTDC2R &= ~SNVS_LPTDC2R_ET4_EN_MASK;
  436. break;
  437. case (kSNVS_ExternalTamper5):
  438. base->LPTDC2R &= ~SNVS_LPTDC2R_ET5_EN_MASK;
  439. break;
  440. case (kSNVS_ExternalTamper6):
  441. base->LPTDC2R &= ~SNVS_LPTDC2R_ET6_EN_MASK;
  442. break;
  443. case (kSNVS_ExternalTamper7):
  444. base->LPTDC2R &= ~SNVS_LPTDC2R_ET7_EN_MASK;
  445. break;
  446. case (kSNVS_ExternalTamper8):
  447. base->LPTDC2R &= ~SNVS_LPTDC2R_ET8_EN_MASK;
  448. break;
  449. case (kSNVS_ExternalTamper9):
  450. base->LPTDC2R &= ~SNVS_LPTDC2R_ET9_EN_MASK;
  451. break;
  452. case (kSNVS_ExternalTamper10):
  453. base->LPTDC2R &= ~SNVS_LPTDC2R_ET10_EN_MASK;
  454. break;
  455. #endif
  456. default:
  457. break;
  458. }
  459. }
  460. snvs_lp_external_tamper_status_t SNVS_LP_GetExternalTamperStatus(SNVS_Type *base, snvs_lp_external_tamper_t pin)
  461. {
  462. snvs_lp_external_tamper_status_t status = kSNVS_TamperNotDetected;
  463. switch (pin)
  464. {
  465. case (kSNVS_ExternalTamper1):
  466. status = (base->LPSR & SNVS_LPSR_ET1D_MASK) ? kSNVS_TamperDetected : kSNVS_TamperNotDetected;
  467. break;
  468. #if defined(FSL_FEATURE_SNVS_HAS_MULTIPLE_TAMPER) && (FSL_FEATURE_SNVS_HAS_MULTIPLE_TAMPER > 1)
  469. case (kSNVS_ExternalTamper2):
  470. status = (base->LPSR & SNVS_LPSR_ET2D_MASK) ? kSNVS_TamperDetected : kSNVS_TamperNotDetected;
  471. break;
  472. case (kSNVS_ExternalTamper3):
  473. status = (base->LPTDSR & SNVS_LPTDSR_ET3D_MASK) ? kSNVS_TamperDetected : kSNVS_TamperNotDetected;
  474. break;
  475. case (kSNVS_ExternalTamper4):
  476. status = (base->LPTDSR & SNVS_LPTDSR_ET4D_MASK) ? kSNVS_TamperDetected : kSNVS_TamperNotDetected;
  477. break;
  478. case (kSNVS_ExternalTamper5):
  479. status = (base->LPTDSR & SNVS_LPTDSR_ET5D_MASK) ? kSNVS_TamperDetected : kSNVS_TamperNotDetected;
  480. break;
  481. case (kSNVS_ExternalTamper6):
  482. status = (base->LPTDSR & SNVS_LPTDSR_ET6D_MASK) ? kSNVS_TamperDetected : kSNVS_TamperNotDetected;
  483. break;
  484. case (kSNVS_ExternalTamper7):
  485. status = (base->LPTDSR & SNVS_LPTDSR_ET7D_MASK) ? kSNVS_TamperDetected : kSNVS_TamperNotDetected;
  486. break;
  487. case (kSNVS_ExternalTamper8):
  488. status = (base->LPTDSR & SNVS_LPTDSR_ET8D_MASK) ? kSNVS_TamperDetected : kSNVS_TamperNotDetected;
  489. break;
  490. case (kSNVS_ExternalTamper9):
  491. status = (base->LPTDSR & SNVS_LPTDSR_ET9D_MASK) ? kSNVS_TamperDetected : kSNVS_TamperNotDetected;
  492. break;
  493. case (kSNVS_ExternalTamper10):
  494. status = (base->LPTDSR & SNVS_LPTDSR_ET10D_MASK) ? kSNVS_TamperDetected : kSNVS_TamperNotDetected;
  495. break;
  496. #endif
  497. default:
  498. break;
  499. }
  500. return status;
  501. }
  502. void SNVS_LP_ClearExternalTamperStatus(SNVS_Type *base, snvs_lp_external_tamper_t pin)
  503. {
  504. base->LPSR |= SNVS_LPSR_ET1D_MASK;
  505. switch (pin)
  506. {
  507. case (kSNVS_ExternalTamper1):
  508. base->LPSR |= SNVS_LPSR_ET1D_MASK;
  509. break;
  510. #if defined(FSL_FEATURE_SNVS_HAS_MULTIPLE_TAMPER) && (FSL_FEATURE_SNVS_HAS_MULTIPLE_TAMPER > 1)
  511. case (kSNVS_ExternalTamper2):
  512. base->LPSR |= SNVS_LPSR_ET2D_MASK;
  513. break;
  514. case (kSNVS_ExternalTamper3):
  515. base->LPTDSR |= SNVS_LPTDSR_ET3D_MASK;
  516. break;
  517. case (kSNVS_ExternalTamper4):
  518. base->LPTDSR |= SNVS_LPTDSR_ET4D_MASK;
  519. break;
  520. case (kSNVS_ExternalTamper5):
  521. base->LPTDSR |= SNVS_LPTDSR_ET5D_MASK;
  522. break;
  523. case (kSNVS_ExternalTamper6):
  524. base->LPTDSR |= SNVS_LPTDSR_ET6D_MASK;
  525. break;
  526. case (kSNVS_ExternalTamper7):
  527. base->LPTDSR |= SNVS_LPTDSR_ET7D_MASK;
  528. break;
  529. case (kSNVS_ExternalTamper8):
  530. base->LPTDSR |= SNVS_LPTDSR_ET8D_MASK;
  531. break;
  532. case (kSNVS_ExternalTamper9):
  533. base->LPTDSR |= SNVS_LPTDSR_ET9D_MASK;
  534. break;
  535. case (kSNVS_ExternalTamper10):
  536. base->LPTDSR |= SNVS_LPTDSR_ET10D_MASK;
  537. break;
  538. #endif
  539. default:
  540. break;
  541. }
  542. }