drv_pwm.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528
  1. /*
  2. * Copyright (C) 2020, Huada Semiconductor Co., Ltd.
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2020-10-30 CDT first version
  9. */
  10. #include <board.h>
  11. #include <rtdbg.h>
  12. #ifdef RT_USING_PWM
  13. #if !defined(BSP_USING_PWM1) && !defined(BSP_USING_PWM2) && !defined(BSP_USING_PWM3) && \
  14. !defined(BSP_USING_PWM4) && !defined(BSP_USING_PWM5) && !defined(BSP_USING_PWM6) && \
  15. !defined(BSP_USING_PWM7) && !defined(BSP_USING_PWM8) && !defined(BSP_USING_PWM9) && \
  16. !defined(BSP_USING_PWM10) && !defined(BSP_USING_PWM11) && !defined(BSP_USING_PWM12)
  17. #error "Please define at least one BSP_USING_PWMx"
  18. /* this driver can be disabled at menuconfig -> Hardware Drivers Config -> On-chip Peripheral Drivers -> Enable PWM */
  19. #endif
  20. #define PWM_MAX_PERIOD (65535U)
  21. #define PWM_MIN_PERIOD (1U)
  22. #define PWM_MIN_PULSE (1U)
  23. #define PWM_MAX_CHANNEL (TMRA_CH_4)
  24. enum
  25. {
  26. #ifdef BSP_USING_PWM1
  27. PWM1_INDEX,
  28. #endif
  29. #ifdef BSP_USING_PWM2
  30. PWM2_INDEX,
  31. #endif
  32. #ifdef BSP_USING_PWM3
  33. PWM3_INDEX,
  34. #endif
  35. #ifdef BSP_USING_PWM4
  36. PWM4_INDEX,
  37. #endif
  38. #ifdef BSP_USING_PWM5
  39. PWM5_INDEX,
  40. #endif
  41. #ifdef BSP_USING_PWM6
  42. PWM6_INDEX,
  43. #endif
  44. #ifdef BSP_USING_PWM7
  45. PWM7_INDEX,
  46. #endif
  47. #ifdef BSP_USING_PWM8
  48. PWM8_INDEX,
  49. #endif
  50. #ifdef BSP_USING_PWM9
  51. PWM9_INDEX,
  52. #endif
  53. #ifdef BSP_USING_PWM10
  54. PWM10_INDEX,
  55. #endif
  56. #ifdef BSP_USING_PWM11
  57. PWM11_INDEX,
  58. #endif
  59. #ifdef BSP_USING_PWM12
  60. PWM12_INDEX,
  61. #endif
  62. };
  63. struct hc32_pwm_config
  64. {
  65. struct rt_device_pwm pwm_device;
  66. M4_TMRA_TypeDef *timer_periph;
  67. rt_uint8_t channel;
  68. char *name;
  69. };
  70. #ifndef HC32_PWM_CONFIG
  71. #define HC32_PWM_CONFIG(periph, ch, label) \
  72. { \
  73. .timer_periph = periph, \
  74. .channel = ch, \
  75. .name = label \
  76. }
  77. #endif /* HC32_PWM_CONFIG */
  78. static struct hc32_pwm_config pwm_obj[] =
  79. {
  80. #ifdef BSP_USING_PWM1
  81. HC32_PWM_CONFIG(M4_TMRA_1 , 0, "pwm1"),
  82. #endif
  83. #ifdef BSP_USING_PWM2
  84. HC32_PWM_CONFIG(M4_TMRA_2 , 0, "pwm2"),
  85. #endif
  86. #ifdef BSP_USING_PWM3
  87. HC32_PWM_CONFIG(M4_TMRA_3 , 0, "pwm3"),
  88. #endif
  89. #ifdef BSP_USING_PWM4
  90. HC32_PWM_CONFIG(M4_TMRA_4 , 0, "pwm4"),
  91. #endif
  92. #ifdef BSP_USING_PWM5
  93. HC32_PWM_CONFIG(M4_TMRA_5 , 0, "pwm5"),
  94. #endif
  95. #ifdef BSP_USING_PWM6
  96. HC32_PWM_CONFIG(M4_TMRA_6 , 0, "pwm6"),
  97. #endif
  98. #ifdef BSP_USING_PWM7
  99. HC32_PWM_CONFIG(M4_TMRA_7 , 0, "pwm7"),
  100. #endif
  101. #ifdef BSP_USING_PWM8
  102. HC32_PWM_CONFIG(M4_TMRA_8 , 0, "pwm8"),
  103. #endif
  104. #ifdef BSP_USING_PWM9
  105. HC32_PWM_CONFIG(M4_TMRA_9 , 0, "pwm9"),
  106. #endif
  107. #ifdef BSP_USING_PWM10
  108. HC32_PWM_CONFIG(M4_TMRA_10 , 0, "pwm10"),
  109. #endif
  110. #ifdef BSP_USING_PWM11
  111. HC32_PWM_CONFIG(M4_TMRA_11 , 0, "pwm11"),
  112. #endif
  113. #ifdef BSP_USING_PWM12
  114. HC32_PWM_CONFIG(M4_TMRA_12 , 0, "pwm12"),
  115. #endif
  116. };
  117. static rt_uint16_t hc32_pwm_get_unit_number(M4_TMRA_TypeDef *TMRAx)
  118. {
  119. rt_uint16_t unit_num;
  120. const rt_uint32_t unit_step = 0x400U;
  121. if (((rt_uint32_t)TMRAx) >= ((rt_uint32_t)M4_TMRA_1))
  122. {
  123. unit_num = (((rt_uint32_t)TMRAx) - ((rt_uint32_t)M4_TMRA_1)) / unit_step;
  124. }
  125. else
  126. {
  127. unit_num = (((rt_uint32_t)TMRAx) - ((rt_uint32_t)M4_TMRA_5)) / unit_step + 4;
  128. }
  129. return unit_num;
  130. }
  131. static void hc32_pwm_clock_config(M4_TMRA_TypeDef *TMRAx, en_functional_state_t enNewState)
  132. {
  133. rt_uint32_t timer_periph;
  134. rt_uint16_t unit_num;
  135. unit_num = hc32_pwm_get_unit_number(TMRAx);
  136. timer_periph = PWC_FCG2_TMRA_1 << unit_num;
  137. PWC_Fcg2PeriphClockCmd(timer_periph, enNewState);
  138. }
  139. static rt_err_t hc32_pwm_enable(M4_TMRA_TypeDef *TMRAx, struct rt_pwm_configuration *configuration, rt_bool_t enable)
  140. {
  141. if (configuration->channel > PWM_MAX_CHANNEL)
  142. {
  143. return RT_EINVAL;
  144. }
  145. if (!enable)
  146. {
  147. TMRA_PWM_Cmd(TMRAx, configuration->channel, Disable);
  148. }
  149. else
  150. {
  151. TMRA_PWM_Cmd(TMRAx, configuration->channel, Enable);
  152. }
  153. return RT_EOK;
  154. }
  155. static rt_err_t hc32_pwm_get(M4_TMRA_TypeDef *TMRAx, struct rt_pwm_configuration *configuration)
  156. {
  157. stc_clk_freq_t stcClkFreq;
  158. rt_uint32_t clk_freq;
  159. rt_uint16_t unit_num;
  160. rt_uint16_t div_val;
  161. CLK_GetClockFreq(&stcClkFreq);
  162. unit_num = hc32_pwm_get_unit_number(TMRAx);
  163. if (unit_num >= 4)
  164. {
  165. clk_freq = stcClkFreq.pclk1Freq;
  166. }
  167. else
  168. {
  169. clk_freq = stcClkFreq.pclk0Freq;
  170. }
  171. /* Convert nanosecond to frequency and duty cycle */
  172. div_val = 0x01 << (READ_REG32_BIT(TMRAx->BCSTR, TMRA_BCSTR_CKDIV) >> TMRA_BCSTR_CKDIV_POS);
  173. clk_freq /= 1000000UL;
  174. configuration->period = (TMRA_GetPeriodVal(TMRAx) + 1) * div_val * 1000UL / clk_freq;
  175. configuration->pulse = (TMRA_GetCmpVal(TMRAx, configuration->channel) + 1) * div_val * 1000UL / clk_freq;
  176. return RT_EOK;
  177. }
  178. static rt_err_t hc32_pwm_set(M4_TMRA_TypeDef *TMRAx, struct rt_pwm_configuration *configuration)
  179. {
  180. rt_uint32_t period, pulse;
  181. rt_uint64_t clk_div;
  182. stc_clk_freq_t stcClkFreq;
  183. rt_uint32_t clk_freq;
  184. rt_uint16_t unit_num;
  185. rt_uint16_t div_val;
  186. CLK_GetClockFreq(&stcClkFreq);
  187. unit_num = hc32_pwm_get_unit_number(TMRAx);
  188. if (unit_num >= 4)
  189. {
  190. clk_freq = stcClkFreq.pclk1Freq;
  191. }
  192. else
  193. {
  194. clk_freq = stcClkFreq.pclk0Freq;
  195. }
  196. /* Convert nanosecond to frequency and duty cycle */
  197. clk_freq /= 1000000UL;
  198. period = (unsigned long long)configuration->period * clk_freq / 1000UL;
  199. clk_div = period / PWM_MAX_PERIOD + 1;
  200. if (clk_div > 1024)
  201. {
  202. return RT_EINVAL;
  203. }
  204. else if (clk_div != 1)
  205. {
  206. for (div_val=512; div_val>1; div_val>>=1)
  207. {
  208. if (clk_div > div_val)
  209. {
  210. clk_div = div_val << 1;
  211. break;
  212. }
  213. }
  214. }
  215. period = period / clk_div;
  216. TMRA_SetPCLKDiv(TMRAx, ((__CLZ(__RBIT(clk_div))) << TMRA_BCSTR_CKDIV_POS));
  217. if (period < PWM_MIN_PERIOD)
  218. {
  219. period = PWM_MIN_PERIOD;
  220. }
  221. TMRA_SetPeriodVal(TMRAx, period - 1);
  222. pulse = (unsigned long long)configuration->pulse * clk_freq / clk_div / 1000UL;
  223. if (pulse < PWM_MIN_PULSE)
  224. {
  225. pulse = PWM_MIN_PULSE;
  226. }
  227. else if (pulse > period)
  228. {
  229. pulse = period;
  230. }
  231. TMRA_SetCmpVal(TMRAx, configuration->channel, pulse - 1);
  232. TMRA_SetCntVal(TMRAx, 0);
  233. return RT_EOK;
  234. }
  235. static rt_err_t hc32_pwm_control(struct rt_device_pwm *device, int cmd, void *arg)
  236. {
  237. struct rt_pwm_configuration *configuration = (struct rt_pwm_configuration *)arg;
  238. M4_TMRA_TypeDef *timer_periph = (M4_TMRA_TypeDef *)device->parent.user_data;
  239. switch (cmd)
  240. {
  241. case PWM_CMD_ENABLE:
  242. return hc32_pwm_enable(timer_periph, configuration, RT_TRUE);
  243. case PWM_CMD_DISABLE:
  244. return hc32_pwm_enable(timer_periph, configuration, RT_FALSE);
  245. case PWM_CMD_SET:
  246. return hc32_pwm_set(timer_periph, configuration);
  247. case PWM_CMD_GET:
  248. return hc32_pwm_get(timer_periph, configuration);
  249. default:
  250. return RT_EINVAL;
  251. }
  252. }
  253. extern rt_err_t rt_hw_board_pwm_init(M4_TMRA_TypeDef *TMRAx);
  254. static rt_err_t hc32_pwm_init(struct hc32_pwm_config *device)
  255. {
  256. rt_err_t result = RT_EOK;
  257. stc_tmra_init_t stcTmraInit;
  258. stc_tmra_pwm_cfg_t stcPwmCfg;
  259. RT_ASSERT(device != RT_NULL);
  260. /* Enable Timer peripheral clock. */
  261. hc32_pwm_clock_config(device->timer_periph, Enable);
  262. /* pwm pin configuration */
  263. result = rt_hw_board_pwm_init(device->timer_periph);
  264. if (RT_EOK == result)
  265. {
  266. TMRA_DeInit(device->timer_periph);
  267. TMRA_StructInit(&stcTmraInit);
  268. stcTmraInit.u32PCLKDiv = TMRA_PCLK_DIV1;
  269. stcTmraInit.u32CntOvfOp = TMRA_OVF_CNT_CONTINUE;
  270. stcTmraInit.u32PeriodVal = 0xFFFF;
  271. stcTmraInit.u32CntVal = 0;
  272. TMRA_Init(device->timer_periph, &stcTmraInit);
  273. /* Set the comparison reference value */
  274. TMRA_PWM_StructInit(&stcPwmCfg);
  275. stcPwmCfg.u32StartPolarity = TMRA_PWM_START_HIGH;
  276. stcPwmCfg.u32StopPolarity = TMRA_PWM_STOP_LOW;
  277. stcPwmCfg.u32CmpPolarity = TMRA_PWM_CMP_LOW;
  278. stcPwmCfg.u32PeriodPolarity = TMRA_PWM_PERIOD_HIGH;
  279. /* config pwm channel */
  280. if (0 != (device->channel & 0x01))
  281. {
  282. TMRA_PWM_Config(device->timer_periph, TMRA_CH_1, &stcPwmCfg);
  283. TMRA_SetCmpVal(device->timer_periph, TMRA_CH_1, 0x7FFF);
  284. }
  285. if (0 != (device->channel & 0x02))
  286. {
  287. TMRA_PWM_Config(device->timer_periph, TMRA_CH_2, &stcPwmCfg);
  288. TMRA_SetCmpVal(device->timer_periph, TMRA_CH_2, 0x7FFF);
  289. }
  290. if (0 != (device->channel & 0x04))
  291. {
  292. TMRA_PWM_Config(device->timer_periph, TMRA_CH_3, &stcPwmCfg);
  293. TMRA_SetCmpVal(device->timer_periph, TMRA_CH_3, 0x7FFF);
  294. }
  295. if (0 != (device->channel & 0x08))
  296. {
  297. TMRA_PWM_Config(device->timer_periph, TMRA_CH_4, &stcPwmCfg);
  298. TMRA_SetCmpVal(device->timer_periph, TMRA_CH_4, 0x7FFF);
  299. }
  300. /* start timer */
  301. TMRA_Start(device->timer_periph);
  302. }
  303. return result;
  304. }
  305. static void hc32_pwm_get_channel(void)
  306. {
  307. #ifdef BSP_USING_PWM1_CH1
  308. pwm_obj[PWM1_INDEX].channel |= (0x01 << 0);
  309. #endif
  310. #ifdef BSP_USING_PWM1_CH2
  311. pwm_obj[PWM1_INDEX].channel |= (0x01 << 1);
  312. #endif
  313. #ifdef BSP_USING_PWM1_CH3
  314. pwm_obj[PWM1_INDEX].channel |= (0x01 << 2);
  315. #endif
  316. #ifdef BSP_USING_PWM1_CH4
  317. pwm_obj[PWM1_INDEX].channel |= (0x01 << 3);
  318. #endif
  319. #ifdef BSP_USING_PWM2_CH1
  320. pwm_obj[PWM2_INDEX].channel |= (0x01 << 0);
  321. #endif
  322. #ifdef BSP_USING_PWM2_CH2
  323. pwm_obj[PWM2_INDEX].channel |= (0x01 << 1);
  324. #endif
  325. #ifdef BSP_USING_PWM2_CH3
  326. pwm_obj[PWM2_INDEX].channel |= (0x01 << 2);
  327. #endif
  328. #ifdef BSP_USING_PWM2_CH4
  329. pwm_obj[PWM2_INDEX].channel |= (0x01 << 3);
  330. #endif
  331. #ifdef BSP_USING_PWM3_CH1
  332. pwm_obj[PWM3_INDEX].channel |= (0x01 << 0);
  333. #endif
  334. #ifdef BSP_USING_PWM3_CH2
  335. pwm_obj[PWM3_INDEX].channel |= (0x01 << 1);
  336. #endif
  337. #ifdef BSP_USING_PWM3_CH3
  338. pwm_obj[PWM3_INDEX].channel |= (0x01 << 2);
  339. #endif
  340. #ifdef BSP_USING_PWM3_CH4
  341. pwm_obj[PWM3_INDEX].channel |= (0x01 << 3);
  342. #endif
  343. #ifdef BSP_USING_PWM4_CH1
  344. pwm_obj[PWM4_INDEX].channel |= (0x01 << 0);
  345. #endif
  346. #ifdef BSP_USING_PWM4_CH2
  347. pwm_obj[PWM4_INDEX].channel |= (0x01 << 1);
  348. #endif
  349. #ifdef BSP_USING_PWM4_CH3
  350. pwm_obj[PWM4_INDEX].channel |= (0x01 << 2);
  351. #endif
  352. #ifdef BSP_USING_PWM4_CH4
  353. pwm_obj[PWM4_INDEX].channel |= (0x01 << 3);
  354. #endif
  355. #ifdef BSP_USING_PWM5_CH1
  356. pwm_obj[PWM5_INDEX].channel |= (0x01 << 0);
  357. #endif
  358. #ifdef BSP_USING_PWM5_CH2
  359. pwm_obj[PWM5_INDEX].channel |= (0x01 << 1);
  360. #endif
  361. #ifdef BSP_USING_PWM5_CH3
  362. pwm_obj[PWM5_INDEX].channel |= (0x01 << 2);
  363. #endif
  364. #ifdef BSP_USING_PWM5_CH4
  365. pwm_obj[PWM5_INDEX].channel |= (0x01 << 3);
  366. #endif
  367. #ifdef BSP_USING_PWM6_CH1
  368. pwm_obj[PWM6_INDEX].channel |= (0x01 << 0);
  369. #endif
  370. #ifdef BSP_USING_PWM6_CH2
  371. pwm_obj[PWM6_INDEX].channel |= (0x01 << 1);
  372. #endif
  373. #ifdef BSP_USING_PWM6_CH3
  374. pwm_obj[PWM6_INDEX].channel |= (0x01 << 2);
  375. #endif
  376. #ifdef BSP_USING_PWM6_CH4
  377. pwm_obj[PWM6_INDEX].channel |= (0x01 << 3);
  378. #endif
  379. #ifdef BSP_USING_PWM7_CH1
  380. pwm_obj[PWM7_INDEX].channel |= (0x01 << 0);
  381. #endif
  382. #ifdef BSP_USING_PWM7_CH2
  383. pwm_obj[PWM7_INDEX].channel |= (0x01 << 1);
  384. #endif
  385. #ifdef BSP_USING_PWM7_CH3
  386. pwm_obj[PWM7_INDEX].channel |= (0x01 << 2);
  387. #endif
  388. #ifdef BSP_USING_PWM7_CH4
  389. pwm_obj[PWM7_INDEX].channel |= (0x01 << 3);
  390. #endif
  391. #ifdef BSP_USING_PWM8_CH1
  392. pwm_obj[PWM8_INDEX].channel |= (0x01 << 0);
  393. #endif
  394. #ifdef BSP_USING_PWM8_CH2
  395. pwm_obj[PWM8_INDEX].channel |= (0x01 << 1);
  396. #endif
  397. #ifdef BSP_USING_PWM8_CH3
  398. pwm_obj[PWM8_INDEX].channel |= (0x01 << 2);
  399. #endif
  400. #ifdef BSP_USING_PWM8_CH4
  401. pwm_obj[PWM8_INDEX].channel |= (0x01 << 3);
  402. #endif
  403. #ifdef BSP_USING_PWM9_CH1
  404. pwm_obj[PWM9_INDEX].channel |= (0x01 << 0);
  405. #endif
  406. #ifdef BSP_USING_PWM9_CH2
  407. pwm_obj[PWM9_INDEX].channel |= (0x01 << 1);
  408. #endif
  409. #ifdef BSP_USING_PWM9_CH3
  410. pwm_obj[PWM9_INDEX].channel |= (0x01 << 2);
  411. #endif
  412. #ifdef BSP_USING_PWM9_CH4
  413. pwm_obj[PWM9_INDEX].channel |= (0x01 << 3);
  414. #endif
  415. #ifdef BSP_USING_PWM10_CH1
  416. pwm_obj[PWM10_INDEX].channel |= (0x01 << 0);
  417. #endif
  418. #ifdef BSP_USING_PWM10_CH2
  419. pwm_obj[PWM10_INDEX].channel |= (0x01 << 1);
  420. #endif
  421. #ifdef BSP_USING_PWM10_CH3
  422. pwm_obj[PWM10_INDEX].channel |= (0x01 << 2);
  423. #endif
  424. #ifdef BSP_USING_PWM10_CH4
  425. pwm_obj[PWM10_INDEX].channel |= (0x01 << 3);
  426. #endif
  427. #ifdef BSP_USING_PWM11_CH1
  428. pwm_obj[PWM11_INDEX].channel |= (0x01 << 0);
  429. #endif
  430. #ifdef BSP_USING_PWM11_CH2
  431. pwm_obj[PWM11_INDEX].channel |= (0x01 << 1);
  432. #endif
  433. #ifdef BSP_USING_PWM11_CH3
  434. pwm_obj[PWM11_INDEX].channel |= (0x01 << 2);
  435. #endif
  436. #ifdef BSP_USING_PWM11_CH4
  437. pwm_obj[PWM11_INDEX].channel |= (0x01 << 3);
  438. #endif
  439. #ifdef BSP_USING_PWM12_CH1
  440. pwm_obj[PWM12_INDEX].channel |= (0x01 << 0);
  441. #endif
  442. #ifdef BSP_USING_PWM12_CH2
  443. pwm_obj[PWM12_INDEX].channel |= (0x01 << 1);
  444. #endif
  445. #ifdef BSP_USING_PWM12_CH3
  446. pwm_obj[PWM12_INDEX].channel |= (0x01 << 2);
  447. #endif
  448. #ifdef BSP_USING_PWM12_CH4
  449. pwm_obj[PWM12_INDEX].channel |= (0x01 << 3);
  450. #endif
  451. }
  452. static struct rt_pwm_ops pwm_ops =
  453. {
  454. .control = hc32_pwm_control
  455. };
  456. static int rt_hw_pwm_init(void)
  457. {
  458. int i = 0;
  459. int result = RT_EOK;
  460. hc32_pwm_get_channel();
  461. for (i = 0; i < sizeof(pwm_obj) / sizeof(pwm_obj[0]); i++)
  462. {
  463. if (hc32_pwm_init(&pwm_obj[i]) != RT_EOK)
  464. {
  465. LOG_E("%s init failed", pwm_obj[i].name);
  466. result = -RT_ERROR;
  467. }
  468. else
  469. {
  470. LOG_D("%s init success", pwm_obj[i].name);
  471. /* register pwm device */
  472. if (rt_device_pwm_register(&pwm_obj[i].pwm_device, pwm_obj[i].name, &pwm_ops, pwm_obj[i].timer_periph) == RT_EOK)
  473. {
  474. LOG_D("%s register success", pwm_obj[i].name);
  475. }
  476. else
  477. {
  478. LOG_E("%s register failed", pwm_obj[i].name);
  479. result = -RT_ERROR;
  480. }
  481. }
  482. }
  483. return result;
  484. }
  485. INIT_DEVICE_EXPORT(rt_hw_pwm_init);
  486. #endif /* RT_USING_PWM */