spi_flash_sfud.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793
  1. /*
  2. * Copyright (c) 2006-2018, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2016-09-28 armink first version.
  9. */
  10. #include <stdint.h>
  11. #include <rtdevice.h>
  12. #include "spi_flash.h"
  13. #include "spi_flash_sfud.h"
  14. #ifdef RT_USING_SFUD
  15. #ifdef RT_DEBUG_SFUD
  16. #define DEBUG_TRACE rt_kprintf("[SFUD] "); rt_kprintf
  17. #else
  18. #define DEBUG_TRACE(...)
  19. #endif /* RT_DEBUG_SFUD */
  20. #ifndef RT_SFUD_DEFAULT_SPI_CFG
  21. /* read the JEDEC SFDP command must run at 50 MHz or less */
  22. #define RT_SFUD_DEFAULT_SPI_CFG \
  23. { \
  24. .mode = RT_SPI_MODE_0 | RT_SPI_MSB, \
  25. .data_width = 8, \
  26. .max_hz = 50 * 1000 * 1000, \
  27. }
  28. #endif
  29. #ifdef SFUD_USING_QSPI
  30. #define RT_SFUD_DEFAULT_QSPI_CFG \
  31. { \
  32. RT_SFUD_DEFAULT_SPI_CFG, \
  33. .medium_size = 0x800000, \
  34. .ddr_mode = 0, \
  35. .qspi_dl_width = 4, \
  36. }
  37. #endif
  38. static char log_buf[RT_CONSOLEBUF_SIZE];
  39. void sfud_log_debug(const char *file, const long line, const char *format, ...);
  40. static rt_err_t rt_sfud_control(rt_device_t dev, int cmd, void *args) {
  41. RT_ASSERT(dev);
  42. switch (cmd) {
  43. case RT_DEVICE_CTRL_BLK_GETGEOME: {
  44. struct rt_device_blk_geometry *geometry = (struct rt_device_blk_geometry *) args;
  45. struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (dev->user_data);
  46. if (rtt_dev == RT_NULL || geometry == RT_NULL) {
  47. return -RT_ERROR;
  48. }
  49. geometry->bytes_per_sector = rtt_dev->geometry.bytes_per_sector;
  50. geometry->sector_count = rtt_dev->geometry.sector_count;
  51. geometry->block_size = rtt_dev->geometry.block_size;
  52. break;
  53. }
  54. case RT_DEVICE_CTRL_BLK_ERASE: {
  55. rt_uint32_t *addrs = (rt_uint32_t *) args, start_addr = addrs[0], end_addr = addrs[1], phy_start_addr;
  56. struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (dev->user_data);
  57. sfud_flash *sfud_dev = (sfud_flash *) (rtt_dev->user_data);
  58. rt_size_t phy_size;
  59. if (addrs == RT_NULL || start_addr > end_addr || rtt_dev == RT_NULL || sfud_dev == RT_NULL) {
  60. return -RT_ERROR;
  61. }
  62. if (end_addr == start_addr) {
  63. end_addr ++;
  64. }
  65. phy_start_addr = start_addr * rtt_dev->geometry.bytes_per_sector;
  66. phy_size = (end_addr - start_addr) * rtt_dev->geometry.bytes_per_sector;
  67. if (sfud_erase(sfud_dev, phy_start_addr, phy_size) != SFUD_SUCCESS) {
  68. return -RT_ERROR;
  69. }
  70. break;
  71. }
  72. }
  73. return RT_EOK;
  74. }
  75. static rt_size_t rt_sfud_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size) {
  76. struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (dev->user_data);
  77. sfud_flash *sfud_dev = (sfud_flash *) (rtt_dev->user_data);
  78. RT_ASSERT(dev);
  79. RT_ASSERT(rtt_dev);
  80. RT_ASSERT(sfud_dev);
  81. /* change the block device's logic address to physical address */
  82. rt_off_t phy_pos = pos * rtt_dev->geometry.bytes_per_sector;
  83. rt_size_t phy_size = size * rtt_dev->geometry.bytes_per_sector;
  84. if (sfud_read(sfud_dev, phy_pos, phy_size, buffer) != SFUD_SUCCESS) {
  85. return 0;
  86. } else {
  87. return size;
  88. }
  89. }
  90. static rt_size_t rt_sfud_write(rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size) {
  91. struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (dev->user_data);
  92. sfud_flash *sfud_dev = (sfud_flash *) (rtt_dev->user_data);
  93. RT_ASSERT(dev);
  94. RT_ASSERT(rtt_dev);
  95. RT_ASSERT(sfud_dev);
  96. /* change the block device's logic address to physical address */
  97. rt_off_t phy_pos = pos * rtt_dev->geometry.bytes_per_sector;
  98. rt_size_t phy_size = size * rtt_dev->geometry.bytes_per_sector;
  99. if (sfud_erase_write(sfud_dev, phy_pos, phy_size, buffer) != SFUD_SUCCESS) {
  100. return 0;
  101. } else {
  102. return size;
  103. }
  104. }
  105. /**
  106. * SPI write data then read data
  107. */
  108. static sfud_err spi_write_read(const sfud_spi *spi, const uint8_t *write_buf, size_t write_size, uint8_t *read_buf,
  109. size_t read_size) {
  110. sfud_err result = SFUD_SUCCESS;
  111. sfud_flash *sfud_dev = (sfud_flash *) (spi->user_data);
  112. struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (sfud_dev->user_data);
  113. RT_ASSERT(spi);
  114. RT_ASSERT(sfud_dev);
  115. RT_ASSERT(rtt_dev);
  116. #ifdef SFUD_USING_QSPI
  117. struct rt_qspi_device *qspi_dev = RT_NULL;
  118. #endif
  119. if (write_size) {
  120. RT_ASSERT(write_buf);
  121. }
  122. if (read_size) {
  123. RT_ASSERT(read_buf);
  124. }
  125. #ifdef SFUD_USING_QSPI
  126. if(rtt_dev->rt_spi_device->bus->mode & RT_SPI_BUS_MODE_QSPI) {
  127. qspi_dev = (struct rt_qspi_device *) (rtt_dev->rt_spi_device);
  128. if (write_size && read_size) {
  129. if (rt_qspi_send_then_recv(qspi_dev, write_buf, write_size, read_buf, read_size) <= 0) {
  130. result = SFUD_ERR_TIMEOUT;
  131. }
  132. } else if (write_size) {
  133. if (rt_qspi_send(qspi_dev, write_buf, write_size) <= 0) {
  134. result = SFUD_ERR_TIMEOUT;
  135. }
  136. }
  137. }
  138. else
  139. #endif
  140. {
  141. if (write_size && read_size) {
  142. if (rt_spi_send_then_recv(rtt_dev->rt_spi_device, write_buf, write_size, read_buf, read_size) != RT_EOK) {
  143. result = SFUD_ERR_TIMEOUT;
  144. }
  145. } else if (write_size) {
  146. if (rt_spi_send(rtt_dev->rt_spi_device, write_buf, write_size) <= 0) {
  147. result = SFUD_ERR_TIMEOUT;
  148. }
  149. } else {
  150. if (rt_spi_recv(rtt_dev->rt_spi_device, read_buf, read_size) <= 0) {
  151. result = SFUD_ERR_TIMEOUT;
  152. }
  153. }
  154. }
  155. return result;
  156. }
  157. #ifdef SFUD_USING_QSPI
  158. /**
  159. * QSPI fast read data
  160. */
  161. static sfud_err qspi_read(const struct __sfud_spi *spi, uint32_t addr, sfud_qspi_read_cmd_format *qspi_read_cmd_format, uint8_t *read_buf, size_t read_size) {
  162. struct rt_qspi_message message;
  163. sfud_err result = SFUD_SUCCESS;
  164. sfud_flash *sfud_dev = (sfud_flash *) (spi->user_data);
  165. struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (sfud_dev->user_data);
  166. struct rt_qspi_device *qspi_dev = (struct rt_qspi_device *) (rtt_dev->rt_spi_device);
  167. RT_ASSERT(spi);
  168. RT_ASSERT(sfud_dev);
  169. RT_ASSERT(rtt_dev);
  170. RT_ASSERT(qspi_dev);
  171. /* set message struct */
  172. message.instruction.content = qspi_read_cmd_format->instruction;
  173. message.instruction.qspi_lines = qspi_read_cmd_format->instruction_lines;
  174. message.address.content = addr;
  175. message.address.size = qspi_read_cmd_format->address_size;
  176. message.address.qspi_lines = qspi_read_cmd_format->address_lines;
  177. message.alternate_bytes.content = 0;
  178. message.alternate_bytes.size = 0;
  179. message.alternate_bytes.qspi_lines = 0;
  180. message.dummy_cycles = qspi_read_cmd_format->dummy_cycles;
  181. message.parent.send_buf = RT_NULL;
  182. message.parent.recv_buf = read_buf;
  183. message.parent.length = read_size;
  184. message.parent.cs_release = 1;
  185. message.parent.cs_take = 1;
  186. message.qspi_data_lines = qspi_read_cmd_format->data_lines;
  187. if (rt_qspi_transfer_message(qspi_dev, &message) != read_size) {
  188. result = SFUD_ERR_TIMEOUT;
  189. }
  190. return result;
  191. }
  192. #endif
  193. static void spi_lock(const sfud_spi *spi) {
  194. sfud_flash *sfud_dev = (sfud_flash *) (spi->user_data);
  195. struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (sfud_dev->user_data);
  196. RT_ASSERT(spi);
  197. RT_ASSERT(sfud_dev);
  198. RT_ASSERT(rtt_dev);
  199. rt_mutex_take(&(rtt_dev->lock), RT_WAITING_FOREVER);
  200. }
  201. static void spi_unlock(const sfud_spi *spi) {
  202. sfud_flash *sfud_dev = (sfud_flash *) (spi->user_data);
  203. struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (sfud_dev->user_data);
  204. RT_ASSERT(spi);
  205. RT_ASSERT(sfud_dev);
  206. RT_ASSERT(rtt_dev);
  207. rt_mutex_release(&(rtt_dev->lock));
  208. }
  209. static void retry_delay_100us(void) {
  210. /* 100 microsecond delay */
  211. rt_thread_delay((RT_TICK_PER_SECOND * 1 + 9999) / 10000);
  212. }
  213. /**
  214. * This function is print debug info.
  215. *
  216. * @param file the file which has call this function
  217. * @param line the line number which has call this function
  218. * @param format output format
  219. * @param ... args
  220. */
  221. void sfud_log_debug(const char *file, const long line, const char *format, ...) {
  222. va_list args;
  223. /* args point to the first variable parameter */
  224. va_start(args, format);
  225. rt_kprintf("[SFUD] (%s:%ld) ", file, line);
  226. /* must use vprintf to print */
  227. rt_vsnprintf(log_buf, sizeof(log_buf), format, args);
  228. rt_kprintf("%s\n", log_buf);
  229. va_end(args);
  230. }
  231. /**
  232. * This function is print routine info.
  233. *
  234. * @param format output format
  235. * @param ... args
  236. */
  237. void sfud_log_info(const char *format, ...) {
  238. va_list args;
  239. /* args point to the first variable parameter */
  240. va_start(args, format);
  241. rt_kprintf("[SFUD] ");
  242. /* must use vprintf to print */
  243. rt_vsnprintf(log_buf, sizeof(log_buf), format, args);
  244. rt_kprintf("%s\n", log_buf);
  245. va_end(args);
  246. }
  247. sfud_err sfud_spi_port_init(sfud_flash *flash) {
  248. sfud_err result = SFUD_SUCCESS;
  249. RT_ASSERT(flash);
  250. /* port SPI device interface */
  251. flash->spi.wr = spi_write_read;
  252. #ifdef SFUD_USING_QSPI
  253. flash->spi.qspi_read = qspi_read;
  254. #endif
  255. flash->spi.lock = spi_lock;
  256. flash->spi.unlock = spi_unlock;
  257. flash->spi.user_data = flash;
  258. if (RT_TICK_PER_SECOND < 1000) {
  259. rt_kprintf("[SFUD] Warning: The OS tick(%d) is less than 1000. So the flash write will take more time.\n", RT_TICK_PER_SECOND);
  260. }
  261. /* 100 microsecond delay */
  262. flash->retry.delay = retry_delay_100us;
  263. /* 60 seconds timeout */
  264. flash->retry.times = 60 * 10000;
  265. return result;
  266. }
  267. #ifdef RT_USING_DEVICE_OPS
  268. const static struct rt_device_ops flash_device_ops =
  269. {
  270. RT_NULL,
  271. RT_NULL,
  272. RT_NULL,
  273. rt_sfud_read,
  274. rt_sfud_write,
  275. rt_sfud_control
  276. };
  277. #endif
  278. /**
  279. * Probe SPI flash by SFUD(Serial Flash Universal Driver) driver library and though SPI device.
  280. *
  281. * @param spi_flash_dev_name the name which will create SPI flash device
  282. * @param spi_dev_name using SPI device name
  283. *
  284. * @return probed SPI flash device, probe failed will return RT_NULL
  285. */
  286. rt_spi_flash_device_t rt_sfud_flash_probe(const char *spi_flash_dev_name, const char *spi_dev_name) {
  287. rt_spi_flash_device_t rtt_dev = RT_NULL;
  288. sfud_flash *sfud_dev = RT_NULL;
  289. char *spi_flash_dev_name_bak = RT_NULL, *spi_dev_name_bak = RT_NULL;
  290. /* using default flash SPI configuration for initialize SPI Flash
  291. * @note you also can change the SPI to other configuration after initialized finish */
  292. struct rt_spi_configuration cfg = RT_SFUD_DEFAULT_SPI_CFG;
  293. extern sfud_err sfud_device_init(sfud_flash *flash);
  294. #ifdef SFUD_USING_QSPI
  295. struct rt_qspi_configuration qspi_cfg = RT_SFUD_DEFAULT_QSPI_CFG;
  296. struct rt_qspi_device *qspi_dev = RT_NULL;
  297. #endif
  298. RT_ASSERT(spi_flash_dev_name);
  299. RT_ASSERT(spi_dev_name);
  300. rtt_dev = (rt_spi_flash_device_t) rt_malloc(sizeof(struct spi_flash_device));
  301. sfud_dev = (sfud_flash_t) rt_malloc(sizeof(sfud_flash));
  302. spi_flash_dev_name_bak = (char *) rt_malloc(rt_strlen(spi_flash_dev_name) + 1);
  303. spi_dev_name_bak = (char *) rt_malloc(rt_strlen(spi_dev_name) + 1);
  304. if (rtt_dev) {
  305. rt_memset(rtt_dev, 0, sizeof(struct spi_flash_device));
  306. /* initialize lock */
  307. rt_mutex_init(&(rtt_dev->lock), spi_flash_dev_name, RT_IPC_FLAG_FIFO);
  308. }
  309. if (rtt_dev && sfud_dev && spi_flash_dev_name_bak && spi_dev_name_bak) {
  310. rt_memset(sfud_dev, 0, sizeof(sfud_flash));
  311. rt_strncpy(spi_flash_dev_name_bak, spi_flash_dev_name, rt_strlen(spi_flash_dev_name));
  312. rt_strncpy(spi_dev_name_bak, spi_dev_name, rt_strlen(spi_dev_name));
  313. /* make string end sign */
  314. spi_flash_dev_name_bak[rt_strlen(spi_flash_dev_name)] = '\0';
  315. spi_dev_name_bak[rt_strlen(spi_dev_name)] = '\0';
  316. /* SPI configure */
  317. {
  318. /* RT-Thread SPI device initialize */
  319. rtt_dev->rt_spi_device = (struct rt_spi_device *) rt_device_find(spi_dev_name);
  320. if (rtt_dev->rt_spi_device == RT_NULL || rtt_dev->rt_spi_device->parent.type != RT_Device_Class_SPIDevice) {
  321. rt_kprintf("ERROR: SPI device %s not found!\n", spi_dev_name);
  322. goto error;
  323. }
  324. sfud_dev->spi.name = spi_dev_name_bak;
  325. #ifdef SFUD_USING_QSPI
  326. /* set the qspi line number and configure the QSPI bus */
  327. if(rtt_dev->rt_spi_device->bus->mode &RT_SPI_BUS_MODE_QSPI) {
  328. qspi_dev = (struct rt_qspi_device *)rtt_dev->rt_spi_device;
  329. qspi_cfg.qspi_dl_width = qspi_dev->config.qspi_dl_width;
  330. rt_qspi_configure(qspi_dev, &qspi_cfg);
  331. }
  332. else
  333. #endif
  334. rt_spi_configure(rtt_dev->rt_spi_device, &cfg);
  335. }
  336. /* SFUD flash device initialize */
  337. {
  338. sfud_dev->name = spi_flash_dev_name_bak;
  339. /* accessed each other */
  340. rtt_dev->user_data = sfud_dev;
  341. rtt_dev->rt_spi_device->user_data = rtt_dev;
  342. rtt_dev->flash_device.user_data = rtt_dev;
  343. sfud_dev->user_data = rtt_dev;
  344. /* initialize SFUD device */
  345. if (sfud_device_init(sfud_dev) != SFUD_SUCCESS) {
  346. rt_kprintf("ERROR: SPI flash probe failed by SPI device %s.\n", spi_dev_name);
  347. goto error;
  348. }
  349. /* when initialize success, then copy SFUD flash device's geometry to RT-Thread SPI flash device */
  350. rtt_dev->geometry.sector_count = sfud_dev->chip.capacity / sfud_dev->chip.erase_gran;
  351. rtt_dev->geometry.bytes_per_sector = sfud_dev->chip.erase_gran;
  352. rtt_dev->geometry.block_size = sfud_dev->chip.erase_gran;
  353. #ifdef SFUD_USING_QSPI
  354. /* reconfigure the QSPI bus for medium size */
  355. if(rtt_dev->rt_spi_device->bus->mode &RT_SPI_BUS_MODE_QSPI) {
  356. qspi_cfg.medium_size = sfud_dev->chip.capacity;
  357. rt_qspi_configure(qspi_dev, &qspi_cfg);
  358. if(qspi_dev->enter_qspi_mode != RT_NULL)
  359. qspi_dev->enter_qspi_mode(qspi_dev);
  360. /* set data lines width */
  361. sfud_qspi_fast_read_enable(sfud_dev, qspi_dev->config.qspi_dl_width);
  362. }
  363. #endif /* SFUD_USING_QSPI */
  364. }
  365. /* register device */
  366. rtt_dev->flash_device.type = RT_Device_Class_Block;
  367. #ifdef RT_USING_DEVICE_OPS
  368. rtt_dev->flash_device.ops = &flash_device_ops;
  369. #else
  370. rtt_dev->flash_device.init = RT_NULL;
  371. rtt_dev->flash_device.open = RT_NULL;
  372. rtt_dev->flash_device.close = RT_NULL;
  373. rtt_dev->flash_device.read = rt_sfud_read;
  374. rtt_dev->flash_device.write = rt_sfud_write;
  375. rtt_dev->flash_device.control = rt_sfud_control;
  376. #endif
  377. rt_device_register(&(rtt_dev->flash_device), spi_flash_dev_name, RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_STANDALONE);
  378. DEBUG_TRACE("Probe SPI flash %s by SPI device %s success.\n",spi_flash_dev_name, spi_dev_name);
  379. return rtt_dev;
  380. } else {
  381. rt_kprintf("ERROR: Low memory.\n");
  382. goto error;
  383. }
  384. error:
  385. if (rtt_dev) {
  386. rt_mutex_detach(&(rtt_dev->lock));
  387. }
  388. /* may be one of objects memory was malloc success, so need free all */
  389. rt_free(rtt_dev);
  390. rt_free(sfud_dev);
  391. rt_free(spi_flash_dev_name_bak);
  392. rt_free(spi_dev_name_bak);
  393. return RT_NULL;
  394. }
  395. /**
  396. * Delete SPI flash device
  397. *
  398. * @param spi_flash_dev SPI flash device
  399. *
  400. * @return the operation status, RT_EOK on successful
  401. */
  402. rt_err_t rt_sfud_flash_delete(rt_spi_flash_device_t spi_flash_dev) {
  403. sfud_flash *sfud_flash_dev = (sfud_flash *) (spi_flash_dev->user_data);
  404. RT_ASSERT(spi_flash_dev);
  405. RT_ASSERT(sfud_flash_dev);
  406. rt_device_unregister(&(spi_flash_dev->flash_device));
  407. rt_mutex_detach(&(spi_flash_dev->lock));
  408. rt_free(sfud_flash_dev->spi.name);
  409. rt_free(sfud_flash_dev->name);
  410. rt_free(sfud_flash_dev);
  411. rt_free(spi_flash_dev);
  412. return RT_EOK;
  413. }
  414. sfud_flash_t rt_sfud_flash_find(const char *spi_dev_name)
  415. {
  416. rt_spi_flash_device_t rtt_dev = RT_NULL;
  417. struct rt_spi_device *rt_spi_device = RT_NULL;
  418. sfud_flash_t sfud_dev = RT_NULL;
  419. rt_spi_device = (struct rt_spi_device *) rt_device_find(spi_dev_name);
  420. if (rt_spi_device == RT_NULL || rt_spi_device->parent.type != RT_Device_Class_SPIDevice) {
  421. rt_kprintf("ERROR: SPI device %s not found!\n", spi_dev_name);
  422. goto __error;
  423. }
  424. rtt_dev = (rt_spi_flash_device_t) (rt_spi_device->user_data);
  425. if (rtt_dev && rtt_dev->user_data) {
  426. sfud_dev = (sfud_flash_t) (rtt_dev->user_data);
  427. return sfud_dev;
  428. } else {
  429. rt_kprintf("ERROR: SFUD flash device not found!\n");
  430. goto __error;
  431. }
  432. __error:
  433. return RT_NULL;
  434. }
  435. sfud_flash_t rt_sfud_flash_find_by_dev_name(const char *flash_dev_name)
  436. {
  437. rt_spi_flash_device_t rtt_dev = RT_NULL;
  438. sfud_flash_t sfud_dev = RT_NULL;
  439. rtt_dev = (rt_spi_flash_device_t) rt_device_find(flash_dev_name);
  440. if (rtt_dev == RT_NULL || rtt_dev->flash_device.type != RT_Device_Class_Block) {
  441. rt_kprintf("ERROR: Flash device %s not found!\n", flash_dev_name);
  442. goto __error;
  443. }
  444. if (rtt_dev->user_data) {
  445. sfud_dev = (sfud_flash_t) (rtt_dev->user_data);
  446. return sfud_dev;
  447. } else {
  448. rt_kprintf("ERROR: SFUD flash device not found!\n");
  449. goto __error;
  450. }
  451. __error:
  452. return RT_NULL;
  453. }
  454. #if defined(RT_USING_FINSH) && defined(FINSH_USING_MSH)
  455. #include <finsh.h>
  456. static void sf(uint8_t argc, char **argv) {
  457. #define __is_print(ch) ((unsigned int)((ch) - ' ') < 127u - ' ')
  458. #define HEXDUMP_WIDTH 16
  459. #define CMD_PROBE_INDEX 0
  460. #define CMD_READ_INDEX 1
  461. #define CMD_WRITE_INDEX 2
  462. #define CMD_ERASE_INDEX 3
  463. #define CMD_RW_STATUS_INDEX 4
  464. #define CMD_BENCH_INDEX 5
  465. sfud_err result = SFUD_SUCCESS;
  466. static const sfud_flash *sfud_dev = NULL;
  467. static rt_spi_flash_device_t rtt_dev = NULL, rtt_dev_bak = NULL;
  468. size_t i = 0, j = 0;
  469. const char* sf_help_info[] = {
  470. [CMD_PROBE_INDEX] = "sf probe [spi_device] - probe and init SPI flash by given 'spi_device'",
  471. [CMD_READ_INDEX] = "sf read addr size - read 'size' bytes starting at 'addr'",
  472. [CMD_WRITE_INDEX] = "sf write addr data1 ... dataN - write some bytes 'data' to flash starting at 'addr'",
  473. [CMD_ERASE_INDEX] = "sf erase addr size - erase 'size' bytes starting at 'addr'",
  474. [CMD_RW_STATUS_INDEX] = "sf status [<volatile> <status>] - read or write '1:volatile|0:non-volatile' 'status'",
  475. [CMD_BENCH_INDEX] = "sf bench - full chip benchmark. DANGER: It will erase full chip!",
  476. };
  477. if (argc < 2) {
  478. rt_kprintf("Usage:\n");
  479. for (i = 0; i < sizeof(sf_help_info) / sizeof(char*); i++) {
  480. rt_kprintf("%s\n", sf_help_info[i]);
  481. }
  482. rt_kprintf("\n");
  483. } else {
  484. const char *operator = argv[1];
  485. uint32_t addr, size;
  486. if (!strcmp(operator, "probe")) {
  487. if (argc < 3) {
  488. rt_kprintf("Usage: %s.\n", sf_help_info[CMD_PROBE_INDEX]);
  489. } else {
  490. char *spi_dev_name = argv[2];
  491. rtt_dev_bak = rtt_dev;
  492. /* delete the old SPI flash device */
  493. if(rtt_dev_bak) {
  494. rt_sfud_flash_delete(rtt_dev_bak);
  495. }
  496. rtt_dev = rt_sfud_flash_probe("sf_cmd", spi_dev_name);
  497. if (!rtt_dev) {
  498. return;
  499. }
  500. sfud_dev = (sfud_flash_t)rtt_dev->user_data;
  501. if (sfud_dev->chip.capacity < 1024 * 1024) {
  502. rt_kprintf("%d KB %s is current selected device.\n", sfud_dev->chip.capacity / 1024, sfud_dev->name);
  503. } else {
  504. rt_kprintf("%d MB %s is current selected device.\n", sfud_dev->chip.capacity / 1024 / 1024,
  505. sfud_dev->name);
  506. }
  507. }
  508. } else {
  509. if (!sfud_dev) {
  510. rt_kprintf("No flash device selected. Please run 'sf probe'.\n");
  511. return;
  512. }
  513. if (!rt_strcmp(operator, "read")) {
  514. if (argc < 4) {
  515. rt_kprintf("Usage: %s.\n", sf_help_info[CMD_READ_INDEX]);
  516. return;
  517. } else {
  518. addr = strtol(argv[2], NULL, 0);
  519. size = strtol(argv[3], NULL, 0);
  520. uint8_t *data = rt_malloc(size);
  521. if (data) {
  522. result = sfud_read(sfud_dev, addr, size, data);
  523. if (result == SFUD_SUCCESS) {
  524. rt_kprintf("Read the %s flash data success. Start from 0x%08X, size is %ld. The data is:\n",
  525. sfud_dev->name, addr, size);
  526. rt_kprintf("Offset (h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F\n");
  527. for (i = 0; i < size; i += HEXDUMP_WIDTH)
  528. {
  529. rt_kprintf("[%08X] ", addr + i);
  530. /* dump hex */
  531. for (j = 0; j < HEXDUMP_WIDTH; j++) {
  532. if (i + j < size) {
  533. rt_kprintf("%02X ", data[i + j]);
  534. } else {
  535. rt_kprintf(" ");
  536. }
  537. }
  538. /* dump char for hex */
  539. for (j = 0; j < HEXDUMP_WIDTH; j++) {
  540. if (i + j < size) {
  541. rt_kprintf("%c", __is_print(data[i + j]) ? data[i + j] : '.');
  542. }
  543. }
  544. rt_kprintf("\n");
  545. }
  546. rt_kprintf("\n");
  547. }
  548. rt_free(data);
  549. } else {
  550. rt_kprintf("Low memory!\n");
  551. }
  552. }
  553. } else if (!rt_strcmp(operator, "write")) {
  554. if (argc < 4) {
  555. rt_kprintf("Usage: %s.\n", sf_help_info[CMD_WRITE_INDEX]);
  556. return;
  557. } else {
  558. addr = strtol(argv[2], NULL, 0);
  559. size = argc - 3;
  560. uint8_t *data = rt_malloc(size);
  561. if (data) {
  562. for (i = 0; i < size; i++) {
  563. data[i] = strtol(argv[3 + i], NULL, 0);
  564. }
  565. result = sfud_write(sfud_dev, addr, size, data);
  566. if (result == SFUD_SUCCESS) {
  567. rt_kprintf("Write the %s flash data success. Start from 0x%08X, size is %ld.\n",
  568. sfud_dev->name, addr, size);
  569. rt_kprintf("Write data: ");
  570. for (i = 0; i < size; i++) {
  571. rt_kprintf("%d ", data[i]);
  572. }
  573. rt_kprintf(".\n");
  574. }
  575. rt_free(data);
  576. } else {
  577. rt_kprintf("Low memory!\n");
  578. }
  579. }
  580. } else if (!rt_strcmp(operator, "erase")) {
  581. if (argc < 4) {
  582. rt_kprintf("Usage: %s.\n", sf_help_info[CMD_ERASE_INDEX]);
  583. return;
  584. } else {
  585. addr = strtol(argv[2], NULL, 0);
  586. size = strtol(argv[3], NULL, 0);
  587. result = sfud_erase(sfud_dev, addr, size);
  588. if (result == SFUD_SUCCESS) {
  589. rt_kprintf("Erase the %s flash data success. Start from 0x%08X, size is %ld.\n", sfud_dev->name,
  590. addr, size);
  591. }
  592. }
  593. } else if (!rt_strcmp(operator, "status")) {
  594. if (argc < 3) {
  595. uint8_t status;
  596. result = sfud_read_status(sfud_dev, &status);
  597. if (result == SFUD_SUCCESS) {
  598. rt_kprintf("The %s flash status register current value is 0x%02X.\n", sfud_dev->name, status);
  599. }
  600. } else if (argc == 4) {
  601. bool is_volatile = strtol(argv[2], NULL, 0);
  602. uint8_t status = strtol(argv[3], NULL, 0);
  603. result = sfud_write_status(sfud_dev, is_volatile, status);
  604. if (result == SFUD_SUCCESS) {
  605. rt_kprintf("Write the %s flash status register to 0x%02X success.\n", sfud_dev->name, status);
  606. }
  607. } else {
  608. rt_kprintf("Usage: %s.\n", sf_help_info[CMD_RW_STATUS_INDEX]);
  609. return;
  610. }
  611. } else if (!rt_strcmp(operator, "bench")) {
  612. if ((argc > 2 && rt_strcmp(argv[2], "yes")) || argc < 3) {
  613. rt_kprintf("DANGER: It will erase full chip! Please run 'sf bench yes'.\n");
  614. return;
  615. }
  616. /* full chip benchmark test */
  617. addr = 0;
  618. size = sfud_dev->chip.capacity;
  619. uint32_t start_time, time_cast;
  620. size_t write_size = SFUD_WRITE_MAX_PAGE_SIZE, read_size = SFUD_WRITE_MAX_PAGE_SIZE;
  621. uint8_t *write_data = rt_malloc(write_size), *read_data = rt_malloc(read_size);
  622. if (write_data && read_data) {
  623. rt_memset(write_data, 0x55, write_size);
  624. /* benchmark testing */
  625. rt_kprintf("Erasing the %s %ld bytes data, waiting...\n", sfud_dev->name, size);
  626. start_time = rt_tick_get();
  627. result = sfud_erase(sfud_dev, addr, size);
  628. if (result == SFUD_SUCCESS) {
  629. time_cast = rt_tick_get() - start_time;
  630. rt_kprintf("Erase benchmark success, total time: %d.%03dS.\n", time_cast / RT_TICK_PER_SECOND,
  631. time_cast % RT_TICK_PER_SECOND / ((RT_TICK_PER_SECOND * 1 + 999) / 1000));
  632. } else {
  633. rt_kprintf("Erase benchmark has an error. Error code: %d.\n", result);
  634. }
  635. /* write test */
  636. rt_kprintf("Writing the %s %ld bytes data, waiting...\n", sfud_dev->name, size);
  637. start_time = rt_tick_get();
  638. for (i = 0; i < size; i += write_size) {
  639. result = sfud_write(sfud_dev, addr + i, write_size, write_data);
  640. if (result != SFUD_SUCCESS) {
  641. rt_kprintf("Writing %s failed, already wr for %lu bytes, write %d each time\n", sfud_dev->name, i, write_size);
  642. break;
  643. }
  644. }
  645. if (result == SFUD_SUCCESS) {
  646. time_cast = rt_tick_get() - start_time;
  647. rt_kprintf("Write benchmark success, total time: %d.%03dS.\n", time_cast / RT_TICK_PER_SECOND,
  648. time_cast % RT_TICK_PER_SECOND / ((RT_TICK_PER_SECOND * 1 + 999) / 1000));
  649. } else {
  650. rt_kprintf("Write benchmark has an error. Error code: %d.\n", result);
  651. }
  652. /* read test */
  653. rt_kprintf("Reading the %s %ld bytes data, waiting...\n", sfud_dev->name, size);
  654. start_time = rt_tick_get();
  655. for (i = 0; i < size; i += read_size) {
  656. if (i + read_size <= size) {
  657. result = sfud_read(sfud_dev, addr + i, read_size, read_data);
  658. } else {
  659. result = sfud_read(sfud_dev, addr + i, size - i, read_data);
  660. }
  661. /* data check */
  662. if (memcmp(write_data, read_data, read_size))
  663. {
  664. rt_kprintf("Data check ERROR! Please check you flash by other command.\n");
  665. result = SFUD_ERR_READ;
  666. }
  667. if (result != SFUD_SUCCESS) {
  668. rt_kprintf("Read %s failed, already rd for %lu bytes, read %d each time\n", sfud_dev->name, i, read_size);
  669. break;
  670. }
  671. }
  672. if (result == SFUD_SUCCESS) {
  673. time_cast = rt_tick_get() - start_time;
  674. rt_kprintf("Read benchmark success, total time: %d.%03dS.\n", time_cast / RT_TICK_PER_SECOND,
  675. time_cast % RT_TICK_PER_SECOND / ((RT_TICK_PER_SECOND * 1 + 999) / 1000));
  676. } else {
  677. rt_kprintf("Read benchmark has an error. Error code: %d.\n", result);
  678. }
  679. } else {
  680. rt_kprintf("Low memory!\n");
  681. }
  682. rt_free(write_data);
  683. rt_free(read_data);
  684. } else {
  685. rt_kprintf("Usage:\n");
  686. for (i = 0; i < sizeof(sf_help_info) / sizeof(char*); i++) {
  687. rt_kprintf("%s\n", sf_help_info[i]);
  688. }
  689. rt_kprintf("\n");
  690. return;
  691. }
  692. if (result != SFUD_SUCCESS) {
  693. rt_kprintf("This flash operate has an error. Error code: %d.\n", result);
  694. }
  695. }
  696. }
  697. }
  698. MSH_CMD_EXPORT(sf, SPI Flash operate.);
  699. #endif /* defined(RT_USING_FINSH) && defined(FINSH_USING_MSH) */
  700. #endif /* RT_USING_SFUD */