drv_eth.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572
  1. /*
  2. * Copyright (c) 2006-2018, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2017-06-08 tanek first implementation
  9. */
  10. #include <rtthread.h>
  11. #include <netif/ethernetif.h>
  12. #include "lwipopts.h"
  13. #include "board.h"
  14. #include <rtdevice.h>
  15. #include <finsh.h>
  16. /* debug option */
  17. //#define DEBUG
  18. //#define ETH_RX_DUMP
  19. //#define ETH_TX_DUMP
  20. #ifdef DEBUG
  21. #define STM32_ETH_PRINTF rt_kprintf
  22. #else
  23. #define STM32_ETH_PRINTF(...)
  24. #endif
  25. /* RMII GPIO
  26. ETH_MDIO -------------------------> PA2
  27. ETH_MDC --------------------------> PC1
  28. ETH_RMII_REF_CLK------------------> PA1
  29. ETH_RMII_CRS_DV ------------------> PA7
  30. ETH_RMII_RXD0 --------------------> PC4
  31. ETH_RMII_RXD1 --------------------> PC5
  32. ETH_RMII_TX_EN -------------------> PB11
  33. ETH_RMII_TXD0 --------------------> PG13
  34. ETH_RMII_TXD1 --------------------> PG14
  35. */
  36. #define ETH_MDIO_PORN GPIOA
  37. #define ETH_MDIO_PIN GPIO_PIN_2
  38. #define ETH_MDC_PORN GPIOC
  39. #define ETH_MDC_PIN GPIO_PIN_1
  40. #define ETH_RMII_REF_CLK_PORN GPIOA
  41. #define ETH_RMII_REF_CLK_PIN GPIO_PIN_1
  42. #define ETH_RMII_CRS_DV_PORN GPIOA
  43. #define ETH_RMII_CRS_DV_PIN GPIO_PIN_7
  44. #define ETH_RMII_RXD0_PORN GPIOC
  45. #define ETH_RMII_RXD0_PIN GPIO_PIN_4
  46. #define ETH_RMII_RXD1_PORN GPIOC
  47. #define ETH_RMII_RXD1_PIN GPIO_PIN_5
  48. #define ETH_RMII_TX_EN_PORN GPIOG
  49. #define ETH_RMII_TX_EN_PIN GPIO_PIN_11
  50. #define ETH_RMII_TXD0_PORN GPIOG
  51. #define ETH_RMII_TXD0_PIN GPIO_PIN_13
  52. #define ETH_RMII_TXD1_PORN GPIOB
  53. #define ETH_RMII_TXD1_PIN GPIO_PIN_13
  54. #define PHY_ADDRESS 0x01
  55. #define MAX_ADDR_LEN 6
  56. struct rt_stm32_eth
  57. {
  58. /* inherit from ethernet device */
  59. struct eth_device parent;
  60. /* interface address info. */
  61. rt_uint8_t dev_addr[MAX_ADDR_LEN]; /* hw address */
  62. uint32_t ETH_Speed; /*!< @ref ETH_Speed */
  63. uint32_t ETH_Mode; /*!< @ref ETH_Duplex_Mode */
  64. };
  65. static ETH_DMADescTypeDef DMARxDscrTab[ETH_RXBUFNB], DMATxDscrTab[ETH_TXBUFNB];
  66. static rt_uint8_t Rx_Buff[ETH_RXBUFNB][ETH_MAX_PACKET_SIZE], Tx_Buff[ETH_TXBUFNB][ETH_MAX_PACKET_SIZE];
  67. static rt_bool_t tx_is_waiting = RT_FALSE;
  68. static ETH_HandleTypeDef EthHandle;
  69. static struct rt_stm32_eth stm32_eth_device;
  70. static struct rt_semaphore tx_wait;
  71. /* interrupt service routine */
  72. void ETH_IRQHandler(void)
  73. {
  74. /* enter interrupt */
  75. rt_interrupt_enter();
  76. HAL_ETH_IRQHandler(&EthHandle);
  77. /* leave interrupt */
  78. rt_interrupt_leave();
  79. }
  80. void HAL_ETH_TxCpltCallback(ETH_HandleTypeDef *heth)
  81. {
  82. if (tx_is_waiting == RT_TRUE)
  83. {
  84. tx_is_waiting = RT_FALSE;
  85. rt_sem_release(&tx_wait);
  86. }
  87. }
  88. void HAL_ETH_RxCpltCallback(ETH_HandleTypeDef *heth)
  89. {
  90. rt_err_t result;
  91. result = eth_device_ready(&(stm32_eth_device.parent));
  92. if( result != RT_EOK )
  93. rt_kprintf("RX err =%d\n", result );
  94. }
  95. void HAL_ETH_ErrorCallback(ETH_HandleTypeDef *heth)
  96. {
  97. rt_kprintf("eth err\n");
  98. }
  99. /* initialize the interface */
  100. static rt_err_t rt_stm32_eth_init(rt_device_t dev)
  101. {
  102. STM32_ETH_PRINTF("rt_stm32_eth_init...\n");
  103. __HAL_RCC_ETH_CLK_ENABLE();
  104. /* ETHERNET Configuration --------------------------------------------------*/
  105. EthHandle.Instance = ETH;
  106. EthHandle.Init.MACAddr = (rt_uint8_t*)&stm32_eth_device.dev_addr[0];
  107. EthHandle.Init.AutoNegotiation = ETH_AUTONEGOTIATION_ENABLE;
  108. EthHandle.Init.Speed = ETH_SPEED_100M;
  109. EthHandle.Init.DuplexMode = ETH_MODE_FULLDUPLEX;
  110. EthHandle.Init.MediaInterface = ETH_MEDIA_INTERFACE_RMII;
  111. EthHandle.Init.RxMode = ETH_RXINTERRUPT_MODE;
  112. EthHandle.Init.ChecksumMode = ETH_CHECKSUM_BY_SOFTWARE;
  113. EthHandle.Init.PhyAddress = PHY_ADDRESS;
  114. HAL_ETH_DeInit(&EthHandle);
  115. /* configure ethernet peripheral (GPIOs, clocks, MAC, DMA) */
  116. if (HAL_ETH_Init(&EthHandle) == HAL_OK)
  117. {
  118. STM32_ETH_PRINTF("eth hardware init sucess...\n");
  119. }
  120. else
  121. {
  122. STM32_ETH_PRINTF("eth hardware init faild...\n");
  123. }
  124. /* Initialize Tx Descriptors list: Chain Mode */
  125. HAL_ETH_DMATxDescListInit(&EthHandle, DMATxDscrTab, &Tx_Buff[0][0], ETH_TXBUFNB);
  126. /* Initialize Rx Descriptors list: Chain Mode */
  127. HAL_ETH_DMARxDescListInit(&EthHandle, DMARxDscrTab, &Rx_Buff[0][0], ETH_RXBUFNB);
  128. /* Enable MAC and DMA transmission and reception */
  129. if (HAL_ETH_Start(&EthHandle) == HAL_OK)
  130. {
  131. STM32_ETH_PRINTF("eth hardware start success...\n");
  132. }
  133. else
  134. {
  135. STM32_ETH_PRINTF("eth hardware start faild...\n");
  136. }
  137. return RT_EOK;
  138. }
  139. static rt_err_t rt_stm32_eth_open(rt_device_t dev, rt_uint16_t oflag)
  140. {
  141. STM32_ETH_PRINTF("rt_stm32_eth_open...\n");
  142. return RT_EOK;
  143. }
  144. static rt_err_t rt_stm32_eth_close(rt_device_t dev)
  145. {
  146. STM32_ETH_PRINTF("rt_stm32_eth_close...\n");
  147. return RT_EOK;
  148. }
  149. static rt_size_t rt_stm32_eth_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size)
  150. {
  151. STM32_ETH_PRINTF("rt_stm32_eth_read...\n");
  152. rt_set_errno(-RT_ENOSYS);
  153. return 0;
  154. }
  155. static rt_size_t rt_stm32_eth_write (rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size)
  156. {
  157. STM32_ETH_PRINTF("rt_stm32_eth_write...\n");
  158. rt_set_errno(-RT_ENOSYS);
  159. return 0;
  160. }
  161. static rt_err_t rt_stm32_eth_control(rt_device_t dev, int cmd, void *args)
  162. {
  163. STM32_ETH_PRINTF("rt_stm32_eth_control...\n");
  164. switch(cmd)
  165. {
  166. case NIOCTL_GADDR:
  167. /* get mac address */
  168. if(args) rt_memcpy(args, stm32_eth_device.dev_addr, 6);
  169. else return -RT_ERROR;
  170. break;
  171. default :
  172. break;
  173. }
  174. return RT_EOK;
  175. }
  176. /* ethernet device interface */
  177. /* transmit packet. */
  178. rt_err_t rt_stm32_eth_tx( rt_device_t dev, struct pbuf* p)
  179. {
  180. rt_err_t ret = RT_ERROR;
  181. HAL_StatusTypeDef state;
  182. struct pbuf *q;
  183. uint8_t *buffer = (uint8_t *)(EthHandle.TxDesc->Buffer1Addr);
  184. __IO ETH_DMADescTypeDef *DmaTxDesc;
  185. uint32_t framelength = 0;
  186. uint32_t bufferoffset = 0;
  187. uint32_t byteslefttocopy = 0;
  188. uint32_t payloadoffset = 0;
  189. DmaTxDesc = EthHandle.TxDesc;
  190. bufferoffset = 0;
  191. STM32_ETH_PRINTF("rt_stm32_eth_tx...\n");
  192. /* Check if the descriptor is owned by the ETHERNET DMA (when set) or CPU (when reset) */
  193. while ((DmaTxDesc->Status & ETH_DMATXDESC_OWN) != (uint32_t)RESET)
  194. {
  195. rt_err_t result;
  196. rt_uint32_t level;
  197. level = rt_hw_interrupt_disable();
  198. tx_is_waiting = RT_TRUE;
  199. rt_hw_interrupt_enable(level);
  200. /* it's own bit set, wait it */
  201. result = rt_sem_take(&tx_wait, RT_WAITING_FOREVER);
  202. if (result == RT_EOK) break;
  203. if (result == -RT_ERROR) return -RT_ERROR;
  204. }
  205. /* copy frame from pbufs to driver buffers */
  206. for(q = p; q != NULL; q = q->next)
  207. {
  208. /* Is this buffer available? If not, goto error */
  209. if((DmaTxDesc->Status & ETH_DMATXDESC_OWN) != (uint32_t)RESET)
  210. {
  211. STM32_ETH_PRINTF("buffer not valid ...\n");
  212. ret = ERR_USE;
  213. goto error;
  214. }
  215. STM32_ETH_PRINTF("copy one frame\n");
  216. /* Get bytes in current lwIP buffer */
  217. byteslefttocopy = q->len;
  218. payloadoffset = 0;
  219. /* Check if the length of data to copy is bigger than Tx buffer size*/
  220. while( (byteslefttocopy + bufferoffset) > ETH_TX_BUF_SIZE )
  221. {
  222. /* Copy data to Tx buffer*/
  223. memcpy( (uint8_t*)((uint8_t*)buffer + bufferoffset), (uint8_t*)((uint8_t*)q->payload + payloadoffset), (ETH_TX_BUF_SIZE - bufferoffset) );
  224. /* Point to next descriptor */
  225. DmaTxDesc = (ETH_DMADescTypeDef *)(DmaTxDesc->Buffer2NextDescAddr);
  226. /* Check if the buffer is available */
  227. if((DmaTxDesc->Status & ETH_DMATXDESC_OWN) != (uint32_t)RESET)
  228. {
  229. STM32_ETH_PRINTF("dmatxdesc buffer not valid ...\n");
  230. ret = ERR_USE;
  231. goto error;
  232. }
  233. buffer = (uint8_t *)(DmaTxDesc->Buffer1Addr);
  234. byteslefttocopy = byteslefttocopy - (ETH_TX_BUF_SIZE - bufferoffset);
  235. payloadoffset = payloadoffset + (ETH_TX_BUF_SIZE - bufferoffset);
  236. framelength = framelength + (ETH_TX_BUF_SIZE - bufferoffset);
  237. bufferoffset = 0;
  238. }
  239. /* Copy the remaining bytes */
  240. memcpy( (uint8_t*)((uint8_t*)buffer + bufferoffset), (uint8_t*)((uint8_t*)q->payload + payloadoffset), byteslefttocopy );
  241. bufferoffset = bufferoffset + byteslefttocopy;
  242. framelength = framelength + byteslefttocopy;
  243. }
  244. #ifdef ETH_TX_DUMP
  245. {
  246. rt_uint32_t i;
  247. rt_uint8_t *ptr = buffer;
  248. STM32_ETH_PRINTF("tx_dump, len:%d\r\n", p->tot_len);
  249. for(i=0; i<p->tot_len; i++)
  250. {
  251. STM32_ETH_PRINTF("%02x ",*ptr);
  252. ptr++;
  253. if(((i+1)%8) == 0)
  254. {
  255. STM32_ETH_PRINTF(" ");
  256. }
  257. if(((i+1)%16) == 0)
  258. {
  259. STM32_ETH_PRINTF("\r\n");
  260. }
  261. }
  262. STM32_ETH_PRINTF("\r\ndump done!\r\n");
  263. }
  264. #endif
  265. /* Prepare transmit descriptors to give to DMA */
  266. STM32_ETH_PRINTF("transmit frame, length: %d\n", framelength);
  267. state = HAL_ETH_TransmitFrame(&EthHandle, framelength);
  268. if (state != HAL_OK)
  269. {
  270. STM32_ETH_PRINTF("eth transmit frame faild: %d\n", state);
  271. }
  272. ret = ERR_OK;
  273. error:
  274. /* When Transmit Underflow flag is set, clear it and issue a Transmit Poll Demand to resume transmission */
  275. if ((EthHandle.Instance->DMASR & ETH_DMASR_TUS) != (uint32_t)RESET)
  276. {
  277. /* Clear TUS ETHERNET DMA flag */
  278. EthHandle.Instance->DMASR = ETH_DMASR_TUS;
  279. /* Resume DMA transmission*/
  280. EthHandle.Instance->DMATPDR = 0;
  281. }
  282. return ret;
  283. }
  284. /* reception packet. */
  285. struct pbuf *rt_stm32_eth_rx(rt_device_t dev)
  286. {
  287. struct pbuf *p = NULL;
  288. struct pbuf *q = NULL;
  289. HAL_StatusTypeDef state;
  290. uint16_t len = 0;
  291. uint8_t *buffer;
  292. __IO ETH_DMADescTypeDef *dmarxdesc;
  293. uint32_t bufferoffset = 0;
  294. uint32_t payloadoffset = 0;
  295. uint32_t byteslefttocopy = 0;
  296. uint32_t i=0;
  297. STM32_ETH_PRINTF("rt_stm32_eth_rx\n");
  298. /* Get received frame */
  299. state = HAL_ETH_GetReceivedFrame_IT(&EthHandle);
  300. if (state != HAL_OK)
  301. {
  302. STM32_ETH_PRINTF("receive frame faild\n");
  303. return NULL;
  304. }
  305. /* Obtain the size of the packet and put it into the "len" variable. */
  306. len = EthHandle.RxFrameInfos.length;
  307. buffer = (uint8_t *)EthHandle.RxFrameInfos.buffer;
  308. STM32_ETH_PRINTF("receive frame len : %d\n", len);
  309. if (len > 0)
  310. {
  311. /* We allocate a pbuf chain of pbufs from the Lwip buffer pool */
  312. p = pbuf_alloc(PBUF_RAW, len, PBUF_POOL);
  313. }
  314. #ifdef ETH_RX_DUMP
  315. {
  316. rt_uint32_t i;
  317. rt_uint8_t *ptr = buffer;
  318. STM32_ETH_PRINTF("rx_dump, len:%d\r\n", p->tot_len);
  319. for (i = 0; i < len; i++)
  320. {
  321. STM32_ETH_PRINTF("%02x ", *ptr);
  322. ptr++;
  323. if (((i + 1) % 8) == 0)
  324. {
  325. STM32_ETH_PRINTF(" ");
  326. }
  327. if (((i + 1) % 16) == 0)
  328. {
  329. STM32_ETH_PRINTF("\r\n");
  330. }
  331. }
  332. STM32_ETH_PRINTF("\r\ndump done!\r\n");
  333. }
  334. #endif
  335. if (p != NULL)
  336. {
  337. dmarxdesc = EthHandle.RxFrameInfos.FSRxDesc;
  338. bufferoffset = 0;
  339. for(q = p; q != NULL; q = q->next)
  340. {
  341. byteslefttocopy = q->len;
  342. payloadoffset = 0;
  343. /* Check if the length of bytes to copy in current pbuf is bigger than Rx buffer size*/
  344. while( (byteslefttocopy + bufferoffset) > ETH_RX_BUF_SIZE )
  345. {
  346. /* Copy data to pbuf */
  347. memcpy( (uint8_t*)((uint8_t*)q->payload + payloadoffset), (uint8_t*)((uint8_t*)buffer + bufferoffset), (ETH_RX_BUF_SIZE - bufferoffset));
  348. /* Point to next descriptor */
  349. dmarxdesc = (ETH_DMADescTypeDef *)(dmarxdesc->Buffer2NextDescAddr);
  350. buffer = (uint8_t *)(dmarxdesc->Buffer1Addr);
  351. byteslefttocopy = byteslefttocopy - (ETH_RX_BUF_SIZE - bufferoffset);
  352. payloadoffset = payloadoffset + (ETH_RX_BUF_SIZE - bufferoffset);
  353. bufferoffset = 0;
  354. }
  355. /* Copy remaining data in pbuf */
  356. memcpy( (uint8_t*)((uint8_t*)q->payload + payloadoffset), (uint8_t*)((uint8_t*)buffer + bufferoffset), byteslefttocopy);
  357. bufferoffset = bufferoffset + byteslefttocopy;
  358. }
  359. }
  360. /* Release descriptors to DMA */
  361. /* Point to first descriptor */
  362. dmarxdesc = EthHandle.RxFrameInfos.FSRxDesc;
  363. /* Set Own bit in Rx descriptors: gives the buffers back to DMA */
  364. for (i=0; i< EthHandle.RxFrameInfos.SegCount; i++)
  365. {
  366. dmarxdesc->Status |= ETH_DMARXDESC_OWN;
  367. dmarxdesc = (ETH_DMADescTypeDef *)(dmarxdesc->Buffer2NextDescAddr);
  368. }
  369. /* Clear Segment_Count */
  370. EthHandle.RxFrameInfos.SegCount =0;
  371. /* When Rx Buffer unavailable flag is set: clear it and resume reception */
  372. if ((EthHandle.Instance->DMASR & ETH_DMASR_RBUS) != (uint32_t)RESET)
  373. {
  374. /* Clear RBUS ETHERNET DMA flag */
  375. EthHandle.Instance->DMASR = ETH_DMASR_RBUS;
  376. /* Resume DMA reception */
  377. EthHandle.Instance->DMARPDR = 0;
  378. }
  379. return p;
  380. }
  381. static void NVIC_Configuration(void)
  382. {
  383. /* Enable the Ethernet global Interrupt */
  384. HAL_NVIC_SetPriority(ETH_IRQn, 0x7, 0);
  385. HAL_NVIC_EnableIRQ(ETH_IRQn);
  386. }
  387. /*
  388. * GPIO Configuration for ETH
  389. */
  390. static void GPIO_Configuration(void)
  391. {
  392. GPIO_InitTypeDef GPIO_InitStructure;
  393. STM32_ETH_PRINTF("GPIO_Configuration...\n");
  394. /* Enable SYSCFG clock */
  395. __HAL_RCC_ETH_CLK_ENABLE();
  396. __HAL_RCC_GPIOA_CLK_ENABLE();
  397. __HAL_RCC_GPIOB_CLK_ENABLE();
  398. __HAL_RCC_GPIOC_CLK_ENABLE();
  399. __HAL_RCC_GPIOG_CLK_ENABLE();
  400. GPIO_InitStructure.Speed = GPIO_SPEED_HIGH;
  401. GPIO_InitStructure.Mode = GPIO_MODE_AF_PP;
  402. GPIO_InitStructure.Alternate = GPIO_AF11_ETH;
  403. GPIO_InitStructure.Pull = GPIO_NOPULL;
  404. GPIO_InitStructure.Pin = ETH_MDIO_PIN;
  405. HAL_GPIO_Init(ETH_MDIO_PORN,&GPIO_InitStructure);
  406. GPIO_InitStructure.Pin = ETH_MDC_PIN;
  407. HAL_GPIO_Init(ETH_MDC_PORN,&GPIO_InitStructure);
  408. GPIO_InitStructure.Pin = ETH_RMII_REF_CLK_PIN;
  409. HAL_GPIO_Init(ETH_RMII_REF_CLK_PORN,&GPIO_InitStructure);
  410. GPIO_InitStructure.Pin = ETH_RMII_CRS_DV_PIN;
  411. HAL_GPIO_Init(ETH_RMII_CRS_DV_PORN,&GPIO_InitStructure);
  412. GPIO_InitStructure.Pin = ETH_RMII_REF_CLK_PIN;
  413. HAL_GPIO_Init(ETH_RMII_REF_CLK_PORN,&GPIO_InitStructure);
  414. GPIO_InitStructure.Pin = ETH_RMII_CRS_DV_PIN;
  415. HAL_GPIO_Init(ETH_RMII_CRS_DV_PORN,&GPIO_InitStructure);
  416. GPIO_InitStructure.Pin = ETH_RMII_RXD0_PIN;
  417. HAL_GPIO_Init(ETH_RMII_RXD0_PORN,&GPIO_InitStructure);
  418. GPIO_InitStructure.Pin = ETH_RMII_RXD1_PIN;
  419. HAL_GPIO_Init(ETH_RMII_RXD1_PORN,&GPIO_InitStructure);
  420. GPIO_InitStructure.Pin = ETH_RMII_TX_EN_PIN;
  421. HAL_GPIO_Init(ETH_RMII_TX_EN_PORN,&GPIO_InitStructure);
  422. GPIO_InitStructure.Pin = ETH_RMII_TXD0_PIN;
  423. HAL_GPIO_Init(ETH_RMII_TXD0_PORN,&GPIO_InitStructure);
  424. GPIO_InitStructure.Pin = ETH_RMII_TXD1_PIN;
  425. HAL_GPIO_Init(ETH_RMII_TXD1_PORN,&GPIO_InitStructure);
  426. HAL_NVIC_SetPriority(ETH_IRQn,1,0);
  427. HAL_NVIC_EnableIRQ(ETH_IRQn);
  428. }
  429. void HAL_ETH_MspInit(ETH_HandleTypeDef *heth)
  430. {
  431. GPIO_Configuration();
  432. NVIC_Configuration();
  433. }
  434. static int rt_hw_stm32_eth_init(void)
  435. {
  436. rt_err_t state;
  437. stm32_eth_device.ETH_Speed = ETH_SPEED_100M;
  438. stm32_eth_device.ETH_Mode = ETH_MODE_FULLDUPLEX;
  439. /* OUI 00-80-E1 STMICROELECTRONICS. */
  440. stm32_eth_device.dev_addr[0] = 0x00;
  441. stm32_eth_device.dev_addr[1] = 0x80;
  442. stm32_eth_device.dev_addr[2] = 0xE1;
  443. /* generate MAC addr from 96bit unique ID (only for test). */
  444. stm32_eth_device.dev_addr[3] = *(rt_uint8_t*)(UID_BASE+4);
  445. stm32_eth_device.dev_addr[4] = *(rt_uint8_t*)(UID_BASE+2);
  446. stm32_eth_device.dev_addr[5] = *(rt_uint8_t*)(UID_BASE+0);
  447. stm32_eth_device.parent.parent.init = rt_stm32_eth_init;
  448. stm32_eth_device.parent.parent.open = rt_stm32_eth_open;
  449. stm32_eth_device.parent.parent.close = rt_stm32_eth_close;
  450. stm32_eth_device.parent.parent.read = rt_stm32_eth_read;
  451. stm32_eth_device.parent.parent.write = rt_stm32_eth_write;
  452. stm32_eth_device.parent.parent.control = rt_stm32_eth_control;
  453. stm32_eth_device.parent.parent.user_data = RT_NULL;
  454. stm32_eth_device.parent.eth_rx = rt_stm32_eth_rx;
  455. stm32_eth_device.parent.eth_tx = rt_stm32_eth_tx;
  456. STM32_ETH_PRINTF("sem init: tx_wait\r\n");
  457. /* init tx semaphore */
  458. rt_sem_init(&tx_wait, "tx_wait", 0, RT_IPC_FLAG_FIFO);
  459. /* register eth device */
  460. STM32_ETH_PRINTF("eth_device_init start\r\n");
  461. state = eth_device_init(&(stm32_eth_device.parent), "e0");
  462. if (RT_EOK == state)
  463. {
  464. STM32_ETH_PRINTF("eth_device_init success\r\n");
  465. }
  466. else
  467. {
  468. STM32_ETH_PRINTF("eth_device_init faild: %d\r\n", state);
  469. }
  470. eth_device_linkchange(&stm32_eth_device.parent, RT_TRUE); //linkup the e0 for lwip to check
  471. return state;
  472. }
  473. INIT_APP_EXPORT(rt_hw_stm32_eth_init);