spi_flash_sfud.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588
  1. /*
  2. * File : spi_flash_sfud.c
  3. * This file is part of RT-Thread RTOS
  4. * COPYRIGHT (C) 2006 - 2016, RT-Thread Development Team
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License along
  17. * with this program; if not, write to the Free Software Foundation, Inc.,
  18. * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
  19. *
  20. * Change Logs:
  21. * Date Author Notes
  22. * 2016-09-28 armink first version.
  23. */
  24. #include <stdint.h>
  25. #include <rtdevice.h>
  26. #include "spi_flash.h"
  27. #include "spi_flash_sfud.h"
  28. #ifdef RT_USING_SFUD
  29. #if RT_DEBUG_SFUD
  30. #define DEBUG_TRACE rt_kprintf("[SFUD] "); rt_kprintf
  31. #else
  32. #define DEBUG_TRACE(...)
  33. #endif /* RT_DEBUG_SFUD */
  34. #ifndef RT_SFUD_DEFAULT_SPI_CFG
  35. /* read the JEDEC SFDP command must run at 50 MHz or less */
  36. #define RT_SFUD_DEFAULT_SPI_CFG \
  37. { \
  38. .mode = RT_SPI_MODE_0 | RT_SPI_MSB, \
  39. .data_width = 8, \
  40. .max_hz = 50 * 1000 * 1000, \
  41. }
  42. #endif
  43. static char log_buf[RT_CONSOLEBUF_SIZE];
  44. void sfud_log_debug(const char *file, const long line, const char *format, ...);
  45. static rt_err_t rt_sfud_control(rt_device_t dev, int cmd, void *args) {
  46. RT_ASSERT(dev != RT_NULL);
  47. switch (cmd) {
  48. case RT_DEVICE_CTRL_BLK_GETGEOME: {
  49. struct rt_device_blk_geometry *geometry = (struct rt_device_blk_geometry *) args;
  50. struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (dev->user_data);
  51. if (rtt_dev == RT_NULL || geometry == RT_NULL) {
  52. return -RT_ERROR;
  53. }
  54. geometry->bytes_per_sector = rtt_dev->geometry.bytes_per_sector;
  55. geometry->sector_count = rtt_dev->geometry.sector_count;
  56. geometry->block_size = rtt_dev->geometry.block_size;
  57. break;
  58. }
  59. case RT_DEVICE_CTRL_BLK_ERASE: {
  60. rt_uint32_t *addrs = (rt_uint32_t *) args, start_addr = addrs[0], end_addr = addrs[1], phy_start_addr;
  61. struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (dev->user_data);
  62. sfud_flash *sfud_dev = (sfud_flash *) (rtt_dev->user_data);
  63. rt_size_t phy_size;
  64. if (addrs == RT_NULL || start_addr > end_addr || rtt_dev == RT_NULL || sfud_dev == RT_NULL) {
  65. return -RT_ERROR;
  66. }
  67. phy_start_addr = start_addr * rtt_dev->geometry.bytes_per_sector;
  68. phy_size = (end_addr - start_addr) * rtt_dev->geometry.bytes_per_sector;
  69. if (sfud_erase(sfud_dev, phy_start_addr, phy_size) != SFUD_SUCCESS) {
  70. return -RT_ERROR;
  71. }
  72. break;
  73. }
  74. }
  75. return RT_EOK;
  76. }
  77. static rt_size_t rt_sfud_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size) {
  78. struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (dev->user_data);
  79. sfud_flash *sfud_dev = (sfud_flash *) (rtt_dev->user_data);
  80. /* change the block device¡¯s logic address to physical address */
  81. rt_off_t phy_pos = pos * rtt_dev->geometry.bytes_per_sector;
  82. rt_size_t phy_size = size * rtt_dev->geometry.bytes_per_sector;
  83. if (sfud_read(sfud_dev, phy_pos, phy_size, buffer) != SFUD_SUCCESS) {
  84. return 0;
  85. } else {
  86. return size;
  87. }
  88. }
  89. static rt_size_t rt_sfud_write(rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size) {
  90. struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (dev->user_data);
  91. sfud_flash *sfud_dev = (sfud_flash *) (rtt_dev->user_data);
  92. /* change the block device¡¯s logic address to physical address */
  93. rt_off_t phy_pos = pos * rtt_dev->geometry.bytes_per_sector;
  94. rt_size_t phy_size = size * rtt_dev->geometry.bytes_per_sector;
  95. if (sfud_erase_write(sfud_dev, phy_pos, phy_size, buffer) != SFUD_SUCCESS) {
  96. return 0;
  97. } else {
  98. return size;
  99. }
  100. }
  101. /**
  102. * SPI write data then read data
  103. */
  104. static sfud_err spi_write_read(const sfud_spi *spi, const uint8_t *write_buf, size_t write_size, uint8_t *read_buf,
  105. size_t read_size) {
  106. sfud_err result = SFUD_SUCCESS;
  107. sfud_flash *sfud_dev = (sfud_flash *) (spi->user_data);
  108. struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (sfud_dev->user_data);
  109. if (write_size) {
  110. RT_ASSERT(write_buf);
  111. }
  112. if (read_size) {
  113. RT_ASSERT(read_buf);
  114. }
  115. if (write_size && read_size) {
  116. if (rt_spi_send_then_recv(rtt_dev->rt_spi_device, write_buf, write_size, read_buf, read_size) != RT_EOK) {
  117. result = SFUD_ERR_TIMEOUT;
  118. }
  119. } else if (write_size) {
  120. if (rt_spi_send(rtt_dev->rt_spi_device, write_buf, write_size) == 0) {
  121. result = SFUD_ERR_TIMEOUT;
  122. }
  123. } else {
  124. if (rt_spi_recv(rtt_dev->rt_spi_device, read_buf, read_size) == 0) {
  125. result = SFUD_ERR_TIMEOUT;
  126. }
  127. }
  128. return result;
  129. }
  130. static void spi_lock(const sfud_spi *spi) {
  131. sfud_flash *sfud_dev = (sfud_flash *) (spi->user_data);
  132. struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (sfud_dev->user_data);
  133. rt_mutex_take(&(rtt_dev->lock), RT_WAITING_FOREVER);
  134. }
  135. static void spi_unlock(const sfud_spi *spi) {
  136. sfud_flash *sfud_dev = (sfud_flash *) (spi->user_data);
  137. struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (sfud_dev->user_data);
  138. rt_mutex_release(&(rtt_dev->lock));
  139. }
  140. static void retry_delay_100us(void) {
  141. /* 100 microsecond delay */
  142. rt_thread_delay((RT_TICK_PER_SECOND * 1 + 9999) / 10000);
  143. }
  144. /**
  145. * This function is print debug info.
  146. *
  147. * @param file the file which has call this function
  148. * @param line the line number which has call this function
  149. * @param format output format
  150. * @param ... args
  151. */
  152. void sfud_log_debug(const char *file, const long line, const char *format, ...) {
  153. va_list args;
  154. /* args point to the first variable parameter */
  155. va_start(args, format);
  156. rt_kprintf("[SFUD](%s:%ld) ", file, line);
  157. /* must use vprintf to print */
  158. vsnprintf(log_buf, sizeof(log_buf), format, args);
  159. rt_kprintf("%s\n", log_buf);
  160. va_end(args);
  161. }
  162. /**
  163. * This function is print routine info.
  164. *
  165. * @param format output format
  166. * @param ... args
  167. */
  168. void sfud_log_info(const char *format, ...) {
  169. va_list args;
  170. /* args point to the first variable parameter */
  171. va_start(args, format);
  172. rt_kprintf("[SFUD]");
  173. /* must use vprintf to print */
  174. vsnprintf(log_buf, sizeof(log_buf), format, args);
  175. rt_kprintf("%s\n", log_buf);
  176. va_end(args);
  177. }
  178. sfud_err sfud_spi_port_init(sfud_flash *flash) {
  179. sfud_err result = SFUD_SUCCESS;
  180. /* port SPI device interface */
  181. flash->spi.wr = spi_write_read;
  182. flash->spi.lock = spi_lock;
  183. flash->spi.unlock = spi_unlock;
  184. flash->spi.user_data = flash;
  185. /* 100 microsecond delay */
  186. flash->retry.delay = retry_delay_100us;
  187. /* 60 seconds timeout */
  188. flash->retry.times = 60 * 10000;
  189. return result;
  190. }
  191. /**
  192. * Probe SPI flash by SFUD(Serial Flash Universal Driver) driver library and though SPI device.
  193. *
  194. * @param spi_flash_dev_name the name which will create SPI flash device
  195. * @param spi_dev_name using SPI device name
  196. *
  197. * @return probed SPI flash device, probe failed will return RT_NULL
  198. */
  199. rt_spi_flash_device_t rt_sfud_flash_probe(const char *spi_flash_dev_name, const char *spi_dev_name) {
  200. rt_spi_flash_device_t rtt_dev = RT_NULL;
  201. sfud_flash *sfud_dev = RT_NULL;
  202. char *spi_flash_dev_name_bak = RT_NULL, *spi_dev_name_bak = RT_NULL;
  203. /* using default flash SPI configuration for initialize SPI Flash
  204. * @note you also can change the SPI to other configuration after initialized finish */
  205. struct rt_spi_configuration cfg = RT_SFUD_DEFAULT_SPI_CFG;
  206. extern sfud_err sfud_device_init(sfud_flash *flash);
  207. RT_ASSERT(spi_flash_dev_name);
  208. RT_ASSERT(spi_dev_name);
  209. rtt_dev = (rt_spi_flash_device_t) rt_malloc(sizeof(struct spi_flash_device));
  210. sfud_dev = (sfud_flash_t) rt_malloc(sizeof(sfud_flash));
  211. spi_flash_dev_name_bak = (char *) rt_malloc(rt_strlen(spi_flash_dev_name) + 1);
  212. spi_dev_name_bak = (char *) rt_malloc(rt_strlen(spi_dev_name) + 1);
  213. if (rtt_dev) {
  214. rt_memset(rtt_dev, 0, sizeof(struct spi_flash_device));
  215. /* initialize lock */
  216. rt_mutex_init(&(rtt_dev->lock), spi_flash_dev_name, RT_IPC_FLAG_FIFO);
  217. }
  218. if (rtt_dev && sfud_dev && spi_flash_dev_name_bak && spi_dev_name_bak) {
  219. rt_memset(sfud_dev, 0, sizeof(sfud_flash));
  220. rt_strncpy(spi_flash_dev_name_bak, spi_flash_dev_name, rt_strlen(spi_flash_dev_name));
  221. rt_strncpy(spi_dev_name_bak, spi_dev_name, rt_strlen(spi_dev_name));
  222. /* make string end sign */
  223. spi_flash_dev_name_bak[rt_strlen(spi_flash_dev_name)] = '\0';
  224. spi_dev_name_bak[rt_strlen(spi_dev_name)] = '\0';
  225. /* SPI configure */
  226. {
  227. /* RT-Thread SPI device initialize */
  228. rtt_dev->rt_spi_device = (struct rt_spi_device *) rt_device_find(spi_dev_name);
  229. if (rtt_dev->rt_spi_device == RT_NULL || rtt_dev->rt_spi_device->parent.type != RT_Device_Class_SPIDevice) {
  230. rt_kprintf("ERROR: SPI device %s not found!\n", spi_dev_name);
  231. goto error;
  232. }
  233. sfud_dev->spi.name = spi_dev_name_bak;
  234. rt_spi_configure(rtt_dev->rt_spi_device, &cfg);
  235. }
  236. /* SFUD flash device initialize */
  237. {
  238. sfud_dev->name = spi_flash_dev_name_bak;
  239. /* accessed each other */
  240. rtt_dev->user_data = sfud_dev;
  241. rtt_dev->flash_device.user_data = rtt_dev;
  242. sfud_dev->user_data = rtt_dev;
  243. /* initialize SFUD device */
  244. if (sfud_device_init(sfud_dev) != SFUD_SUCCESS) {
  245. rt_kprintf("ERROR: SPI flash probe failed by SPI device %s.\n", spi_dev_name);
  246. goto error;
  247. }
  248. /* when initialize success, then copy SFUD flash device's geometry to RT-Thread SPI flash device */
  249. rtt_dev->geometry.sector_count = sfud_dev->chip.capacity / sfud_dev->chip.erase_gran;
  250. rtt_dev->geometry.bytes_per_sector = sfud_dev->chip.erase_gran;
  251. rtt_dev->geometry.block_size = sfud_dev->chip.erase_gran;
  252. }
  253. /* register device */
  254. rtt_dev->flash_device.type = RT_Device_Class_Block;
  255. rtt_dev->flash_device.init = RT_NULL;
  256. rtt_dev->flash_device.open = RT_NULL;
  257. rtt_dev->flash_device.close = RT_NULL;
  258. rtt_dev->flash_device.read = rt_sfud_read;
  259. rtt_dev->flash_device.write = rt_sfud_write;
  260. rtt_dev->flash_device.control = rt_sfud_control;
  261. rt_device_register(&(rtt_dev->flash_device), spi_flash_dev_name, RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_STANDALONE);
  262. DEBUG_TRACE("Probe SPI flash %s by SPI device %s success.\n",spi_flash_dev_name, spi_dev_name);
  263. return rtt_dev;
  264. } else {
  265. rt_kprintf("ERROR: Low memory.\n");
  266. goto error;
  267. }
  268. error:
  269. if (rtt_dev) {
  270. rt_mutex_detach(&(rtt_dev->lock));
  271. }
  272. /* may be one of objects memory was malloc success, so need free all */
  273. rt_free(rtt_dev);
  274. rt_free(sfud_dev);
  275. rt_free(spi_flash_dev_name_bak);
  276. rt_free(spi_dev_name_bak);
  277. return RT_NULL;
  278. }
  279. /**
  280. * Delete SPI flash device
  281. *
  282. * @param spi_flash_dev SPI flash device
  283. *
  284. * @return the operation status, RT_EOK on successful
  285. */
  286. rt_err_t rt_sfud_flash_delete(rt_spi_flash_device_t spi_flash_dev) {
  287. sfud_flash *sfud_flash_dev = (sfud_flash *) (spi_flash_dev->user_data);
  288. RT_ASSERT(spi_flash_dev);
  289. RT_ASSERT(sfud_flash_dev);
  290. rt_device_unregister(&(spi_flash_dev->flash_device));
  291. rt_mutex_detach(&(spi_flash_dev->lock));
  292. rt_free(sfud_flash_dev->spi.name);
  293. rt_free(sfud_flash_dev->name);
  294. rt_free(sfud_flash_dev);
  295. rt_free(spi_flash_dev);
  296. return RT_EOK;
  297. }
  298. #if defined(RT_USING_FINSH) && defined(FINSH_USING_MSH)
  299. #include <finsh.h>
  300. static void sf(uint8_t argc, char **argv) {
  301. #define CMD_SETECT_INDEX 0
  302. #define CMD_READ_INDEX 1
  303. #define CMD_WRITE_INDEX 2
  304. #define CMD_ERASE_INDEX 3
  305. #define CMD_RW_STATUS_INDEX 4
  306. #define CMD_BENCH_INDEX 5
  307. sfud_err result = SFUD_SUCCESS;
  308. static const sfud_flash *sfud_dev = NULL;
  309. static rt_spi_flash_device_t rtt_dev = NULL, rtt_dev_bak = NULL;
  310. size_t i = 0;
  311. const char* sf_help_info[] = {
  312. [CMD_SETECT_INDEX] = "sf probe [spi_device] - probe and init SPI flash by given 'spi_device'",
  313. [CMD_READ_INDEX] = "sf read addr size - read 'size' bytes starting at 'addr'",
  314. [CMD_WRITE_INDEX] = "sf write addr data1 ... dataN - write some bytes 'data' to flash starting at 'addr'",
  315. [CMD_ERASE_INDEX] = "sf erase addr size - erase 'size' bytes starting at 'addr'",
  316. [CMD_RW_STATUS_INDEX] = "sf status [<volatile> <status>] - read or write '1:volatile|0:non-volatile' 'status'",
  317. [CMD_BENCH_INDEX] = "sf bench - full chip benchmark. DANGER: It will erase full chip!",
  318. };
  319. if (argc < 2) {
  320. rt_kprintf("Usage:\n");
  321. for (i = 0; i < sizeof(sf_help_info) / sizeof(char*); i++) {
  322. rt_kprintf("%s\n", sf_help_info[i]);
  323. }
  324. rt_kprintf("\n");
  325. } else {
  326. const char *operator = argv[1];
  327. uint32_t addr, size;
  328. if (!strcmp(operator, "probe")) {
  329. if (argc < 3) {
  330. rt_kprintf("Usage: %s.\n", sf_help_info[CMD_SETECT_INDEX]);
  331. } else {
  332. char *spi_dev_name = argv[2];
  333. rtt_dev_bak = rtt_dev;
  334. rtt_dev = rt_sfud_flash_probe("sf_cmd", spi_dev_name);
  335. if (!rtt_dev) {
  336. return;
  337. }
  338. /* already probe then delete the old SPI flash device */
  339. if(rtt_dev_bak) {
  340. rt_sfud_flash_delete(rtt_dev_bak);
  341. }
  342. sfud_dev = (sfud_flash_t)rtt_dev->user_data;
  343. if (sfud_dev->chip.capacity < 1024 * 1024) {
  344. rt_kprintf("%d KB %s is current selected device.\n", sfud_dev->chip.capacity / 1024, sfud_dev->name);
  345. } else {
  346. rt_kprintf("%d MB %s is current selected device.\n", sfud_dev->chip.capacity / 1024 / 1024,
  347. sfud_dev->name);
  348. }
  349. }
  350. } else {
  351. if (!sfud_dev) {
  352. rt_kprintf("No flash device selected. Please run 'sf probe'.\n");
  353. return;
  354. }
  355. if (!rt_strcmp(operator, "read")) {
  356. if (argc < 4) {
  357. rt_kprintf("Usage: %s.\n", sf_help_info[CMD_READ_INDEX]);
  358. return;
  359. } else {
  360. addr = atol(argv[2]);
  361. size = atol(argv[3]);
  362. uint8_t *data = rt_malloc(size);
  363. if (data) {
  364. result = sfud_read(sfud_dev, addr, size, data);
  365. if (result == SFUD_SUCCESS) {
  366. rt_kprintf("Read the %s flash data success. Start from 0x%08X, size is %ld. The data is:\n",
  367. sfud_dev->name, addr, size);
  368. rt_kprintf("Offset (h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F\n");
  369. for (i = 0; i < size; i++) {
  370. if (i % 16 == 0) {
  371. rt_kprintf("[%08X] ", addr + i);
  372. }
  373. rt_kprintf("%02X ", data[i]);
  374. if (((i + 1) % 16 == 0) || i == size - 1) {
  375. rt_kprintf("\n");
  376. }
  377. }
  378. rt_kprintf("\n");
  379. }
  380. rt_free(data);
  381. } else {
  382. rt_kprintf("Low memory!\n");
  383. }
  384. }
  385. } else if (!rt_strcmp(operator, "write")) {
  386. if (argc < 4) {
  387. rt_kprintf("Usage: %s.\n", sf_help_info[CMD_WRITE_INDEX]);
  388. return;
  389. } else {
  390. addr = atol(argv[2]);
  391. size = argc - 3;
  392. uint8_t *data = rt_malloc(size);
  393. if (data) {
  394. for (i = 0; i < size; i++) {
  395. data[i] = atoi(argv[3 + i]);
  396. }
  397. result = sfud_write(sfud_dev, addr, size, data);
  398. if (result == SFUD_SUCCESS) {
  399. rt_kprintf("Write the %s flash data success. Start from 0x%08X, size is %ld.\n",
  400. sfud_dev->name, addr, size);
  401. rt_kprintf("Write data: ");
  402. for (i = 0; i < size; i++) {
  403. rt_kprintf("%d ", data[i]);
  404. }
  405. rt_kprintf(".\n");
  406. }
  407. rt_free(data);
  408. } else {
  409. rt_kprintf("Low memory!\n");
  410. }
  411. }
  412. } else if (!rt_strcmp(operator, "erase")) {
  413. if (argc < 4) {
  414. rt_kprintf("Usage: %s.\n", sf_help_info[CMD_ERASE_INDEX]);
  415. return;
  416. } else {
  417. addr = atol(argv[2]);
  418. size = atol(argv[3]);
  419. result = sfud_erase(sfud_dev, addr, size);
  420. if (result == SFUD_SUCCESS) {
  421. rt_kprintf("Erase the %s flash data success. Start from 0x%08X, size is %ld.\n", sfud_dev->name,
  422. addr, size);
  423. }
  424. }
  425. } else if (!rt_strcmp(operator, "status")) {
  426. if (argc < 3) {
  427. uint8_t status;
  428. result = sfud_read_status(sfud_dev, &status);
  429. if (result == SFUD_SUCCESS) {
  430. rt_kprintf("The %s flash status register current value is 0x%02X.\n", sfud_dev->name, status);
  431. }
  432. } else if (argc == 4) {
  433. bool is_volatile = atoi(argv[2]);
  434. uint8_t status = atoi(argv[3]);
  435. result = sfud_write_status(sfud_dev, is_volatile, status);
  436. if (result == SFUD_SUCCESS) {
  437. rt_kprintf("Write the %s flash status register to 0x%02X success.\n", sfud_dev->name, status);
  438. }
  439. } else {
  440. rt_kprintf("Usage: %s.\n", sf_help_info[CMD_RW_STATUS_INDEX]);
  441. return;
  442. }
  443. } else if (!rt_strcmp(operator, "bench")) {
  444. if ((argc > 2 && rt_strcmp(argv[2], "yes")) || argc < 3) {
  445. rt_kprintf("DANGER: It will erase full chip! Please run 'sf bench yes'.\n");
  446. return;
  447. }
  448. /* full chip benchmark test */
  449. addr = 0;
  450. size = sfud_dev->chip.capacity;
  451. uint32_t start_time, time_cast;
  452. size_t write_size = SFUD_WRITE_MAX_PAGE_SIZE, read_size = 4096;
  453. uint8_t *write_data = rt_malloc(write_size), *read_data = rt_malloc(read_size);
  454. if (write_data && read_data) {
  455. rt_memset(write_data, 0x55, write_size);
  456. /* benchmark testing */
  457. rt_kprintf("Erasing the %s %ld bytes data, waiting...\n", sfud_dev->name, size);
  458. start_time = rt_tick_get();
  459. result = sfud_erase(sfud_dev, addr, size);
  460. if (result == SFUD_SUCCESS) {
  461. time_cast = rt_tick_get() - start_time;
  462. rt_kprintf("Erase benchmark success, total time: %d.%03dS.\n", time_cast / RT_TICK_PER_SECOND,
  463. time_cast % RT_TICK_PER_SECOND / ((RT_TICK_PER_SECOND * 1 + 999) / 1000));
  464. } else {
  465. rt_kprintf("Erase benchmark has an error. Error code: %d.\n", result);
  466. }
  467. /* write test */
  468. rt_kprintf("Writing the %s %ld bytes data, waiting...\n", sfud_dev->name, size);
  469. start_time = rt_tick_get();
  470. for (i = 0; i < size; i += write_size) {
  471. result = sfud_write(sfud_dev, addr + i, write_size, write_data);
  472. if (result != SFUD_SUCCESS) {
  473. break;
  474. }
  475. }
  476. if (result == SFUD_SUCCESS) {
  477. time_cast = rt_tick_get() - start_time;
  478. rt_kprintf("Write benchmark success, total time: %d.%03dS.\n", time_cast / RT_TICK_PER_SECOND,
  479. time_cast % RT_TICK_PER_SECOND / ((RT_TICK_PER_SECOND * 1 + 999) / 1000));
  480. } else {
  481. rt_kprintf("Write benchmark has an error. Error code: %d.\n", result);
  482. }
  483. /* read test */
  484. rt_kprintf("Reading the %s %ld bytes data, waiting...\n", sfud_dev->name, size);
  485. start_time = rt_tick_get();
  486. for (i = 0; i < size; i += read_size) {
  487. if (i + read_size <= size) {
  488. result = sfud_read(sfud_dev, addr + i, read_size, read_data);
  489. } else {
  490. result = sfud_read(sfud_dev, addr + i, size - i, read_data);
  491. }
  492. if (result != SFUD_SUCCESS) {
  493. break;
  494. }
  495. }
  496. if (result == SFUD_SUCCESS) {
  497. time_cast = rt_tick_get() - start_time;
  498. rt_kprintf("Read benchmark success, total time: %d.%03dS.\n", time_cast / RT_TICK_PER_SECOND,
  499. time_cast % RT_TICK_PER_SECOND / ((RT_TICK_PER_SECOND * 1 + 999) / 1000));
  500. } else {
  501. rt_kprintf("Read benchmark has an error. Error code: %d.\n", result);
  502. }
  503. } else {
  504. rt_kprintf("Low memory!\n");
  505. }
  506. rt_free(write_data);
  507. rt_free(read_data);
  508. } else {
  509. rt_kprintf("Usage:\n");
  510. for (i = 0; i < sizeof(sf_help_info) / sizeof(char*); i++) {
  511. rt_kprintf("%s\n", sf_help_info[i]);
  512. }
  513. rt_kprintf("\n");
  514. return;
  515. }
  516. if (result != SFUD_SUCCESS) {
  517. rt_kprintf("This flash operate has an error. Error code: %d.\n", result);
  518. }
  519. }
  520. }
  521. }
  522. MSH_CMD_EXPORT(sf, SPI Flash operate.);
  523. #endif /* defined(RT_USING_FINSH) && defined(FINSH_USING_MSH) */
  524. #endif /* RT_USING_SFUD */