alarm.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794
  1. /*
  2. * Copyright (c) 2006-2023, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2012-10-27 heyuanjie87 first version.
  9. * 2013-05-17 aozima initial alarm event & mutex in system init.
  10. * 2020-10-15 zhangsz add alarm flags hour minute second.
  11. * 2020-11-09 zhangsz fix alarm set when modify rtc time.
  12. */
  13. #include <rtthread.h>
  14. #include <rtdevice.h>
  15. #include <sys/time.h>
  16. #define RT_RTC_YEARS_MAX 137
  17. #ifdef RT_USING_SOFT_RTC
  18. #define RT_ALARM_DELAY 0
  19. #else
  20. #define RT_ALARM_DELAY 2
  21. #endif
  22. #if (defined(RT_USING_RTC) && defined(RT_USING_ALARM))
  23. static struct rt_alarm_container _container;
  24. rt_inline rt_uint32_t alarm_mkdaysec(struct tm *time)
  25. {
  26. rt_uint32_t sec;
  27. sec = time->tm_sec;
  28. sec += time->tm_min * 60;
  29. sec += time->tm_hour * 3600;
  30. return (sec);
  31. }
  32. static rt_err_t alarm_set(struct rt_alarm *alarm)
  33. {
  34. rt_device_t device;
  35. struct rt_rtc_wkalarm wkalarm;
  36. rt_err_t ret;
  37. device = rt_device_find("rtc");
  38. if (device == RT_NULL)
  39. {
  40. return (RT_ERROR);
  41. }
  42. if (alarm->flag & RT_ALARM_STATE_START)
  43. wkalarm.enable = RT_TRUE;
  44. else
  45. wkalarm.enable = RT_FALSE;
  46. wkalarm.tm_sec = alarm->wktime.tm_sec;
  47. wkalarm.tm_min = alarm->wktime.tm_min;
  48. wkalarm.tm_hour = alarm->wktime.tm_hour;
  49. ret = rt_device_control(device, RT_DEVICE_CTRL_RTC_SET_ALARM, &wkalarm);
  50. if ((ret == RT_EOK) && wkalarm.enable)
  51. {
  52. ret = rt_device_control(device, RT_DEVICE_CTRL_RTC_GET_ALARM, &wkalarm);
  53. if (ret == RT_EOK)
  54. {
  55. /*
  56. some RTC device like RX8025,it's alarms precision is 1 minute.
  57. in this case,low level RTC driver should set wkalarm->tm_sec to 0.
  58. */
  59. alarm->wktime.tm_sec = wkalarm.tm_sec;
  60. alarm->wktime.tm_min = wkalarm.tm_min;
  61. alarm->wktime.tm_hour = wkalarm.tm_hour;
  62. }
  63. }
  64. return (ret);
  65. }
  66. static void alarm_wakeup(struct rt_alarm *alarm, struct tm *now)
  67. {
  68. rt_uint32_t sec_alarm, sec_now;
  69. rt_bool_t wakeup = RT_FALSE;
  70. time_t timestamp;
  71. sec_alarm = alarm_mkdaysec(&alarm->wktime);
  72. sec_now = alarm_mkdaysec(now);
  73. if (alarm->flag & RT_ALARM_STATE_START)
  74. {
  75. switch (alarm->flag & 0xFF00)
  76. {
  77. case RT_ALARM_ONESHOT:
  78. {
  79. sec_alarm = timegm(&alarm->wktime);
  80. sec_now = timegm(now);
  81. if (((sec_now - sec_alarm) <= RT_ALARM_DELAY) && (sec_now >= sec_alarm))
  82. {
  83. /* stop alarm */
  84. alarm->flag &= ~RT_ALARM_STATE_START;
  85. alarm_set(alarm);
  86. wakeup = RT_TRUE;
  87. }
  88. }
  89. break;
  90. case RT_ALARM_SECOND:
  91. {
  92. alarm->wktime.tm_hour = now->tm_hour;
  93. alarm->wktime.tm_min = now->tm_min;
  94. alarm->wktime.tm_sec = now->tm_sec + 1;
  95. if (alarm->wktime.tm_sec > 59)
  96. {
  97. alarm->wktime.tm_sec = 0;
  98. alarm->wktime.tm_min = alarm->wktime.tm_min + 1;
  99. if (alarm->wktime.tm_min > 59)
  100. {
  101. alarm->wktime.tm_min = 0;
  102. alarm->wktime.tm_hour = alarm->wktime.tm_hour + 1;
  103. if (alarm->wktime.tm_hour > 23)
  104. {
  105. alarm->wktime.tm_hour = 0;
  106. }
  107. }
  108. }
  109. wakeup = RT_TRUE;
  110. }
  111. break;
  112. case RT_ALARM_MINUTE:
  113. {
  114. alarm->wktime.tm_hour = now->tm_hour;
  115. if (alarm->wktime.tm_sec == now->tm_sec)
  116. {
  117. alarm->wktime.tm_min = now->tm_min + 1;
  118. if (alarm->wktime.tm_min > 59)
  119. {
  120. alarm->wktime.tm_min = 0;
  121. alarm->wktime.tm_hour = alarm->wktime.tm_hour + 1;
  122. if (alarm->wktime.tm_hour > 23)
  123. {
  124. alarm->wktime.tm_hour = 0;
  125. }
  126. }
  127. wakeup = RT_TRUE;
  128. }
  129. }
  130. break;
  131. case RT_ALARM_HOUR:
  132. {
  133. if ((alarm->wktime.tm_min == now->tm_min) &&
  134. (alarm->wktime.tm_sec == now->tm_sec))
  135. {
  136. alarm->wktime.tm_hour = now->tm_hour + 1;
  137. if (alarm->wktime.tm_hour > 23)
  138. {
  139. alarm->wktime.tm_hour = 0;
  140. }
  141. wakeup = RT_TRUE;
  142. }
  143. }
  144. break;
  145. case RT_ALARM_DAILY:
  146. {
  147. if (((sec_now - sec_alarm) <= RT_ALARM_DELAY) && (sec_now >= sec_alarm))
  148. wakeup = RT_TRUE;
  149. }
  150. break;
  151. case RT_ALARM_WEEKLY:
  152. {
  153. /* alarm at wday */
  154. if (alarm->wktime.tm_wday == now->tm_wday)
  155. {
  156. sec_alarm += alarm->wktime.tm_wday * 24 * 3600;
  157. sec_now += now->tm_wday * 24 * 3600;
  158. if (sec_now == sec_alarm)
  159. wakeup = RT_TRUE;
  160. }
  161. }
  162. break;
  163. case RT_ALARM_MONTHLY:
  164. {
  165. /* monthly someday generate alarm signals */
  166. if (alarm->wktime.tm_mday == now->tm_mday)
  167. {
  168. if ((sec_now - sec_alarm) <= RT_ALARM_DELAY)
  169. wakeup = RT_TRUE;
  170. }
  171. }
  172. break;
  173. case RT_ALARM_YAERLY:
  174. {
  175. if ((alarm->wktime.tm_mday == now->tm_mday) && \
  176. (alarm->wktime.tm_mon == now->tm_mon))
  177. {
  178. if ((sec_now - sec_alarm) <= RT_ALARM_DELAY)
  179. wakeup = RT_TRUE;
  180. }
  181. }
  182. break;
  183. }
  184. if ((wakeup == RT_TRUE) && (alarm->callback != RT_NULL))
  185. {
  186. timestamp = (time_t)0;
  187. get_timestamp(&timestamp);
  188. alarm->callback(alarm, timestamp);
  189. }
  190. }
  191. }
  192. static void alarm_update(rt_uint32_t event)
  193. {
  194. struct rt_alarm *alm_prev = RT_NULL, *alm_next = RT_NULL;
  195. struct rt_alarm *alarm;
  196. rt_int32_t sec_now, sec_alarm, sec_tmp;
  197. rt_int32_t sec_next = 24 * 3600, sec_prev = 0;
  198. time_t timestamp = (time_t)0;
  199. struct tm now;
  200. rt_list_t *next;
  201. rt_mutex_take(&_container.mutex, RT_WAITING_FOREVER);
  202. if (!rt_list_isempty(&_container.head))
  203. {
  204. /* get time of now */
  205. get_timestamp(&timestamp);
  206. gmtime_r(&timestamp, &now);
  207. for (next = _container.head.next; next != &_container.head; next = next->next)
  208. {
  209. alarm = rt_list_entry(next, struct rt_alarm, list);
  210. /* check the overtime alarm */
  211. alarm_wakeup(alarm, &now);
  212. }
  213. /* get time of now */
  214. get_timestamp(&timestamp);
  215. gmtime_r(&timestamp, &now);
  216. sec_now = alarm_mkdaysec(&now);
  217. for (next = _container.head.next; next != &_container.head; next = next->next)
  218. {
  219. alarm = rt_list_entry(next, struct rt_alarm, list);
  220. /* calculate seconds from 00:00:00 */
  221. sec_alarm = alarm_mkdaysec(&alarm->wktime);
  222. if (alarm->flag & RT_ALARM_STATE_START)
  223. {
  224. sec_tmp = sec_alarm - sec_now;
  225. if (sec_tmp > 0)
  226. {
  227. /* find alarm after now(now to 23:59:59) and the most recent */
  228. if (sec_tmp < sec_next)
  229. {
  230. sec_next = sec_tmp;
  231. alm_next = alarm;
  232. }
  233. }
  234. else
  235. {
  236. /* find alarm before now(00:00:00 to now) and furthest from now */
  237. if (sec_tmp < sec_prev)
  238. {
  239. sec_prev = sec_tmp;
  240. alm_prev = alarm;
  241. }
  242. }
  243. }
  244. }
  245. /* enable the alarm after now first */
  246. if (sec_next < 24 * 3600)
  247. {
  248. if (alarm_set(alm_next) == RT_EOK)
  249. _container.current = alm_next;
  250. }
  251. else if (sec_prev < 0)
  252. {
  253. /* enable the alarm before now */
  254. if (alarm_set(alm_prev) == RT_EOK)
  255. _container.current = alm_prev;
  256. }
  257. else
  258. {
  259. if (_container.current != RT_NULL)
  260. {
  261. alarm_set(_container.current);
  262. if (!(_container.current->flag & RT_ALARM_STATE_START))
  263. _container.current = RT_NULL;
  264. }
  265. }
  266. }
  267. rt_mutex_release(&_container.mutex);
  268. }
  269. static int days_of_year_month(int tm_year, int tm_mon)
  270. {
  271. int ret, year;
  272. year = tm_year + 1900;
  273. if (tm_mon == 1)
  274. {
  275. ret = 28 + ((!(year % 4) && (year % 100)) || !(year % 400));
  276. }
  277. else if (((tm_mon <= 6) && (tm_mon % 2 == 0)) || ((tm_mon > 6) && (tm_mon % 2 == 1)))
  278. {
  279. ret = 31;
  280. }
  281. else
  282. {
  283. ret = 30;
  284. }
  285. return (ret);
  286. }
  287. static rt_bool_t is_valid_date(struct tm *date)
  288. {
  289. if ((date->tm_year < 0) || (date->tm_year > RT_RTC_YEARS_MAX))
  290. {
  291. return (RT_FALSE);
  292. }
  293. if ((date->tm_mon < 0) || (date->tm_mon > 11))
  294. {
  295. return (RT_FALSE);
  296. }
  297. if ((date->tm_mday < 1) || \
  298. (date->tm_mday > days_of_year_month(date->tm_year, date->tm_mon)))
  299. {
  300. return (RT_FALSE);
  301. }
  302. return (RT_TRUE);
  303. }
  304. static rt_err_t alarm_setup(rt_alarm_t alarm, struct tm *wktime)
  305. {
  306. rt_err_t ret = -RT_ERROR;
  307. time_t timestamp = (time_t)0;
  308. struct tm *setup, now;
  309. setup = &alarm->wktime;
  310. *setup = *wktime;
  311. /* get time of now */
  312. get_timestamp(&timestamp);
  313. gmtime_r(&timestamp, &now);
  314. /* if these are a "don't care" value,we set them to now*/
  315. if ((setup->tm_sec > 59) || (setup->tm_sec < 0))
  316. setup->tm_sec = now.tm_sec;
  317. if ((setup->tm_min > 59) || (setup->tm_min < 0))
  318. setup->tm_min = now.tm_min;
  319. if ((setup->tm_hour > 23) || (setup->tm_hour < 0))
  320. setup->tm_hour = now.tm_hour;
  321. switch (alarm->flag & 0xFF00)
  322. {
  323. case RT_ALARM_SECOND:
  324. {
  325. alarm->wktime.tm_hour = now.tm_hour;
  326. alarm->wktime.tm_min = now.tm_min;
  327. alarm->wktime.tm_sec = now.tm_sec + 1;
  328. if (alarm->wktime.tm_sec > 59)
  329. {
  330. alarm->wktime.tm_sec = 0;
  331. alarm->wktime.tm_min = alarm->wktime.tm_min + 1;
  332. if (alarm->wktime.tm_min > 59)
  333. {
  334. alarm->wktime.tm_min = 0;
  335. alarm->wktime.tm_hour = alarm->wktime.tm_hour + 1;
  336. if (alarm->wktime.tm_hour > 23)
  337. {
  338. alarm->wktime.tm_hour = 0;
  339. }
  340. }
  341. }
  342. }
  343. break;
  344. case RT_ALARM_MINUTE:
  345. {
  346. alarm->wktime.tm_hour = now.tm_hour;
  347. alarm->wktime.tm_min = now.tm_min + 1;
  348. if (alarm->wktime.tm_min > 59)
  349. {
  350. alarm->wktime.tm_min = 0;
  351. alarm->wktime.tm_hour = alarm->wktime.tm_hour + 1;
  352. if (alarm->wktime.tm_hour > 23)
  353. {
  354. alarm->wktime.tm_hour = 0;
  355. }
  356. }
  357. }
  358. break;
  359. case RT_ALARM_HOUR:
  360. {
  361. alarm->wktime.tm_hour = now.tm_hour + 1;
  362. if (alarm->wktime.tm_hour > 23)
  363. {
  364. alarm->wktime.tm_hour = 0;
  365. }
  366. }
  367. break;
  368. case RT_ALARM_DAILY:
  369. {
  370. /* do nothing but needed */
  371. }
  372. break;
  373. case RT_ALARM_ONESHOT:
  374. {
  375. /* if these are "don't care" value we set them to now */
  376. if (setup->tm_year == RT_ALARM_TM_NOW)
  377. setup->tm_year = now.tm_year;
  378. if (setup->tm_mon == RT_ALARM_TM_NOW)
  379. setup->tm_mon = now.tm_mon;
  380. if (setup->tm_mday == RT_ALARM_TM_NOW)
  381. setup->tm_mday = now.tm_mday;
  382. /* make sure the setup is valid */
  383. if (!is_valid_date(setup))
  384. goto _exit;
  385. }
  386. break;
  387. case RT_ALARM_WEEKLY:
  388. {
  389. /* if tm_wday is a "don't care" value we set it to now */
  390. if ((setup->tm_wday < 0) || (setup->tm_wday > 6))
  391. setup->tm_wday = now.tm_wday;
  392. }
  393. break;
  394. case RT_ALARM_MONTHLY:
  395. {
  396. /* if tm_mday is a "don't care" value we set it to now */
  397. if ((setup->tm_mday < 1) || (setup->tm_mday > 31))
  398. setup->tm_mday = now.tm_mday;
  399. }
  400. break;
  401. case RT_ALARM_YAERLY:
  402. {
  403. /* if tm_mon is a "don't care" value we set it to now */
  404. if ((setup->tm_mon < 0) || (setup->tm_mon > 11))
  405. setup->tm_mon = now.tm_mon;
  406. if (setup->tm_mon == 1)
  407. {
  408. /* tm_mon is February */
  409. /* tm_mday should be 1~29.otherwise,it's a "don't care" value */
  410. if ((setup->tm_mday < 1) || (setup->tm_mday > 29))
  411. setup->tm_mday = now.tm_mday;
  412. }
  413. else if (((setup->tm_mon <= 6) && (setup->tm_mon % 2 == 0)) || \
  414. ((setup->tm_mon > 6) && (setup->tm_mon % 2 == 1)))
  415. {
  416. /* Jan,Mar,May,Jul,Aug,Oct,Dec */
  417. /* tm_mday should be 1~31.otherwise,it's a "don't care" value */
  418. if ((setup->tm_mday < 1) || (setup->tm_mday > 31))
  419. setup->tm_mday = now.tm_mday;
  420. }
  421. else
  422. {
  423. /* tm_mday should be 1~30.otherwise,it's a "don't care" value */
  424. if ((setup->tm_mday < 1) || (setup->tm_mday > 30))
  425. setup->tm_mday = now.tm_mday;
  426. }
  427. }
  428. break;
  429. default:
  430. {
  431. goto _exit;
  432. }
  433. }
  434. if ((setup->tm_hour == 23) && (setup->tm_min == 59) && (setup->tm_sec == 59))
  435. {
  436. /*
  437. for insurance purposes, we will generate an alarm
  438. signal two seconds ahead of.
  439. */
  440. setup->tm_sec = 60 - RT_ALARM_DELAY;
  441. }
  442. /* set initialized state */
  443. alarm->flag |= RT_ALARM_STATE_INITED;
  444. ret = RT_EOK;
  445. _exit:
  446. return (ret);
  447. }
  448. /** \brief send a rtc alarm event
  449. *
  450. * \param dev pointer to RTC device(currently unused,you can ignore it)
  451. * \param event RTC event(currently unused)
  452. * \return none
  453. */
  454. void rt_alarm_update(rt_device_t dev, rt_uint32_t event)
  455. {
  456. rt_event_send(&_container.event, 1);
  457. }
  458. /** \brief modify the alarm setup
  459. *
  460. * \param alarm pointer to alarm
  461. * \param cmd control command
  462. * \param arg argument
  463. */
  464. rt_err_t rt_alarm_control(rt_alarm_t alarm, int cmd, void *arg)
  465. {
  466. rt_err_t ret = -RT_ERROR;
  467. RT_ASSERT(alarm != RT_NULL);
  468. rt_mutex_take(&_container.mutex, RT_WAITING_FOREVER);
  469. switch (cmd)
  470. {
  471. case RT_ALARM_CTRL_MODIFY:
  472. {
  473. struct rt_alarm_setup *setup;
  474. RT_ASSERT(arg != RT_NULL);
  475. setup = arg;
  476. rt_alarm_stop(alarm);
  477. alarm->flag = setup->flag & 0xFF00;
  478. alarm->wktime = setup->wktime;
  479. ret = alarm_setup(alarm, &alarm->wktime);
  480. }
  481. break;
  482. }
  483. rt_mutex_release(&_container.mutex);
  484. return (ret);
  485. }
  486. /** \brief start an alarm
  487. *
  488. * \param alarm pointer to alarm
  489. * \return RT_EOK
  490. */
  491. rt_err_t rt_alarm_start(rt_alarm_t alarm)
  492. {
  493. rt_int32_t sec_now, sec_old, sec_new;
  494. rt_err_t ret = RT_EOK;
  495. time_t timestamp = (time_t)0;
  496. struct tm now;
  497. if (alarm == RT_NULL)
  498. return (RT_ERROR);
  499. rt_mutex_take(&_container.mutex, RT_WAITING_FOREVER);
  500. if (!(alarm->flag & RT_ALARM_STATE_START))
  501. {
  502. if (alarm_setup(alarm, &alarm->wktime) != RT_EOK)
  503. {
  504. ret = -RT_ERROR;
  505. goto _exit;
  506. }
  507. /* get time of now */
  508. get_timestamp(&timestamp);
  509. gmtime_r(&timestamp, &now);
  510. alarm->flag |= RT_ALARM_STATE_START;
  511. /* set alarm */
  512. if (_container.current == RT_NULL)
  513. {
  514. ret = alarm_set(alarm);
  515. }
  516. else
  517. {
  518. sec_now = alarm_mkdaysec(&now);
  519. sec_old = alarm_mkdaysec(&_container.current->wktime);
  520. sec_new = alarm_mkdaysec(&alarm->wktime);
  521. if ((sec_new < sec_old) && (sec_new > sec_now))
  522. {
  523. ret = alarm_set(alarm);
  524. }
  525. else if ((sec_new > sec_now) && (sec_old < sec_now))
  526. {
  527. ret = alarm_set(alarm);
  528. }
  529. else if ((sec_new < sec_old) && (sec_old < sec_now))
  530. {
  531. ret = alarm_set(alarm);
  532. }
  533. else
  534. {
  535. ret = RT_EOK;
  536. goto _exit;
  537. }
  538. }
  539. if (ret == RT_EOK)
  540. {
  541. _container.current = alarm;
  542. }
  543. }
  544. _exit:
  545. rt_mutex_release(&_container.mutex);
  546. return (ret);
  547. }
  548. /** \brief stop an alarm
  549. *
  550. * \param alarm pointer to alarm
  551. * \return RT_EOK
  552. */
  553. rt_err_t rt_alarm_stop(rt_alarm_t alarm)
  554. {
  555. rt_err_t ret = RT_EOK;
  556. if (alarm == RT_NULL)
  557. return (RT_ERROR);
  558. rt_mutex_take(&_container.mutex, RT_WAITING_FOREVER);
  559. if (!(alarm->flag & RT_ALARM_STATE_START))
  560. goto _exit;
  561. /* stop alarm */
  562. alarm->flag &= ~RT_ALARM_STATE_START;
  563. if (_container.current == alarm)
  564. {
  565. ret = alarm_set(alarm);
  566. _container.current = RT_NULL;
  567. }
  568. if (ret == RT_EOK)
  569. alarm_update(0);
  570. _exit:
  571. rt_mutex_release(&_container.mutex);
  572. return (ret);
  573. }
  574. /** \brief delete an alarm
  575. *
  576. * \param alarm pointer to alarm
  577. * \return RT_EOK
  578. */
  579. rt_err_t rt_alarm_delete(rt_alarm_t alarm)
  580. {
  581. rt_err_t ret = RT_EOK;
  582. if (alarm == RT_NULL)
  583. return -RT_ERROR;
  584. rt_mutex_take(&_container.mutex, RT_WAITING_FOREVER);
  585. /* stop the alarm */
  586. alarm->flag &= ~RT_ALARM_STATE_START;
  587. if (_container.current == alarm)
  588. {
  589. ret = alarm_set(alarm);
  590. _container.current = RT_NULL;
  591. /* set new alarm if necessary */
  592. alarm_update(0);
  593. }
  594. rt_list_remove(&alarm->list);
  595. rt_free(alarm);
  596. rt_mutex_release(&_container.mutex);
  597. return (ret);
  598. }
  599. /** \brief create an alarm
  600. *
  601. * \param flag set alarm mode e.g: RT_ALARM_DAILY
  602. * \param setup pointer to setup infomation
  603. */
  604. rt_alarm_t rt_alarm_create(rt_alarm_callback_t callback, struct rt_alarm_setup *setup)
  605. {
  606. struct rt_alarm *alarm;
  607. if (setup == RT_NULL)
  608. return (RT_NULL);
  609. alarm = rt_malloc(sizeof(struct rt_alarm));
  610. if (alarm == RT_NULL)
  611. return (RT_NULL);
  612. rt_list_init(&alarm->list);
  613. alarm->wktime = setup->wktime;
  614. alarm->flag = setup->flag & 0xFF00;
  615. alarm->callback = callback;
  616. rt_mutex_take(&_container.mutex, RT_WAITING_FOREVER);
  617. rt_list_insert_after(&_container.head, &alarm->list);
  618. rt_mutex_release(&_container.mutex);
  619. return (alarm);
  620. }
  621. /** \brief rtc alarm service thread entry
  622. *
  623. */
  624. static void rt_alarmsvc_thread_init(void *param)
  625. {
  626. rt_uint32_t recv;
  627. _container.current = RT_NULL;
  628. while (1)
  629. {
  630. if (rt_event_recv(&_container.event, 0xFFFF,
  631. RT_EVENT_FLAG_OR | RT_EVENT_FLAG_CLEAR,
  632. RT_WAITING_FOREVER, &recv) == RT_EOK)
  633. {
  634. alarm_update(recv);
  635. }
  636. }
  637. }
  638. struct _alarm_flag
  639. {
  640. const char* name;
  641. rt_uint32_t flag;
  642. };
  643. static const struct _alarm_flag _alarm_flag_tbl[] =
  644. {
  645. {"N", 0xffff}, /* none */
  646. {"O", RT_ALARM_ONESHOT}, /* only alarm once */
  647. {"D", RT_ALARM_DAILY}, /* alarm everyday */
  648. {"W", RT_ALARM_WEEKLY}, /* alarm weekly at Monday or Friday etc. */
  649. {"Mo", RT_ALARM_MONTHLY}, /* alarm monthly at someday */
  650. {"Y", RT_ALARM_YAERLY}, /* alarm yearly at a certain date */
  651. {"H", RT_ALARM_HOUR}, /* alarm each hour at a certain min:second */
  652. {"M", RT_ALARM_MINUTE}, /* alarm each minute at a certain second */
  653. {"S", RT_ALARM_SECOND}, /* alarm each second */
  654. };
  655. static rt_uint8_t _alarm_flag_tbl_size = sizeof(_alarm_flag_tbl) / sizeof(_alarm_flag_tbl[0]);
  656. static rt_uint8_t get_alarm_flag_index(rt_uint32_t alarm_flag)
  657. {
  658. for (rt_uint8_t index = 0; index < _alarm_flag_tbl_size; index++)
  659. {
  660. alarm_flag &= 0xff00;
  661. if (alarm_flag == _alarm_flag_tbl[index].flag)
  662. {
  663. return index;
  664. }
  665. }
  666. return 0;
  667. }
  668. void rt_alarm_dump(void)
  669. {
  670. rt_list_t *next;
  671. rt_alarm_t alarm;
  672. rt_kprintf("| hh:mm:ss | week | flag | en |\n");
  673. rt_kprintf("+----------+------+------+----+\n");
  674. for (next = _container.head.next; next != &_container.head; next = next->next)
  675. {
  676. alarm = rt_list_entry(next, struct rt_alarm, list);
  677. rt_uint8_t flag_index = get_alarm_flag_index(alarm->flag);
  678. rt_kprintf("| %02d:%02d:%02d | %2d | %2s | %2d |\n",
  679. alarm->wktime.tm_hour, alarm->wktime.tm_min, alarm->wktime.tm_sec,
  680. alarm->wktime.tm_wday, _alarm_flag_tbl[flag_index].name, alarm->flag & RT_ALARM_STATE_START);
  681. }
  682. rt_kprintf("+----------+------+------+----+\n");
  683. }
  684. MSH_CMD_EXPORT_ALIAS(rt_alarm_dump, list_alarm, list alarm info);
  685. /** \brief initialize alarm service system
  686. *
  687. * \param none
  688. * \return none
  689. */
  690. int rt_alarm_system_init(void)
  691. {
  692. rt_thread_t tid;
  693. rt_list_init(&_container.head);
  694. rt_event_init(&_container.event, "alarmsvc", RT_IPC_FLAG_FIFO);
  695. rt_mutex_init(&_container.mutex, "alarmsvc", RT_IPC_FLAG_PRIO);
  696. tid = rt_thread_create("alarmsvc",
  697. rt_alarmsvc_thread_init, RT_NULL,
  698. 2048, 10, 5);
  699. if (tid != RT_NULL)
  700. rt_thread_startup(tid);
  701. return 0;
  702. }
  703. INIT_PREV_EXPORT(rt_alarm_system_init);
  704. #endif