workqueue.c 9.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369
  1. /*
  2. * Copyright (c) 2006-2018, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2017-02-27 bernard fix the re-work issue.
  9. */
  10. #include <rthw.h>
  11. #include <rtthread.h>
  12. #include <rtdevice.h>
  13. #ifdef RT_USING_HEAP
  14. static void _delayed_work_timeout_handler(void *parameter);
  15. rt_inline rt_err_t _workqueue_work_completion(struct rt_workqueue *queue)
  16. {
  17. rt_err_t result;
  18. rt_enter_critical();
  19. while (1)
  20. {
  21. /* try to take condition semaphore */
  22. result = rt_sem_trytake(&(queue->sem));
  23. if (result == -RT_ETIMEOUT)
  24. {
  25. /* it's timeout, release this semaphore */
  26. rt_sem_release(&(queue->sem));
  27. }
  28. else if (result == RT_EOK)
  29. {
  30. /* keep the sem value = 0 */
  31. result = RT_EOK;
  32. break;
  33. }
  34. else
  35. {
  36. result = -RT_ERROR;
  37. break;
  38. }
  39. }
  40. rt_exit_critical();
  41. return result;
  42. }
  43. static void _workqueue_thread_entry(void *parameter)
  44. {
  45. rt_base_t level;
  46. struct rt_work *work;
  47. struct rt_workqueue *queue;
  48. queue = (struct rt_workqueue *) parameter;
  49. RT_ASSERT(queue != RT_NULL);
  50. while (1)
  51. {
  52. level = rt_hw_interrupt_disable();
  53. if (rt_list_isempty(&(queue->work_list)))
  54. {
  55. rt_hw_interrupt_enable(level);
  56. /* no software timer exist, suspend self. */
  57. rt_thread_suspend(rt_thread_self());
  58. rt_schedule();
  59. continue;
  60. }
  61. /* we have work to do with. */
  62. work = rt_list_entry(queue->work_list.next, struct rt_work, list);
  63. rt_list_remove(&(work->list));
  64. queue->work_current = work;
  65. work->flags &= ~RT_WORK_STATE_PENDING;
  66. work->workqueue = RT_NULL;
  67. rt_hw_interrupt_enable(level);
  68. /* do work */
  69. work->work_func(work, work->work_data);
  70. /* clean current work */
  71. queue->work_current = RT_NULL;
  72. /* ack work completion */
  73. _workqueue_work_completion(queue);
  74. }
  75. }
  76. static rt_err_t _workqueue_submit_work(struct rt_workqueue *queue,
  77. struct rt_work *work, rt_tick_t ticks)
  78. {
  79. rt_base_t level;
  80. level = rt_hw_interrupt_disable();
  81. /* remove list */
  82. rt_list_remove(&(work->list));
  83. work->flags &= ~RT_WORK_STATE_PENDING;
  84. /* */
  85. if (ticks == 0)
  86. {
  87. if (queue->work_current != work)
  88. {
  89. rt_list_insert_after(queue->work_list.prev, &(work->list));
  90. work->flags |= RT_WORK_STATE_PENDING;
  91. work->workqueue = queue;
  92. }
  93. /* whether the workqueue is doing work */
  94. if (queue->work_current == RT_NULL &&
  95. ((queue->work_thread->stat & RT_THREAD_STAT_MASK) == RT_THREAD_SUSPEND))
  96. {
  97. rt_hw_interrupt_enable(level);
  98. /* resume work thread */
  99. rt_thread_resume(queue->work_thread);
  100. rt_schedule();
  101. }
  102. else
  103. {
  104. rt_hw_interrupt_enable(level);
  105. }
  106. return RT_EOK;
  107. }
  108. else if (ticks < RT_TICK_MAX / 2)
  109. {
  110. /* Timer started */
  111. if (work->flags & RT_WORK_STATE_SUBMITTING)
  112. {
  113. rt_timer_stop(&work->timer);
  114. rt_timer_control(&work->timer, RT_TIMER_CTRL_SET_TIME, &ticks);
  115. }
  116. else
  117. {
  118. rt_timer_init(&(work->timer), "work", _delayed_work_timeout_handler,
  119. work, ticks, RT_TIMER_FLAG_ONE_SHOT | RT_TIMER_FLAG_SOFT_TIMER);
  120. work->flags |= RT_WORK_STATE_SUBMITTING;
  121. }
  122. work->workqueue = queue;
  123. /* insert delay work list */
  124. rt_list_insert_after(queue->delayed_list.prev, &(work->list));
  125. rt_hw_interrupt_enable(level);
  126. rt_timer_start(&(work->timer));
  127. return RT_EOK;
  128. }
  129. rt_hw_interrupt_enable(level);
  130. return -RT_ERROR;
  131. }
  132. static rt_err_t _workqueue_cancel_work(struct rt_workqueue *queue, struct rt_work *work)
  133. {
  134. rt_base_t level;
  135. rt_err_t err;
  136. level = rt_hw_interrupt_disable();
  137. rt_list_remove(&(work->list));
  138. work->flags &= ~RT_WORK_STATE_PENDING;
  139. /* Timer started */
  140. if (work->flags & RT_WORK_STATE_SUBMITTING)
  141. {
  142. rt_timer_stop(&(work->timer));
  143. rt_timer_detach(&(work->timer));
  144. work->flags &= ~RT_WORK_STATE_SUBMITTING;
  145. }
  146. err = queue->work_current != work ? RT_EOK : -RT_EBUSY;
  147. work->workqueue = RT_NULL;
  148. rt_hw_interrupt_enable(level);
  149. return err;
  150. }
  151. static void _delayed_work_timeout_handler(void *parameter)
  152. {
  153. struct rt_work *work;
  154. struct rt_workqueue *queue;
  155. rt_base_t level;
  156. work = (struct rt_work *)parameter;
  157. queue = work->workqueue;
  158. RT_ASSERT(queue != RT_NULL);
  159. level = rt_hw_interrupt_disable();
  160. rt_timer_detach(&(work->timer));
  161. work->flags &= ~RT_WORK_STATE_SUBMITTING;
  162. /* remove delay list */
  163. rt_list_remove(&(work->list));
  164. /* insert work queue */
  165. if (queue->work_current != work)
  166. {
  167. rt_list_insert_after(queue->work_list.prev, &(work->list));
  168. work->flags |= RT_WORK_STATE_PENDING;
  169. }
  170. /* whether the workqueue is doing work */
  171. if (queue->work_current == RT_NULL &&
  172. ((queue->work_thread->stat & RT_THREAD_STAT_MASK) == RT_THREAD_SUSPEND))
  173. {
  174. rt_hw_interrupt_enable(level);
  175. /* resume work thread */
  176. rt_thread_resume(queue->work_thread);
  177. rt_schedule();
  178. }
  179. else
  180. {
  181. rt_hw_interrupt_enable(level);
  182. }
  183. }
  184. struct rt_workqueue *rt_workqueue_create(const char *name, rt_uint16_t stack_size, rt_uint8_t priority)
  185. {
  186. struct rt_workqueue *queue = RT_NULL;
  187. queue = (struct rt_workqueue *)RT_KERNEL_MALLOC(sizeof(struct rt_workqueue));
  188. if (queue != RT_NULL)
  189. {
  190. /* initialize work list */
  191. rt_list_init(&(queue->work_list));
  192. rt_list_init(&(queue->delayed_list));
  193. queue->work_current = RT_NULL;
  194. rt_sem_init(&(queue->sem), "wqueue", 0, RT_IPC_FLAG_FIFO);
  195. /* create the work thread */
  196. queue->work_thread = rt_thread_create(name, _workqueue_thread_entry, queue, stack_size, priority, 10);
  197. if (queue->work_thread == RT_NULL)
  198. {
  199. RT_KERNEL_FREE(queue);
  200. return RT_NULL;
  201. }
  202. rt_thread_startup(queue->work_thread);
  203. }
  204. return queue;
  205. }
  206. rt_err_t rt_workqueue_destroy(struct rt_workqueue *queue)
  207. {
  208. RT_ASSERT(queue != RT_NULL);
  209. rt_workqueue_cancel_all_work(queue);
  210. rt_thread_delete(queue->work_thread);
  211. rt_sem_detach(&(queue->sem));
  212. RT_KERNEL_FREE(queue);
  213. return RT_EOK;
  214. }
  215. rt_err_t rt_workqueue_dowork(struct rt_workqueue *queue, struct rt_work *work)
  216. {
  217. RT_ASSERT(queue != RT_NULL);
  218. RT_ASSERT(work != RT_NULL);
  219. return _workqueue_submit_work(queue, work, 0);
  220. }
  221. rt_err_t rt_workqueue_submit_work(struct rt_workqueue *queue, struct rt_work *work, rt_tick_t time)
  222. {
  223. RT_ASSERT(queue != RT_NULL);
  224. RT_ASSERT(work != RT_NULL);
  225. return _workqueue_submit_work(queue, work, time);
  226. }
  227. rt_err_t rt_workqueue_critical_work(struct rt_workqueue *queue, struct rt_work *work)
  228. {
  229. rt_base_t level;
  230. RT_ASSERT(queue != RT_NULL);
  231. RT_ASSERT(work != RT_NULL);
  232. level = rt_hw_interrupt_disable();
  233. /* NOTE: the work MUST be initialized firstly */
  234. rt_list_remove(&(work->list));
  235. rt_list_insert_after(&queue->work_list, &(work->list));
  236. /* whether the workqueue is doing work */
  237. if (queue->work_current == RT_NULL &&
  238. ((queue->work_thread->stat & RT_THREAD_STAT_MASK) == RT_THREAD_SUSPEND))
  239. {
  240. rt_hw_interrupt_enable(level);
  241. /* resume work thread */
  242. rt_thread_resume(queue->work_thread);
  243. rt_schedule();
  244. }
  245. else
  246. {
  247. rt_hw_interrupt_enable(level);
  248. }
  249. return RT_EOK;
  250. }
  251. rt_err_t rt_workqueue_cancel_work(struct rt_workqueue *queue, struct rt_work *work)
  252. {
  253. RT_ASSERT(work != RT_NULL);
  254. RT_ASSERT(queue != RT_NULL);
  255. return _workqueue_cancel_work(queue, work);
  256. }
  257. rt_err_t rt_workqueue_cancel_work_sync(struct rt_workqueue *queue, struct rt_work *work)
  258. {
  259. RT_ASSERT(queue != RT_NULL);
  260. RT_ASSERT(work != RT_NULL);
  261. if (queue->work_current == work) /* it's current work in the queue */
  262. {
  263. /* wait for work completion */
  264. rt_sem_take(&(queue->sem), RT_WAITING_FOREVER);
  265. }
  266. else
  267. {
  268. _workqueue_cancel_work(queue, work);
  269. }
  270. return RT_EOK;
  271. }
  272. rt_err_t rt_workqueue_cancel_all_work(struct rt_workqueue *queue)
  273. {
  274. struct rt_work *work;
  275. RT_ASSERT(queue != RT_NULL);
  276. // cancel work
  277. rt_enter_critical();
  278. while (rt_list_isempty(&queue->work_list) == RT_FALSE)
  279. {
  280. work = rt_list_first_entry(&queue->work_list, struct rt_work, list);
  281. _workqueue_cancel_work(queue, work);
  282. }
  283. // cancel delay work
  284. while (rt_list_isempty(&queue->delayed_list) == RT_FALSE)
  285. {
  286. work = rt_list_first_entry(&queue->delayed_list, struct rt_work, list);
  287. _workqueue_cancel_work(queue, work);
  288. }
  289. rt_exit_critical();
  290. return RT_EOK;
  291. }
  292. void rt_delayed_work_init(struct rt_delayed_work *work, void (*work_func)(struct rt_work *work,
  293. void *work_data), void *work_data)
  294. {
  295. rt_work_init(&work->work, work_func, work_data);
  296. }
  297. #ifdef RT_USING_SYSTEM_WORKQUEUE
  298. static struct rt_workqueue *sys_workq;
  299. rt_err_t rt_work_submit(struct rt_work *work, rt_tick_t time)
  300. {
  301. return rt_workqueue_submit_work(sys_workq, work, time);
  302. }
  303. rt_err_t rt_work_cancel(struct rt_work *work)
  304. {
  305. return rt_workqueue_cancel_work(sys_workq, work);
  306. }
  307. int rt_work_sys_workqueue_init(void)
  308. {
  309. if (sys_workq != RT_NULL)
  310. return RT_EOK;
  311. sys_workq = rt_workqueue_create("sys_work", RT_SYSTEM_WORKQUEUE_STACKSIZE,
  312. RT_SYSTEM_WORKQUEUE_PRIORITY);
  313. RT_ASSERT(sys_workq != RT_NULL);
  314. return RT_EOK;
  315. }
  316. INIT_DEVICE_EXPORT(rt_work_sys_workqueue_init);
  317. #endif
  318. #endif