fsl_sdio.c 65 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109
  1. /*
  2. * Copyright (c) 2015, Freescale Semiconductor, Inc.
  3. * Copyright 2016-2020 NXP
  4. * All rights reserved.
  5. *
  6. * SPDX-License-Identifier: BSD-3-Clause
  7. */
  8. #include "fsl_sdio.h"
  9. /*******************************************************************************
  10. * Definitions
  11. ******************************************************************************/
  12. /*! @brief define the tuple number will be read during init */
  13. #define SDIO_COMMON_CIS_TUPLE_NUM (3U)
  14. /*! @brief SDIO retry times */
  15. #define SDIO_RETRY_TIMES (1000U)
  16. /*!@brief power reset delay */
  17. /*!@brief power reset delay */
  18. #define SDIO_POWER_ON_DELAY (400U)
  19. #define SDIO_POWER_OFF_DELAY (100U)
  20. /*******************************************************************************
  21. * Prototypes
  22. ******************************************************************************/
  23. /*!
  24. * @brief probe bus voltage.
  25. * @param card Card descriptor.
  26. */
  27. static status_t SDIO_ProbeBusVoltage(sdio_card_t *card);
  28. /*!
  29. * @brief send card operation condition
  30. * @param card Card descriptor.
  31. * @param command argment
  32. * @param accept1V8 flag indicate card acccpt 1v8 switch or not
  33. * argument = 0U , means to get the operation condition
  34. * argument !=0 , set the operation condition register
  35. */
  36. static status_t SDIO_SendOperationCondition(sdio_card_t *card, uint32_t argument, uint32_t *accept1V8);
  37. /*!
  38. * @brief card Send relative address
  39. * @param card Card descriptor.
  40. */
  41. static status_t SDIO_SendRca(sdio_card_t *card);
  42. /*!
  43. * @brief card select card
  44. * @param card Card descriptor.
  45. * @param select/diselect flag
  46. */
  47. static inline status_t SDIO_SelectCard(sdio_card_t *card, bool isSelected);
  48. /*!
  49. * @brief card go idle
  50. * @param card Card descriptor.
  51. */
  52. static inline status_t SDIO_GoIdle(sdio_card_t *card);
  53. /*!
  54. * @brief decode CIS
  55. * @param card Card descriptor.
  56. * @param func number
  57. * @param data buffer pointer
  58. * @param tuple code
  59. * @param tuple link
  60. */
  61. static status_t SDIO_DecodeCIS(
  62. sdio_card_t *card, sdio_func_num_t func, uint8_t *dataBuffer, uint32_t tplCode, uint32_t tplLink);
  63. /*!
  64. * @brief switch to the maxium support bus width, depend on the host and card's capability.
  65. * @param card Card descriptor.
  66. */
  67. static status_t SDIO_SetMaxDataBusWidth(sdio_card_t *card);
  68. /*!
  69. * @brief sdio card excute tuning.
  70. * @param card Card descriptor.
  71. */
  72. static status_t SDIO_ExecuteTuning(sdio_card_t *card);
  73. /*!
  74. * @brief sdio io access direct
  75. * @param card Card descriptor.
  76. * @param direction access direction.
  77. * @param func number
  78. * @param regAddr register address.
  79. * @param dataIn data to write
  80. * @param dataOut data address for read
  81. * @param rawFlag read after write flag, it is used for write access only.
  82. */
  83. static status_t SDIO_IO_Access_Direct(sdio_card_t *card,
  84. sdio_io_direction_t direction,
  85. sdio_func_num_t func,
  86. uint32_t regAddr,
  87. uint8_t dataIn,
  88. uint8_t *dataOut,
  89. bool rawFlag);
  90. /*******************************************************************************
  91. * Variables
  92. ******************************************************************************/
  93. /* define the tuple list */
  94. static const uint32_t s_tupleList[SDIO_COMMON_CIS_TUPLE_NUM] = {
  95. SDIO_TPL_CODE_MANIFID,
  96. SDIO_TPL_CODE_FUNCID,
  97. SDIO_TPL_CODE_FUNCE,
  98. };
  99. /*******************************************************************************
  100. * Code
  101. ******************************************************************************/
  102. static inline status_t SDIO_SelectCard(sdio_card_t *card, bool isSelected)
  103. {
  104. assert(card != NULL);
  105. return SDMMC_SelectCard(card->host, card->relativeAddress, isSelected);
  106. }
  107. static inline status_t SDIO_GoIdle(sdio_card_t *card)
  108. {
  109. assert(card != NULL);
  110. return SDMMC_GoIdle(card->host);
  111. }
  112. static status_t SDIO_SwitchIOVoltage(sdio_card_t *card, sdmmc_operation_voltage_t voltage)
  113. {
  114. if ((card->usrParam.ioVoltage != NULL) && (card->usrParam.ioVoltage->type == kSD_IOVoltageCtrlByGpio))
  115. {
  116. /* make sure card signal line voltage is 3.3v before initalization */
  117. if (card->usrParam.ioVoltage->func != NULL)
  118. {
  119. card->usrParam.ioVoltage->func(voltage);
  120. }
  121. }
  122. else if ((card->usrParam.ioVoltage != NULL) && (card->usrParam.ioVoltage->type == kSD_IOVoltageCtrlByHost))
  123. {
  124. SDMMCHOST_SwitchToVoltage(card->host, (uint32_t)voltage);
  125. }
  126. else
  127. {
  128. return kStatus_SDMMC_NotSupportYet;
  129. }
  130. return kStatus_Success;
  131. }
  132. static status_t SDIO_SwitchVoltage(sdio_card_t *card, sdmmc_operation_voltage_t voltage)
  133. {
  134. assert(card != NULL);
  135. sdmmchost_transfer_t content = {0};
  136. sdmmchost_cmd_t command = {0};
  137. status_t error = kStatus_Success;
  138. command.index = (uint32_t)kSD_VoltageSwitch;
  139. command.argument = 0U;
  140. command.responseType = kCARD_ResponseTypeR1;
  141. content.command = &command;
  142. content.data = NULL;
  143. error = SDMMCHOST_TransferFunction(card->host, &content);
  144. if (kStatus_Success != error)
  145. {
  146. return kStatus_SDMMC_TransferFailed;
  147. }
  148. /* check data line and cmd line status */
  149. if (SDMMCHOST_GetSignalLineStatus(card->host, (uint32_t)kSDMMC_SignalLineData0 | (uint32_t)kSDMMC_SignalLineData1 |
  150. (uint32_t)kSDMMC_SignalLineData2 |
  151. (uint32_t)kSDMMC_SignalLineData3) != 0U)
  152. {
  153. return kStatus_SDMMC_SwitchVoltageFail;
  154. }
  155. /* switch io voltage */
  156. if (SDIO_SwitchIOVoltage(card, voltage) == kStatus_SDMMC_NotSupportYet)
  157. {
  158. return kStatus_SDMMC_SwitchVoltageFail;
  159. }
  160. SDMMC_OSADelay(100U);
  161. /*enable force clock on*/
  162. SDMMCHOST_ForceClockOn(card->host, true);
  163. /* dealy 1ms,not exactly correct when use while */
  164. SDMMC_OSADelay(10U);
  165. /*disable force clock on*/
  166. SDMMCHOST_ForceClockOn(card->host, false);
  167. /* check data line and cmd line status */
  168. if (SDMMCHOST_GetSignalLineStatus(card->host, (uint32_t)kSDMMC_SignalLineData0 | (uint32_t)kSDMMC_SignalLineData1 |
  169. (uint32_t)kSDMMC_SignalLineData2 |
  170. (uint32_t)kSDMMC_SignalLineData3) == 0U)
  171. {
  172. error = kStatus_SDMMC_SwitchVoltageFail;
  173. /* power reset the card */
  174. SDIO_SetCardPower(card, false);
  175. SDIO_SetCardPower(card, true);
  176. /* re-check the data line status */
  177. if (SDMMCHOST_GetSignalLineStatus(
  178. card->host, (uint32_t)kSDMMC_SignalLineData0 | (uint32_t)kSDMMC_SignalLineData1 |
  179. (uint32_t)kSDMMC_SignalLineData2 | (uint32_t)kSDMMC_SignalLineData3) != 0U)
  180. {
  181. error = kStatus_SDMMC_SwitchVoltage18VFail33VSuccess;
  182. SDMMC_LOG("\r\nNote: Current card support 1.8V, but board don't support, so sdmmc switch back to 3.3V.");
  183. }
  184. else
  185. {
  186. SDMMC_LOG(
  187. "\r\nError: Current card support 1.8V, but board don't support, sdmmc tried to switch back\
  188. to 3.3V, but failed, please check board setting.");
  189. }
  190. }
  191. return error;
  192. }
  193. static status_t SDIO_ExecuteTuning(sdio_card_t *card)
  194. {
  195. assert(card != NULL);
  196. return SDMMCHOST_ExecuteTuning(card->host, (uint32_t)kSD_SendTuningBlock,
  197. (uint32_t *)FSL_SDMMC_CARD_INTERNAL_BUFFER_ALIGN_ADDR(card->internalBuffer), 64U);
  198. }
  199. static status_t SDIO_SendRca(sdio_card_t *card)
  200. {
  201. assert(card != NULL);
  202. uint32_t i = FSL_SDMMC_MAX_CMD_RETRIES;
  203. sdmmchost_transfer_t content = {0};
  204. sdmmchost_cmd_t command = {0};
  205. status_t error = kStatus_Success;
  206. command.index = (uint32_t)kSDIO_SendRelativeAddress;
  207. command.argument = 0U;
  208. command.responseType = kCARD_ResponseTypeR6;
  209. command.responseErrorFlags =
  210. (uint32_t)kSDIO_StatusR6Error | (uint32_t)kSDIO_StatusIllegalCmd | (uint32_t)kSDIO_StatusCmdCRCError;
  211. content.command = &command;
  212. content.data = NULL;
  213. while (--i != 0U)
  214. {
  215. error = SDMMCHOST_TransferFunction(card->host, &content);
  216. if (kStatus_Success == error)
  217. {
  218. /* check illegal state and cmd CRC error, may be the voltage or clock not stable, retry the cmd*/
  219. if ((command.response[0U] & ((uint32_t)kSDIO_StatusIllegalCmd | (uint32_t)kSDIO_StatusCmdCRCError)) != 0U)
  220. {
  221. continue;
  222. }
  223. card->relativeAddress = (command.response[0U] >> 16U);
  224. return kStatus_Success;
  225. }
  226. }
  227. return kStatus_SDMMC_TransferFailed;
  228. }
  229. status_t SDIO_CardInActive(sdio_card_t *card)
  230. {
  231. assert(card != NULL);
  232. return SDMMC_SetCardInactive(card->host);
  233. }
  234. static status_t SDIO_SendOperationCondition(sdio_card_t *card, uint32_t argument, uint32_t *accept1V8)
  235. {
  236. assert(card != NULL);
  237. sdmmchost_transfer_t content = {0U};
  238. sdmmchost_cmd_t command = {0U};
  239. uint32_t i = SDIO_RETRY_TIMES;
  240. status_t error = kStatus_Success;
  241. command.index = (uint32_t)kSDIO_SendOperationCondition;
  242. command.argument = argument;
  243. command.responseType = kCARD_ResponseTypeR4;
  244. content.command = &command;
  245. content.data = NULL;
  246. while (--i != 0U)
  247. {
  248. error = SDMMCHOST_TransferFunction(card->host, &content);
  249. if ((kStatus_Success != error) || (command.response[0U] == 0U))
  250. {
  251. continue;
  252. }
  253. /* if argument equal 0, then should check and save the info */
  254. if ((argument != 0U) && ((command.response[0U] & SDMMC_MASK(kSDIO_OcrPowerUpBusyFlag)) == 0U))
  255. {
  256. continue;
  257. }
  258. else if (argument == 0U)
  259. {
  260. /* check the io number and ocr value */
  261. if ((((command.response[0U] & SDIO_OCR_IO_NUM_MASK) >> kSDIO_OcrIONumber) == 0U) ||
  262. ((command.response[0U] & 0xFFFFFFU) == 0U))
  263. {
  264. return kStatus_Fail;
  265. }
  266. break;
  267. }
  268. else
  269. {
  270. /* check if memory present */
  271. if ((command.response[0U] & SDMMC_MASK(kSDIO_OcrMemPresent)) == SDMMC_MASK(kSDIO_OcrMemPresent))
  272. {
  273. card->memPresentFlag = true;
  274. }
  275. /* save the io number */
  276. card->ioTotalNumber = (uint8_t)((command.response[0U] & SDIO_OCR_IO_NUM_MASK) >> kSDIO_OcrIONumber);
  277. /* save the operation condition */
  278. card->ocr = command.response[0U] & 0xFFFFFFU;
  279. if (accept1V8 != NULL)
  280. {
  281. *accept1V8 = command.response[0U] & 0x1000000U;
  282. }
  283. break;
  284. }
  285. }
  286. return ((i != 0U) ? kStatus_Success : kStatus_Fail);
  287. }
  288. static status_t SDIO_IO_Access_Direct(sdio_card_t *card,
  289. sdio_io_direction_t direction,
  290. sdio_func_num_t func,
  291. uint32_t regAddr,
  292. uint8_t dataIn,
  293. uint8_t *dataOut,
  294. bool rawFlag)
  295. {
  296. assert(card != NULL);
  297. assert(func <= kSDIO_FunctionNum7);
  298. sdmmchost_transfer_t content = {0U};
  299. sdmmchost_cmd_t command = {0U};
  300. status_t error = kStatus_Success;
  301. command.index = (uint32_t)kSDIO_RWIODirect;
  302. command.argument = ((uint32_t)func << SDIO_CMD_ARGUMENT_FUNC_NUM_POS) |
  303. ((regAddr & SDIO_CMD_ARGUMENT_REG_ADDR_MASK) << SDIO_CMD_ARGUMENT_REG_ADDR_POS);
  304. if ((dataOut != NULL) && (direction == kSDIO_IOWrite))
  305. {
  306. command.argument |= (1UL << SDIO_CMD_ARGUMENT_RW_POS) | ((uint32_t)rawFlag << SDIO_DIRECT_CMD_ARGUMENT_RAW_POS);
  307. }
  308. if (direction == kSDIO_IOWrite)
  309. {
  310. command.argument |= (uint32_t)dataIn & SDIO_DIRECT_CMD_DATA_MASK;
  311. }
  312. command.responseType = kCARD_ResponseTypeR5;
  313. command.responseErrorFlags =
  314. ((uint32_t)kSDIO_StatusCmdCRCError | (uint32_t)kSDIO_StatusIllegalCmd | (uint32_t)kSDIO_StatusError |
  315. (uint32_t)kSDIO_StatusFunctionNumError | (uint32_t)kSDIO_StatusOutofRange);
  316. content.command = &command;
  317. content.data = NULL;
  318. error = SDMMCHOST_TransferFunction(card->host, &content);
  319. if (kStatus_Success != error)
  320. {
  321. error = kStatus_SDMMC_TransferFailed;
  322. }
  323. if ((error == kStatus_Success) && (dataOut != NULL))
  324. {
  325. /* read data from response */
  326. *dataOut = (uint8_t)(command.response[0U] & SDIO_DIRECT_CMD_DATA_MASK);
  327. }
  328. return error;
  329. }
  330. status_t SDIO_IO_Write_Direct(sdio_card_t *card, sdio_func_num_t func, uint32_t regAddr, uint8_t *data, bool raw)
  331. {
  332. assert(card != NULL);
  333. assert(func <= kSDIO_FunctionNum7);
  334. status_t error = kStatus_Success;
  335. (void)SDMMC_OSAMutexLock(&card->lock, osaWaitForever_c);
  336. error = SDIO_IO_Access_Direct(card, kSDIO_IOWrite, func, regAddr, *data, data, raw);
  337. if (kStatus_Success != error)
  338. {
  339. error = kStatus_SDMMC_TransferFailed;
  340. }
  341. (void)SDMMC_OSAMutexUnlock(&card->lock);
  342. return error;
  343. }
  344. status_t SDIO_IO_Read_Direct(sdio_card_t *card, sdio_func_num_t func, uint32_t regAddr, uint8_t *data)
  345. {
  346. assert(card != NULL);
  347. assert(func <= kSDIO_FunctionNum7);
  348. status_t error = kStatus_Success;
  349. (void)SDMMC_OSAMutexLock(&card->lock, osaWaitForever_c);
  350. error = SDIO_IO_Access_Direct(card, kSDIO_IORead, func, regAddr, 0, data, false);
  351. if (kStatus_Success != error)
  352. {
  353. error = kStatus_SDMMC_TransferFailed;
  354. }
  355. (void)SDMMC_OSAMutexUnlock(&card->lock);
  356. return error;
  357. }
  358. status_t SDIO_IO_RW_Direct(sdio_card_t *card,
  359. sdio_io_direction_t direction,
  360. sdio_func_num_t func,
  361. uint32_t regAddr,
  362. uint8_t dataIn,
  363. uint8_t *dataOut)
  364. {
  365. assert(card != NULL);
  366. assert(func <= kSDIO_FunctionNum7);
  367. status_t error = kStatus_Success;
  368. (void)SDMMC_OSAMutexLock(&card->lock, osaWaitForever_c);
  369. error = SDIO_IO_Access_Direct(card, direction, func, regAddr, dataIn, dataOut, true);
  370. if (kStatus_Success != error)
  371. {
  372. error = kStatus_SDMMC_TransferFailed;
  373. }
  374. (void)SDMMC_OSAMutexUnlock(&card->lock);
  375. return error;
  376. }
  377. status_t SDIO_IO_Write_Extended(
  378. sdio_card_t *card, sdio_func_num_t func, uint32_t regAddr, uint8_t *buffer, uint32_t count, uint32_t flags)
  379. {
  380. assert(card != NULL);
  381. assert(buffer != NULL);
  382. assert(func <= kSDIO_FunctionNum7);
  383. sdmmchost_transfer_t content = {0U};
  384. sdmmchost_cmd_t command = {0U};
  385. sdmmchost_data_t data = {0U};
  386. bool blockMode = false;
  387. bool opCode = false;
  388. status_t error = kStatus_Success;
  389. (void)SDMMC_OSAMutexLock(&card->lock, osaWaitForever_c);
  390. /* check if card support block mode */
  391. if (((card->cccrflags & (uint32_t)kSDIO_CCCRSupportMultiBlock) != 0U) &&
  392. ((flags & SDIO_EXTEND_CMD_BLOCK_MODE_MASK) != 0U))
  393. {
  394. blockMode = true;
  395. }
  396. if ((flags & SDIO_EXTEND_CMD_OP_CODE_MASK) != 0U)
  397. {
  398. opCode = true;
  399. }
  400. /* check the byte size counter in non-block mode
  401. * so you need read CIS for each function first,before you do read/write
  402. */
  403. if (!blockMode)
  404. {
  405. if ((func == kSDIO_FunctionNum0) && (card->commonCIS.fn0MaxBlkSize != 0U) &&
  406. (count > card->commonCIS.fn0MaxBlkSize))
  407. {
  408. error = kStatus_SDMMC_SDIO_InvalidArgument;
  409. }
  410. else if ((func != kSDIO_FunctionNum0) && (card->funcCIS[(uint32_t)func - 1U].ioMaxBlockSize != 0U) &&
  411. (count > card->funcCIS[(uint32_t)func - 1U].ioMaxBlockSize))
  412. {
  413. error = kStatus_SDMMC_SDIO_InvalidArgument;
  414. }
  415. else
  416. {
  417. /* Intentional empty */
  418. }
  419. }
  420. if (error == kStatus_Success)
  421. {
  422. command.index = (uint32_t)kSDIO_RWIOExtended;
  423. command.argument = ((uint32_t)func << SDIO_CMD_ARGUMENT_FUNC_NUM_POS) |
  424. ((regAddr & SDIO_CMD_ARGUMENT_REG_ADDR_MASK) << SDIO_CMD_ARGUMENT_REG_ADDR_POS) |
  425. (1UL << SDIO_CMD_ARGUMENT_RW_POS) | (count & SDIO_EXTEND_CMD_COUNT_MASK) |
  426. ((blockMode ? 1UL : 0UL) << SDIO_EXTEND_CMD_ARGUMENT_BLOCK_MODE_POS |
  427. ((opCode ? 1UL : 0UL) << SDIO_EXTEND_CMD_ARGUMENT_OP_CODE_POS));
  428. command.responseType = kCARD_ResponseTypeR5;
  429. command.responseErrorFlags =
  430. ((uint32_t)kSDIO_StatusCmdCRCError | (uint32_t)kSDIO_StatusIllegalCmd | (uint32_t)kSDIO_StatusError |
  431. (uint32_t)kSDIO_StatusFunctionNumError | (uint32_t)kSDIO_StatusOutofRange);
  432. if (blockMode)
  433. {
  434. if (func == kSDIO_FunctionNum0)
  435. {
  436. data.blockSize = card->io0blockSize;
  437. }
  438. else
  439. {
  440. data.blockSize = card->ioFBR[(uint32_t)func - 1U].ioBlockSize;
  441. }
  442. data.blockCount = count;
  443. }
  444. else
  445. {
  446. data.blockSize = count;
  447. data.blockCount = 1U;
  448. }
  449. data.txData = (uint32_t *)(uint32_t)buffer;
  450. content.command = &command;
  451. content.data = &data;
  452. error = SDMMCHOST_TransferFunction(card->host, &content);
  453. if (kStatus_Success != error)
  454. {
  455. error = kStatus_SDMMC_TransferFailed;
  456. }
  457. }
  458. (void)SDMMC_OSAMutexUnlock(&card->lock);
  459. return error;
  460. }
  461. status_t SDIO_IO_Read_Extended(
  462. sdio_card_t *card, sdio_func_num_t func, uint32_t regAddr, uint8_t *buffer, uint32_t count, uint32_t flags)
  463. {
  464. assert(card != NULL);
  465. assert(buffer != NULL);
  466. assert(func <= kSDIO_FunctionNum7);
  467. sdmmchost_transfer_t content = {0U};
  468. sdmmchost_cmd_t command = {0U};
  469. sdmmchost_data_t data = {0U};
  470. bool blockMode = false;
  471. bool opCode = false;
  472. status_t error = kStatus_Success;
  473. (void)SDMMC_OSAMutexLock(&card->lock, osaWaitForever_c);
  474. /* check if card support block mode */
  475. if (((card->cccrflags & (uint32_t)kSDIO_CCCRSupportMultiBlock) != 0U) &&
  476. ((flags & SDIO_EXTEND_CMD_BLOCK_MODE_MASK) != 0U))
  477. {
  478. blockMode = true;
  479. }
  480. /* op code =0 : read/write to fixed addr
  481. * op code =1 :read/write addr incrementing
  482. */
  483. if ((flags & SDIO_EXTEND_CMD_OP_CODE_MASK) != 0U)
  484. {
  485. opCode = true;
  486. }
  487. /* check the byte size counter in non-block mode
  488. * so you need read CIS for each function first,before you do read/write
  489. */
  490. if (!blockMode)
  491. {
  492. if ((func == kSDIO_FunctionNum0) && (card->commonCIS.fn0MaxBlkSize != 0U) &&
  493. (count > card->commonCIS.fn0MaxBlkSize))
  494. {
  495. error = kStatus_SDMMC_SDIO_InvalidArgument;
  496. }
  497. else if ((func != kSDIO_FunctionNum0) && (card->funcCIS[(uint32_t)func - 1U].ioMaxBlockSize != 0U) &&
  498. (count > card->funcCIS[(uint32_t)func - 1U].ioMaxBlockSize))
  499. {
  500. error = kStatus_SDMMC_SDIO_InvalidArgument;
  501. }
  502. else
  503. {
  504. /* Intentional empty */
  505. }
  506. }
  507. if (error == kStatus_Success)
  508. {
  509. command.index = (uint32_t)kSDIO_RWIOExtended;
  510. command.argument = ((uint32_t)func << SDIO_CMD_ARGUMENT_FUNC_NUM_POS) |
  511. ((regAddr & SDIO_CMD_ARGUMENT_REG_ADDR_MASK) << SDIO_CMD_ARGUMENT_REG_ADDR_POS) |
  512. (count & SDIO_EXTEND_CMD_COUNT_MASK) |
  513. ((blockMode ? 1UL : 0UL) << SDIO_EXTEND_CMD_ARGUMENT_BLOCK_MODE_POS |
  514. ((opCode ? 1UL : 0UL) << SDIO_EXTEND_CMD_ARGUMENT_OP_CODE_POS));
  515. command.responseType = kCARD_ResponseTypeR5;
  516. command.responseErrorFlags =
  517. ((uint32_t)kSDIO_StatusCmdCRCError | (uint32_t)kSDIO_StatusIllegalCmd | (uint32_t)kSDIO_StatusError |
  518. (uint32_t)kSDIO_StatusFunctionNumError | (uint32_t)kSDIO_StatusOutofRange);
  519. if (blockMode)
  520. {
  521. if (func == kSDIO_FunctionNum0)
  522. {
  523. data.blockSize = card->io0blockSize;
  524. }
  525. else
  526. {
  527. data.blockSize = card->ioFBR[(uint32_t)func - 1U].ioBlockSize;
  528. }
  529. data.blockCount = count;
  530. }
  531. else
  532. {
  533. data.blockSize = count;
  534. data.blockCount = 1U;
  535. }
  536. data.rxData = (uint32_t *)(uint32_t)buffer;
  537. content.command = &command;
  538. content.data = &data;
  539. error = SDMMCHOST_TransferFunction(card->host, &content);
  540. if (kStatus_Success != error)
  541. {
  542. error = kStatus_SDMMC_TransferFailed;
  543. }
  544. }
  545. (void)SDMMC_OSAMutexUnlock(&card->lock);
  546. return error;
  547. }
  548. status_t SDIO_IO_Transfer(sdio_card_t *card,
  549. sdio_command_t cmd,
  550. uint32_t argument,
  551. uint32_t blockSize,
  552. uint8_t *txData,
  553. uint8_t *rxData,
  554. uint16_t dataSize,
  555. uint32_t *response)
  556. {
  557. assert(card != NULL);
  558. uint32_t actualSize = dataSize;
  559. sdmmchost_transfer_t content = {0U};
  560. sdmmchost_cmd_t command = {0U};
  561. sdmmchost_data_t data = {0U};
  562. uint32_t i = SDIO_RETRY_TIMES;
  563. uint32_t *dataAddr = (uint32_t *)(uint32_t)(txData == NULL ? rxData : txData);
  564. uint8_t *alignBuffer = (uint8_t *)FSL_SDMMC_CARD_INTERNAL_BUFFER_ALIGN_ADDR(card->internalBuffer);
  565. status_t error = kStatus_Fail;
  566. (void)SDMMC_OSAMutexLock(&card->lock, osaWaitForever_c);
  567. if ((dataSize != 0U) && (txData != NULL) && (rxData != NULL))
  568. {
  569. error = kStatus_InvalidArgument;
  570. }
  571. else
  572. {
  573. command.index = (uint32_t)cmd;
  574. command.argument = argument;
  575. command.responseType = kCARD_ResponseTypeR5;
  576. command.responseErrorFlags =
  577. ((uint32_t)kSDIO_StatusCmdCRCError | (uint32_t)kSDIO_StatusIllegalCmd | (uint32_t)kSDIO_StatusError |
  578. (uint32_t)kSDIO_StatusFunctionNumError | (uint32_t)kSDIO_StatusOutofRange);
  579. content.command = &command;
  580. content.data = NULL;
  581. if (dataSize != 0U)
  582. {
  583. /* if block size bigger than 1, then use block mode */
  584. if ((argument & SDIO_EXTEND_CMD_BLOCK_MODE_MASK) != 0U)
  585. {
  586. if (dataSize % blockSize != 0U)
  587. {
  588. actualSize = ((dataSize / blockSize) + 1U) * blockSize;
  589. }
  590. data.blockCount = actualSize / blockSize;
  591. data.blockSize = blockSize;
  592. }
  593. else
  594. {
  595. data.blockCount = 1;
  596. data.blockSize = dataSize;
  597. }
  598. /* if data buffer address can not meet host controller internal DMA requirement, sdio driver will try to use
  599. * internal align buffer if data size is not bigger than internal buffer size,
  600. * Align address transfer always can get a better performance, so if you want sdio driver make buffer
  601. * address align, you should redefine the SDMMC_GLOBAL_BUFFER_SIZE macro to a value which is big enough for
  602. * your application.
  603. */
  604. if (
  605. #if SDMMCHOST_DMA_DESCRIPTOR_BUFFER_ALIGN_SIZE != 1U
  606. (((uint32_t)dataAddr & (SDMMCHOST_DMA_DESCRIPTOR_BUFFER_ALIGN_SIZE - 1U)) != 0U) &&
  607. #endif
  608. (actualSize <= FSL_SDMMC_DEFAULT_BLOCK_SIZE) && (!card->noInternalAlign))
  609. {
  610. dataAddr = (uint32_t *)(uint32_t)alignBuffer;
  611. (void)memset(alignBuffer, 0, actualSize);
  612. if (txData != NULL)
  613. {
  614. (void)memcpy(alignBuffer, txData, dataSize);
  615. }
  616. }
  617. if (rxData != NULL)
  618. {
  619. data.rxData = dataAddr;
  620. }
  621. else
  622. {
  623. data.txData = dataAddr;
  624. }
  625. content.data = &data;
  626. }
  627. do
  628. {
  629. error = SDMMCHOST_TransferFunction(card->host, &content);
  630. if (kStatus_Success == error)
  631. {
  632. if ((rxData != NULL) && (dataSize != 0U) &&
  633. #if SDMMCHOST_DMA_DESCRIPTOR_BUFFER_ALIGN_SIZE != 1U
  634. (((uint32_t)rxData & (SDMMCHOST_DMA_DESCRIPTOR_BUFFER_ALIGN_SIZE - 1U)) != 0U) &&
  635. #endif
  636. (actualSize <= FSL_SDMMC_DEFAULT_BLOCK_SIZE) && (!card->noInternalAlign))
  637. {
  638. (void)memcpy(rxData, alignBuffer, dataSize);
  639. }
  640. if (response != NULL)
  641. {
  642. *response = command.response[0];
  643. }
  644. error = kStatus_Success;
  645. break;
  646. }
  647. i--;
  648. } while (i != 0U);
  649. }
  650. (void)SDMMC_OSAMutexUnlock(&card->lock);
  651. return error;
  652. }
  653. status_t SDIO_GetCardCapability(sdio_card_t *card, sdio_func_num_t func)
  654. {
  655. assert(card != NULL);
  656. assert(func <= kSDIO_FunctionNum7);
  657. uint8_t *tempBuffer = (uint8_t *)FSL_SDMMC_CARD_INTERNAL_BUFFER_ALIGN_ADDR(card->internalBuffer);
  658. uint32_t i = 0U;
  659. status_t error = kStatus_Success;
  660. (void)memset(tempBuffer, 0, SDIO_CCCR_REG_NUMBER);
  661. for (i = 0U; i <= SDIO_CCCR_REG_NUMBER; i++)
  662. {
  663. error = SDIO_IO_Access_Direct(card, kSDIO_IORead, kSDIO_FunctionNum0, SDIO_FBR_BASE((uint32_t)func) + i, 0U,
  664. &tempBuffer[i], false);
  665. if (kStatus_Success != error)
  666. {
  667. return kStatus_SDMMC_TransferFailed;
  668. }
  669. }
  670. switch (func)
  671. {
  672. case kSDIO_FunctionNum0:
  673. card->sdVersion = tempBuffer[kSDIO_RegSDVersion];
  674. card->sdioVersion = tempBuffer[kSDIO_RegCCCRSdioVer] >> 4U;
  675. card->cccrVersioin = tempBuffer[kSDIO_RegCCCRSdioVer] & 0xFU;
  676. /* continuous SPI interrupt */
  677. if ((tempBuffer[kSDIO_RegBusInterface] & 0x40U) != 0U)
  678. {
  679. card->cccrflags |= (uint32_t)kSDIO_CCCRSupportContinuousSPIInt;
  680. }
  681. /* 8bit data bus */
  682. if ((tempBuffer[kSDIO_RegBusInterface] & 0x4U) != 0U)
  683. {
  684. card->cccrflags |= SDIO_CCCR_SUPPORT_8BIT_BUS;
  685. }
  686. /* card capability register */
  687. card->cccrflags |= (tempBuffer[kSDIO_RegCardCapability] & 0xDFUL);
  688. /* master power control */
  689. if ((tempBuffer[kSDIO_RegPowerControl] & 0x01U) != 0U)
  690. {
  691. card->cccrflags |= (uint32_t)kSDIO_CCCRSupportMasterPowerControl;
  692. }
  693. /* high speed flag */
  694. if ((tempBuffer[kSDIO_RegBusSpeed] & 0x01U) != 0U)
  695. {
  696. card->cccrflags |= SDIO_CCCR_SUPPORT_HIGHSPEED;
  697. }
  698. /* uhs mode flag */
  699. card->cccrflags |= (tempBuffer[kSDIO_RegUHSITimingSupport] & 7UL) << 11U;
  700. /* driver type flag */
  701. card->cccrflags |= (tempBuffer[kSDIO_RegDriverStrength] & 7UL) << 14U;
  702. /* low speed 4bit */
  703. if ((tempBuffer[kSDIO_RegCardCapability] & 0x80U) != 0U)
  704. {
  705. card->cccrflags |= (uint32_t)kSDIO_CCCRSupportLowSpeed4Bit;
  706. }
  707. /* common CIS pointer */
  708. card->commonCISPointer = tempBuffer[kSDIO_RegCommonCISPointer] |
  709. ((uint32_t)tempBuffer[(uint32_t)kSDIO_RegCommonCISPointer + 1U] << 8U) |
  710. ((uint32_t)tempBuffer[(uint32_t)kSDIO_RegCommonCISPointer + 2U] << 16U);
  711. /* check card capability of support async interrupt */
  712. if ((tempBuffer[kSDIO_RegInterruptExtension] & SDIO_CCCR_ASYNC_INT_MASK) == SDIO_CCCR_ASYNC_INT_MASK)
  713. {
  714. card->cccrflags |= SDIO_CCCR_SUPPORT_ASYNC_INT;
  715. }
  716. break;
  717. case kSDIO_FunctionNum1:
  718. case kSDIO_FunctionNum2:
  719. case kSDIO_FunctionNum3:
  720. case kSDIO_FunctionNum4:
  721. case kSDIO_FunctionNum5:
  722. case kSDIO_FunctionNum6:
  723. case kSDIO_FunctionNum7:
  724. card->ioFBR[(uint32_t)func - 1U].ioStdFunctionCode = tempBuffer[0U] & 0x0FU;
  725. card->ioFBR[(uint32_t)func - 1U].ioExtFunctionCode = tempBuffer[1U];
  726. card->ioFBR[(uint32_t)func - 1U].ioPointerToCIS =
  727. tempBuffer[9U] | ((uint32_t)tempBuffer[10U] << 8U) | ((uint32_t)tempBuffer[11U] << 16U);
  728. card->ioFBR[(uint32_t)func - 1U].ioPointerToCSA =
  729. tempBuffer[12U] | ((uint32_t)tempBuffer[13U] << 8U) | ((uint32_t)tempBuffer[14U] << 16U);
  730. if ((tempBuffer[2U] & 0x01U) != 0U)
  731. {
  732. card->ioFBR[(uint32_t)func - 1U].flags |= (uint8_t)kSDIO_FBRSupportPowerSelection;
  733. }
  734. if ((tempBuffer[0U] & 0x40U) != 0U)
  735. {
  736. card->ioFBR[(uint32_t)func - 1U].flags |= (uint8_t)kSDIO_FBRSupportCSA;
  737. }
  738. break;
  739. default:
  740. assert(false);
  741. break;
  742. }
  743. return kStatus_Success;
  744. }
  745. status_t SDIO_SetBlockSize(sdio_card_t *card, sdio_func_num_t func, uint32_t blockSize)
  746. {
  747. assert(card != NULL);
  748. assert(func <= kSDIO_FunctionNum7);
  749. assert(blockSize <= SDIO_MAX_BLOCK_SIZE);
  750. uint8_t temp = 0U;
  751. status_t error = kStatus_Success;
  752. /* check the block size for block mode
  753. * so you need read CIS for each function first,before you do read/write
  754. */
  755. if ((func == kSDIO_FunctionNum0) && (card->commonCIS.fn0MaxBlkSize != 0U) &&
  756. (blockSize > card->commonCIS.fn0MaxBlkSize))
  757. {
  758. return kStatus_SDMMC_SDIO_InvalidArgument;
  759. }
  760. else if ((func != kSDIO_FunctionNum0) && (card->funcCIS[(uint32_t)func - 1U].ioMaxBlockSize != 0U) &&
  761. (blockSize > card->funcCIS[(uint32_t)func - 1U].ioMaxBlockSize))
  762. {
  763. return kStatus_SDMMC_SDIO_InvalidArgument;
  764. }
  765. else
  766. {
  767. /* Intentional empty */
  768. }
  769. temp = (uint8_t)(blockSize & 0xFFU);
  770. error =
  771. SDIO_IO_Access_Direct(card, kSDIO_IOWrite, kSDIO_FunctionNum0,
  772. SDIO_FBR_BASE((uint32_t)func) + (uint32_t)kSDIO_RegFN0BlockSizeLow, temp, &temp, true);
  773. if (kStatus_Success != error)
  774. {
  775. return kStatus_SDMMC_SetCardBlockSizeFailed;
  776. }
  777. temp = (uint8_t)((blockSize >> 8U) & 0xFFU);
  778. error =
  779. SDIO_IO_Access_Direct(card, kSDIO_IOWrite, kSDIO_FunctionNum0,
  780. SDIO_FBR_BASE((uint32_t)func) + (uint32_t)kSDIO_RegFN0BlockSizeHigh, temp, &temp, true);
  781. if (kStatus_Success != error)
  782. {
  783. return kStatus_SDMMC_SetCardBlockSizeFailed;
  784. }
  785. /* record the current block size */
  786. if (func == kSDIO_FunctionNum0)
  787. {
  788. card->io0blockSize = blockSize;
  789. }
  790. else
  791. {
  792. card->ioFBR[(uint32_t)func - 1U].ioBlockSize = (uint16_t)blockSize;
  793. }
  794. return kStatus_Success;
  795. }
  796. status_t SDIO_CardReset(sdio_card_t *card)
  797. {
  798. status_t error = kStatus_Success;
  799. error = SDIO_IO_Access_Direct(card, kSDIO_IOWrite, kSDIO_FunctionNum0, kSDIO_RegIOAbort, 0x08U, NULL, false);
  800. if (error != kStatus_Success)
  801. {
  802. error = kStatus_SDMMC_TransferFailed;
  803. }
  804. return error;
  805. }
  806. status_t SDIO_SetDataBusWidth(sdio_card_t *card, sdio_bus_width_t busWidth)
  807. {
  808. assert(card != NULL);
  809. uint8_t regBusInterface = 0U;
  810. status_t error = kStatus_Success;
  811. if (((busWidth == kSDIO_DataBus4Bit) && ((card->cccrflags & (uint32_t)kSDIO_CCCRSupportHighSpeed) == 0U) &&
  812. ((card->cccrflags & (uint32_t)kSDIO_CCCRSupportLowSpeed4Bit) == 0U)))
  813. {
  814. return kStatus_SDMMC_SDIO_InvalidArgument;
  815. }
  816. if ((((card->cccrflags & SDIO_CCCR_SUPPORT_8BIT_BUS) == 0U) ||
  817. ((card->usrParam.capability & (uint32_t)kSDMMC_Support8BitWidth) == 0U) ||
  818. ((card->host->capability & (uint32_t)kSDMMCHOST_Support8BitDataWidth) == 0U)) &&
  819. (busWidth == kSDIO_DataBus8Bit))
  820. {
  821. return kStatus_SDMMC_SDIO_InvalidArgument;
  822. }
  823. /* load bus interface register */
  824. error = SDIO_IO_Access_Direct(card, kSDIO_IORead, kSDIO_FunctionNum0, kSDIO_RegBusInterface, 0U, &regBusInterface,
  825. false);
  826. if (kStatus_Success != error)
  827. {
  828. return kStatus_SDMMC_TransferFailed;
  829. }
  830. /* set bus width */
  831. regBusInterface &= 0xFCU;
  832. regBusInterface |= (uint8_t)busWidth;
  833. /* write to register */
  834. error = SDIO_IO_Access_Direct(card, kSDIO_IOWrite, kSDIO_FunctionNum0, kSDIO_RegBusInterface, regBusInterface,
  835. &regBusInterface, true);
  836. if (kStatus_Success != error)
  837. {
  838. return kStatus_SDMMC_TransferFailed;
  839. }
  840. #if SDMMCHOST_SUPPORT_8_BIT_WIDTH
  841. if (busWidth == kSDIO_DataBus8Bit)
  842. {
  843. SDMMCHOST_SetCardBusWidth(card->host, kSDMMC_BusWdith8Bit);
  844. }
  845. else
  846. #endif
  847. if (busWidth == kSDIO_DataBus4Bit)
  848. {
  849. SDMMCHOST_SetCardBusWidth(card->host, kSDMMC_BusWdith4Bit);
  850. }
  851. else
  852. {
  853. SDMMCHOST_SetCardBusWidth(card->host, kSDMMC_BusWdith1Bit);
  854. }
  855. return kStatus_Success;
  856. }
  857. static status_t SDIO_SetMaxDataBusWidth(sdio_card_t *card)
  858. {
  859. sdio_bus_width_t busWidth = kSDIO_DataBus1Bit;
  860. if (((card->cccrflags & SDIO_CCCR_SUPPORT_8BIT_BUS) != 0U) &&
  861. ((card->usrParam.capability & (uint32_t)kSDMMC_Support8BitWidth) != 0U) &&
  862. ((card->host->capability & (uint32_t)kSDMMCHOST_Support8BitDataWidth) != 0U))
  863. {
  864. busWidth = kSDIO_DataBus8Bit;
  865. }
  866. /* switch data bus width */
  867. else if ((((card->cccrflags & (uint32_t)kSDIO_CCCRSupportHighSpeed) != 0U) ||
  868. ((card->cccrflags & (uint32_t)kSDIO_CCCRSupportLowSpeed4Bit) != 0U)) &&
  869. ((card->host->capability & (uint32_t)kSDMMCHOST_Support4BitDataWidth) != 0U))
  870. {
  871. busWidth = kSDIO_DataBus4Bit;
  872. }
  873. else
  874. {
  875. busWidth = kSDIO_DataBus1Bit;
  876. }
  877. return SDIO_SetDataBusWidth(card, busWidth);
  878. }
  879. status_t SDIO_SwitchToHighSpeed(sdio_card_t *card)
  880. {
  881. assert(card != NULL);
  882. uint8_t temp = 0U;
  883. uint32_t retryTimes = SDIO_RETRY_TIMES;
  884. status_t status = kStatus_SDMMC_SDIO_SwitchHighSpeedFail;
  885. status_t error = kStatus_Success;
  886. if ((card->cccrflags & SDIO_CCCR_SUPPORT_HIGHSPEED) != 0U)
  887. {
  888. error = SDIO_IO_Access_Direct(card, kSDIO_IORead, kSDIO_FunctionNum0, kSDIO_RegBusSpeed, 0U, &temp, false);
  889. if (kStatus_Success != error)
  890. {
  891. return kStatus_SDMMC_TransferFailed;
  892. }
  893. do
  894. {
  895. temp &= (uint8_t)~SDIO_CCCR_BUS_SPEED_MASK;
  896. temp |= SDIO_CCCR_ENABLE_HIGHSPEED_MODE;
  897. retryTimes--;
  898. /* enable high speed mode */
  899. error =
  900. SDIO_IO_Access_Direct(card, kSDIO_IOWrite, kSDIO_FunctionNum0, kSDIO_RegBusSpeed, temp, &temp, true);
  901. if (kStatus_Success != error)
  902. {
  903. continue;
  904. }
  905. /* either EHS=0 and SHS=0 ,the card is still in default mode */
  906. if ((temp & 0x03U) == 0x03U)
  907. {
  908. card->busClock_Hz = SDMMCHOST_SetCardClock(
  909. card->host, FSL_SDMMC_CARD_MAX_BUS_FREQ(card->usrParam.maxFreq, SD_CLOCK_50MHZ));
  910. status = kStatus_Success;
  911. break;
  912. }
  913. else
  914. {
  915. continue;
  916. }
  917. } while (retryTimes != 0U);
  918. }
  919. else
  920. {
  921. /* default mode 25MHZ */
  922. card->busClock_Hz =
  923. SDMMCHOST_SetCardClock(card->host, FSL_SDMMC_CARD_MAX_BUS_FREQ(card->usrParam.maxFreq, SD_CLOCK_25MHZ));
  924. status = kStatus_Success;
  925. }
  926. return status;
  927. }
  928. static status_t SDIO_SelectBusTiming(sdio_card_t *card)
  929. {
  930. assert(card != NULL);
  931. uint32_t targetBusFreq = SD_CLOCK_25MHZ;
  932. uint32_t targetTiming = 0U;
  933. uint8_t temp = 0U;
  934. uint32_t supportModeFlag = 0U;
  935. uint32_t retryTimes = SDIO_RETRY_TIMES;
  936. status_t error = kStatus_Success;
  937. do
  938. {
  939. if (card->currentTiming == kSD_TimingSDR12DefaultMode)
  940. {
  941. /* if timing not specified, probe card capability from SDR104 mode */
  942. card->currentTiming = kSD_TimingSDR104Mode;
  943. }
  944. if (card->currentTiming == kSD_TimingSDR104Mode)
  945. {
  946. if (((card->host->capability & (uint32_t)kSDMMCHOST_SupportSDR104) != 0U) &&
  947. ((card->cccrflags & SDIO_CCCR_SUPPORT_SDR104) == SDIO_CCCR_SUPPORT_SDR104) &&
  948. (card->operationVoltage == kSDMMC_OperationVoltage180V))
  949. {
  950. targetTiming = SDIO_CCCR_ENABLE_SDR104_MODE;
  951. targetBusFreq = FSL_SDMMC_CARD_MAX_BUS_FREQ(card->usrParam.maxFreq, SD_CLOCK_208MHZ);
  952. supportModeFlag = SDIO_CCCR_SUPPORT_SDR104;
  953. }
  954. else
  955. {
  956. card->currentTiming = kSD_TimingDDR50Mode;
  957. }
  958. }
  959. if (card->currentTiming == kSD_TimingDDR50Mode)
  960. {
  961. if (((card->host->capability & (uint32_t)kSDMMCHOST_SupportDDRMode) != 0U) &&
  962. ((card->cccrflags & SDIO_CCCR_SUPPORT_DDR50) == SDIO_CCCR_SUPPORT_DDR50) &&
  963. (card->operationVoltage == kSDMMC_OperationVoltage180V))
  964. {
  965. targetTiming = SDIO_CCCR_ENABLE_DDR50_MODE;
  966. targetBusFreq = FSL_SDMMC_CARD_MAX_BUS_FREQ(card->usrParam.maxFreq, SD_CLOCK_50MHZ);
  967. supportModeFlag = SDIO_CCCR_SUPPORT_DDR50;
  968. }
  969. else
  970. {
  971. card->currentTiming = kSD_TimingSDR50Mode;
  972. }
  973. }
  974. if (card->currentTiming == kSD_TimingSDR50Mode)
  975. {
  976. if (((card->host->capability & (uint32_t)kSDMMCHOST_SupportSDR50) != 0U) &&
  977. ((card->cccrflags & SDIO_CCCR_SUPPORT_SDR50) == SDIO_CCCR_SUPPORT_SDR50) &&
  978. (card->operationVoltage == kSDMMC_OperationVoltage180V))
  979. {
  980. targetTiming = SDIO_CCCR_ENABLE_SDR50_MODE;
  981. targetBusFreq = FSL_SDMMC_CARD_MAX_BUS_FREQ(card->usrParam.maxFreq, SD_CLOCK_100MHZ);
  982. supportModeFlag = SDIO_CCCR_SUPPORT_SDR50;
  983. }
  984. else
  985. {
  986. card->currentTiming = kSD_TimingSDR25HighSpeedMode;
  987. }
  988. }
  989. if (card->currentTiming == kSD_TimingSDR25HighSpeedMode)
  990. {
  991. if ((card->cccrflags & SDIO_CCCR_SUPPORT_HIGHSPEED) == SDIO_CCCR_SUPPORT_HIGHSPEED)
  992. {
  993. targetTiming = SDIO_CCCR_ENABLE_HIGHSPEED_MODE;
  994. targetBusFreq = FSL_SDMMC_CARD_MAX_BUS_FREQ(card->usrParam.maxFreq, SD_CLOCK_50MHZ);
  995. supportModeFlag = SDIO_CCCR_SUPPORT_HIGHSPEED;
  996. }
  997. else
  998. {
  999. card->currentTiming = kSD_TimingSDR12DefaultMode;
  1000. }
  1001. }
  1002. if (card->currentTiming == kSD_TimingSDR12DefaultMode)
  1003. {
  1004. /* default timing mode */
  1005. targetBusFreq = SD_CLOCK_25MHZ;
  1006. }
  1007. error = SDIO_IO_Access_Direct(card, kSDIO_IORead, kSDIO_FunctionNum0, kSDIO_RegBusSpeed, 0U, &temp, false);
  1008. if (kStatus_Success != error)
  1009. {
  1010. return kStatus_SDMMC_TransferFailed;
  1011. }
  1012. do
  1013. {
  1014. temp &= (uint8_t)~SDIO_CCCR_BUS_SPEED_MASK;
  1015. temp |= (uint8_t)targetTiming;
  1016. retryTimes--;
  1017. error =
  1018. SDIO_IO_Access_Direct(card, kSDIO_IOWrite, kSDIO_FunctionNum0, kSDIO_RegBusSpeed, temp, &temp, true);
  1019. if (kStatus_Success != error)
  1020. {
  1021. continue;
  1022. }
  1023. if ((temp & targetTiming) != targetTiming)
  1024. {
  1025. continue;
  1026. }
  1027. break;
  1028. } while (retryTimes != 0U);
  1029. if (retryTimes == 0U)
  1030. {
  1031. retryTimes = SDIO_RETRY_TIMES;
  1032. /* if cannot switch target timing, it will switch continuously until find a valid timing. */
  1033. card->cccrflags &= ~supportModeFlag;
  1034. continue;
  1035. }
  1036. break;
  1037. } while (true);
  1038. card->busClock_Hz =
  1039. SDMMCHOST_SetCardClock(card->host, FSL_SDMMC_CARD_MAX_BUS_FREQ(card->usrParam.maxFreq, targetBusFreq));
  1040. /* enable DDR mode if it is the target mode */
  1041. if (card->currentTiming == kSD_TimingDDR50Mode)
  1042. {
  1043. SDMMCHOST_EnableDDRMode(card->host, true, 0U);
  1044. }
  1045. if (card->usrParam.ioStrength != NULL)
  1046. {
  1047. card->usrParam.ioStrength(card->busClock_Hz);
  1048. }
  1049. /* SDR50 and SDR104 mode need tuning */
  1050. if ((card->currentTiming == kSD_TimingSDR50Mode) || (card->currentTiming == kSD_TimingSDR104Mode))
  1051. {
  1052. /* execute tuning */
  1053. if (SDIO_ExecuteTuning(card) != kStatus_Success)
  1054. {
  1055. return kStatus_SDMMC_TuningFail;
  1056. }
  1057. }
  1058. return kStatus_Success;
  1059. }
  1060. status_t SDIO_SetDriverStrength(sdio_card_t *card, sd_driver_strength_t driverStrength)
  1061. {
  1062. uint8_t strength = 0U, temp = 0U;
  1063. status_t error = kStatus_Success;
  1064. switch (driverStrength)
  1065. {
  1066. case kSD_DriverStrengthTypeA:
  1067. strength = SDIO_CCCR_ENABLE_DRIVER_TYPE_A;
  1068. break;
  1069. case kSD_DriverStrengthTypeC:
  1070. strength = SDIO_CCCR_ENABLE_DRIVER_TYPE_C;
  1071. break;
  1072. case kSD_DriverStrengthTypeD:
  1073. strength = SDIO_CCCR_ENABLE_DRIVER_TYPE_D;
  1074. break;
  1075. default:
  1076. strength = SDIO_CCCR_ENABLE_DRIVER_TYPE_B;
  1077. break;
  1078. }
  1079. error = SDIO_IO_Access_Direct(card, kSDIO_IORead, kSDIO_FunctionNum0, kSDIO_RegDriverStrength, 0U, &temp, false);
  1080. if (kStatus_Success != error)
  1081. {
  1082. return kStatus_SDMMC_TransferFailed;
  1083. }
  1084. temp &= (uint8_t)~SDIO_CCCR_DRIVER_TYPE_MASK;
  1085. temp |= strength;
  1086. error = SDIO_IO_Access_Direct(card, kSDIO_IOWrite, kSDIO_FunctionNum0, kSDIO_RegDriverStrength, temp, &temp, true);
  1087. if (kStatus_Success != error)
  1088. {
  1089. return kStatus_SDMMC_TransferFailed;
  1090. }
  1091. return error;
  1092. }
  1093. status_t SDIO_EnableAsyncInterrupt(sdio_card_t *card, bool enable)
  1094. {
  1095. assert(card != NULL);
  1096. uint8_t eai = 0U;
  1097. status_t error = kStatus_Success;
  1098. if ((card->cccrflags & SDIO_CCCR_SUPPORT_ASYNC_INT) == 0U)
  1099. {
  1100. return kStatus_SDMMC_NotSupportYet;
  1101. }
  1102. /* load interrupt enable register */
  1103. error = SDIO_IO_Access_Direct(card, kSDIO_IORead, kSDIO_FunctionNum0, kSDIO_RegInterruptExtension, 0U, &eai, false);
  1104. if (kStatus_Success != error)
  1105. {
  1106. return kStatus_SDMMC_TransferFailed;
  1107. }
  1108. /* if already enable/disable , do not need enable/disable again */
  1109. if (((eai)&SDIO_CCCR_ENABLE_AYNC_INT) == (enable ? SDIO_CCCR_ENABLE_AYNC_INT : 0U))
  1110. {
  1111. return kStatus_Success;
  1112. }
  1113. /* enable the eai */
  1114. if (enable)
  1115. {
  1116. eai |= SDIO_CCCR_ENABLE_AYNC_INT;
  1117. }
  1118. else
  1119. {
  1120. eai &= (uint8_t) ~(SDIO_CCCR_ENABLE_AYNC_INT);
  1121. }
  1122. /* write to register */
  1123. error =
  1124. SDIO_IO_Access_Direct(card, kSDIO_IOWrite, kSDIO_FunctionNum0, kSDIO_RegInterruptExtension, eai, &eai, true);
  1125. if (kStatus_Success != error)
  1126. {
  1127. return kStatus_SDMMC_TransferFailed;
  1128. }
  1129. return kStatus_Success;
  1130. }
  1131. static status_t SDIO_DecodeCIS(
  1132. sdio_card_t *card, sdio_func_num_t func, uint8_t *dataBuffer, uint32_t tplCode, uint32_t tplLink)
  1133. {
  1134. assert(card != NULL);
  1135. assert(dataBuffer != NULL);
  1136. if (func == kSDIO_FunctionNum0)
  1137. {
  1138. /* only decode MANIFID,FUNCID,FUNCE here */
  1139. if (tplCode == SDIO_TPL_CODE_MANIFID)
  1140. {
  1141. card->commonCIS.mID = dataBuffer[0U] | ((uint16_t)dataBuffer[1U] << 8U);
  1142. card->commonCIS.mInfo = dataBuffer[2U] | ((uint16_t)dataBuffer[3U] << 8U);
  1143. }
  1144. else if (tplCode == SDIO_TPL_CODE_FUNCID)
  1145. {
  1146. card->commonCIS.funcID = dataBuffer[0U];
  1147. }
  1148. else if (tplCode == SDIO_TPL_CODE_FUNCE)
  1149. {
  1150. /* max transfer block size and data size */
  1151. card->commonCIS.fn0MaxBlkSize = dataBuffer[1U] | ((uint16_t)dataBuffer[2U] << 8U);
  1152. /* max transfer speed */
  1153. card->commonCIS.maxTransSpeed = dataBuffer[3U];
  1154. }
  1155. else
  1156. {
  1157. /* reserved here */
  1158. return kStatus_Fail;
  1159. }
  1160. }
  1161. else
  1162. {
  1163. /* only decode FUNCID,FUNCE here */
  1164. if (tplCode == SDIO_TPL_CODE_FUNCID)
  1165. {
  1166. card->funcCIS[(uint32_t)func - 1U].funcID = dataBuffer[0U];
  1167. }
  1168. else if (tplCode == SDIO_TPL_CODE_FUNCE)
  1169. {
  1170. if (tplLink == 0x2AU)
  1171. {
  1172. card->funcCIS[(uint32_t)func - 1U].funcInfo = dataBuffer[1U];
  1173. card->funcCIS[(uint32_t)func - 1U].ioVersion = dataBuffer[2U];
  1174. card->funcCIS[(uint32_t)func - 1U].cardPSN = dataBuffer[3U] | ((uint32_t)dataBuffer[4U] << 8U) |
  1175. ((uint32_t)dataBuffer[5U] << 16U) |
  1176. ((uint32_t)dataBuffer[6U] << 24U);
  1177. card->funcCIS[(uint32_t)func - 1U].ioCSASize = dataBuffer[7U] | ((uint32_t)dataBuffer[8U] << 8U) |
  1178. ((uint32_t)dataBuffer[9U] << 16U) |
  1179. ((uint32_t)dataBuffer[10U] << 24U);
  1180. card->funcCIS[(uint32_t)func - 1U].ioCSAProperty = dataBuffer[11U];
  1181. card->funcCIS[(uint32_t)func - 1U].ioMaxBlockSize = dataBuffer[12U] | ((uint16_t)dataBuffer[13U] << 8U);
  1182. card->funcCIS[(uint32_t)func - 1U].ioOCR = dataBuffer[14U] | ((uint32_t)dataBuffer[15U] << 8U) |
  1183. ((uint32_t)dataBuffer[16U] << 16U) |
  1184. ((uint32_t)dataBuffer[17U] << 24U);
  1185. card->funcCIS[(uint32_t)func - 1U].ioOPMinPwr = dataBuffer[18U];
  1186. card->funcCIS[(uint32_t)func - 1U].ioOPAvgPwr = dataBuffer[19U];
  1187. card->funcCIS[(uint32_t)func - 1U].ioOPMaxPwr = dataBuffer[20U];
  1188. card->funcCIS[(uint32_t)func - 1U].ioSBMinPwr = dataBuffer[21U];
  1189. card->funcCIS[(uint32_t)func - 1U].ioSBAvgPwr = dataBuffer[22U];
  1190. card->funcCIS[(uint32_t)func - 1U].ioSBMaxPwr = dataBuffer[23U];
  1191. card->funcCIS[(uint32_t)func - 1U].ioMinBandWidth = dataBuffer[24U] | ((uint16_t)dataBuffer[25U] << 8U);
  1192. card->funcCIS[(uint32_t)func - 1U].ioOptimumBandWidth =
  1193. dataBuffer[26U] | ((uint16_t)dataBuffer[27U] << 8U);
  1194. card->funcCIS[(uint32_t)func - 1U].ioReadyTimeout = dataBuffer[28U] | ((uint16_t)dataBuffer[29U] << 8U);
  1195. card->funcCIS[(uint32_t)func - 1U].ioHighCurrentAvgCurrent =
  1196. dataBuffer[34U] | ((uint16_t)dataBuffer[35U] << 8U);
  1197. card->funcCIS[(uint32_t)func - 1U].ioHighCurrentMaxCurrent =
  1198. dataBuffer[36U] | ((uint16_t)dataBuffer[37U] << 8U);
  1199. card->funcCIS[(uint32_t)func - 1U].ioLowCurrentAvgCurrent =
  1200. dataBuffer[38U] | ((uint16_t)dataBuffer[39U] << 8U);
  1201. card->funcCIS[(uint32_t)func - 1U].ioLowCurrentMaxCurrent =
  1202. dataBuffer[40U] | ((uint16_t)dataBuffer[41U] << 8U);
  1203. }
  1204. else
  1205. {
  1206. return kStatus_Fail;
  1207. }
  1208. }
  1209. else
  1210. {
  1211. return kStatus_Fail;
  1212. }
  1213. }
  1214. return kStatus_Success;
  1215. }
  1216. status_t SDIO_ReadCIS(sdio_card_t *card, sdio_func_num_t func, const uint32_t *tupleList, uint32_t tupleNum)
  1217. {
  1218. assert(card != NULL);
  1219. assert(func <= kSDIO_FunctionNum7);
  1220. assert(tupleList != NULL);
  1221. uint8_t tplCode = 0U;
  1222. uint8_t tplLink = 0U;
  1223. uint32_t cisPtr = 0U;
  1224. uint32_t i = 0U, num = 0U;
  1225. bool tupleMatch = false;
  1226. status_t error = kStatus_Success;
  1227. uint8_t dataBuffer[255U] = {0U};
  1228. /* get the CIS pointer for each function */
  1229. if (func == kSDIO_FunctionNum0)
  1230. {
  1231. cisPtr = card->commonCISPointer;
  1232. }
  1233. else
  1234. {
  1235. cisPtr = card->ioFBR[(uint32_t)func - 1U].ioPointerToCIS;
  1236. }
  1237. if (0U == cisPtr)
  1238. {
  1239. return kStatus_SDMMC_SDIO_ReadCISFail;
  1240. }
  1241. do
  1242. {
  1243. error = SDIO_IO_Access_Direct(card, kSDIO_IORead, kSDIO_FunctionNum0, cisPtr++, 0U, &tplCode, false);
  1244. if (kStatus_Success != error)
  1245. {
  1246. return kStatus_SDMMC_TransferFailed;
  1247. }
  1248. /* end of chain tuple */
  1249. if (tplCode == 0xFFU)
  1250. {
  1251. break;
  1252. }
  1253. if (tplCode == 0U)
  1254. {
  1255. continue;
  1256. }
  1257. for (i = 0; i < tupleNum; i++)
  1258. {
  1259. if (tplCode == tupleList[i])
  1260. {
  1261. tupleMatch = true;
  1262. break;
  1263. }
  1264. }
  1265. error = SDIO_IO_Access_Direct(card, kSDIO_IORead, kSDIO_FunctionNum0, cisPtr++, 0U, &tplLink, false);
  1266. if (kStatus_Success != error)
  1267. {
  1268. return kStatus_SDMMC_TransferFailed;
  1269. }
  1270. /* end of chain tuple */
  1271. if (tplLink == 0xFFU)
  1272. {
  1273. break;
  1274. }
  1275. if (tupleMatch)
  1276. {
  1277. (void)memset(dataBuffer, 0, 255U);
  1278. for (i = 0; i < tplLink; i++)
  1279. {
  1280. error =
  1281. SDIO_IO_Access_Direct(card, kSDIO_IORead, kSDIO_FunctionNum0, cisPtr++, 0U, &dataBuffer[i], false);
  1282. if (kStatus_Success != error)
  1283. {
  1284. return kStatus_SDMMC_TransferFailed;
  1285. }
  1286. }
  1287. tupleMatch = false;
  1288. /* pharse the data */
  1289. (void)SDIO_DecodeCIS(card, func, dataBuffer, tplCode, tplLink);
  1290. /* read finish then return */
  1291. if (++num == tupleNum)
  1292. {
  1293. break;
  1294. }
  1295. }
  1296. else
  1297. {
  1298. /* move pointer */
  1299. cisPtr += tplLink;
  1300. /* tuple code not match,continue read tuple code */
  1301. continue;
  1302. }
  1303. } while (true);
  1304. return kStatus_Success;
  1305. }
  1306. static status_t SDIO_ProbeBusVoltage(sdio_card_t *card)
  1307. {
  1308. assert(card != NULL);
  1309. uint32_t ocr = 0U, accept1V8 = 0U;
  1310. status_t error = kStatus_Success;
  1311. /* application able to set the supported voltage window */
  1312. if ((card->ocr & SDIO_OCR_VOLTAGE_WINDOW_MASK) != 0U)
  1313. {
  1314. ocr = card->ocr & SDIO_OCR_VOLTAGE_WINDOW_MASK;
  1315. }
  1316. else
  1317. {
  1318. /* 3.3V voltage should be supported as default */
  1319. ocr |= SDMMC_MASK(kSD_OcrVdd29_30Flag) | SDMMC_MASK(kSD_OcrVdd32_33Flag) | SDMMC_MASK(kSD_OcrVdd33_34Flag);
  1320. }
  1321. if ((card->operationVoltage != kSDMMC_OperationVoltage180V) && (card->usrParam.ioVoltage != NULL) &&
  1322. (card->usrParam.ioVoltage->type != kSD_IOVoltageCtrlNotSupport) &&
  1323. ((card->host->capability & (uint32_t)kSDMMCHOST_SupportVoltage1v8) != 0U) &&
  1324. ((card->host->capability & ((uint32_t)kSDMMCHOST_SupportSDR104 | (uint32_t)kSDMMCHOST_SupportSDR50 |
  1325. (uint32_t)kSDMMCHOST_SupportDDRMode)) != 0U))
  1326. {
  1327. /* allow user select the work voltage, if not select, sdmmc will handle it automatically */
  1328. ocr |= SDMMC_MASK(kSD_OcrSwitch18RequestFlag);
  1329. /* reset to 3v3 signal voltage */
  1330. if (SDIO_SwitchIOVoltage(card, kSDMMC_OperationVoltage330V) == kStatus_Success)
  1331. {
  1332. /* Host changed the operation signal voltage successfully, then card need power reset */
  1333. SDIO_SetCardPower(card, false);
  1334. SDIO_SetCardPower(card, true);
  1335. }
  1336. }
  1337. /* send card active */
  1338. SDMMCHOST_SendCardActive(card->host);
  1339. do
  1340. {
  1341. /* card go idle */
  1342. if (kStatus_Success != SDIO_GoIdle(card))
  1343. {
  1344. return kStatus_SDMMC_GoIdleFailed;
  1345. }
  1346. /* Get IO OCR-CMD5 with arg0 ,set new voltage if needed*/
  1347. if (kStatus_Success != SDIO_SendOperationCondition(card, 0U, NULL))
  1348. {
  1349. return kStatus_SDMMC_HandShakeOperationConditionFailed;
  1350. }
  1351. if (kStatus_Success != SDIO_SendOperationCondition(card, ocr, &accept1V8))
  1352. {
  1353. return kStatus_SDMMC_InvalidVoltage;
  1354. }
  1355. /* check if card support 1.8V */
  1356. if ((accept1V8 & SDMMC_MASK(kSD_OcrSwitch18AcceptFlag)) != 0U)
  1357. {
  1358. if ((card->usrParam.ioVoltage != NULL) && (card->usrParam.ioVoltage->type == kSD_IOVoltageCtrlNotSupport))
  1359. {
  1360. break;
  1361. }
  1362. error = SDIO_SwitchVoltage(card, kSDMMC_OperationVoltage180V);
  1363. if (kStatus_SDMMC_SwitchVoltageFail == error)
  1364. {
  1365. break;
  1366. }
  1367. if (error == kStatus_SDMMC_SwitchVoltage18VFail33VSuccess)
  1368. {
  1369. ocr &= ~SDMMC_MASK(kSD_OcrSwitch18RequestFlag);
  1370. error = kStatus_Success;
  1371. continue;
  1372. }
  1373. else
  1374. {
  1375. card->operationVoltage = kSDMMC_OperationVoltage180V;
  1376. break;
  1377. }
  1378. }
  1379. break;
  1380. } while (true);
  1381. return error;
  1382. }
  1383. static status_t sdiocard_init(sdio_card_t *card)
  1384. {
  1385. assert(card != NULL);
  1386. status_t error = kStatus_Success;
  1387. if (!card->isHostReady)
  1388. {
  1389. return kStatus_SDMMC_HostNotReady;
  1390. }
  1391. /* Identify mode ,set clock to 400KHZ. */
  1392. card->busClock_Hz = SDMMCHOST_SetCardClock(card->host, SDMMC_CLOCK_400KHZ);
  1393. SDMMCHOST_SetCardBusWidth(card->host, kSDMMC_BusWdith1Bit);
  1394. error = SDIO_ProbeBusVoltage(card);
  1395. if (error != kStatus_Success)
  1396. {
  1397. return kStatus_SDMMC_SwitchVoltageFail;
  1398. }
  1399. /* there is a memonly card */
  1400. if ((card->ioTotalNumber == 0U) && (card->memPresentFlag))
  1401. {
  1402. return kStatus_SDMMC_SDIO_InvalidCard;
  1403. }
  1404. /* send relative address ,cmd3*/
  1405. if (kStatus_Success != SDIO_SendRca(card))
  1406. {
  1407. return kStatus_SDMMC_SendRelativeAddressFailed;
  1408. }
  1409. /* select card cmd7 */
  1410. if (kStatus_Success != SDIO_SelectCard(card, true))
  1411. {
  1412. return kStatus_SDMMC_SelectCardFailed;
  1413. }
  1414. /* get card capability */
  1415. if (kStatus_Success != SDIO_GetCardCapability(card, kSDIO_FunctionNum0))
  1416. {
  1417. return kStatus_SDMMC_TransferFailed;
  1418. }
  1419. /* read common CIS here */
  1420. if (SDIO_ReadCIS(card, kSDIO_FunctionNum0, s_tupleList, SDIO_COMMON_CIS_TUPLE_NUM) != kStatus_Success)
  1421. {
  1422. return kStatus_SDMMC_SDIO_ReadCISFail;
  1423. }
  1424. /* switch data bus width */
  1425. if (kStatus_Success != SDIO_SetMaxDataBusWidth(card))
  1426. {
  1427. return kStatus_SDMMC_SetDataBusWidthFailed;
  1428. }
  1429. /* trying switch to card support timing mode. */
  1430. if (kStatus_Success != SDIO_SelectBusTiming(card))
  1431. {
  1432. return kStatus_SDMMC_SDIO_SwitchHighSpeedFail;
  1433. }
  1434. return kStatus_Success;
  1435. }
  1436. status_t SDIO_CardInit(sdio_card_t *card)
  1437. {
  1438. assert(card != NULL);
  1439. status_t error = kStatus_Success;
  1440. /* create mutex lock */
  1441. (void)SDMMC_OSAMutexCreate(&card->lock);
  1442. (void)SDMMC_OSAMutexLock(&card->lock, osaWaitForever_c);
  1443. SDIO_SetCardPower(card, true);
  1444. error = sdiocard_init(card);
  1445. (void)SDMMC_OSAMutexUnlock(&card->lock);
  1446. return error;
  1447. }
  1448. void SDIO_CardDeinit(sdio_card_t *card)
  1449. {
  1450. assert(card != NULL);
  1451. (void)SDMMC_OSAMutexLock(&card->lock, osaWaitForever_c);
  1452. (void)SDIO_CardReset(card);
  1453. (void)SDIO_SelectCard(card, false);
  1454. SDIO_SetCardPower(card, false);
  1455. (void)SDMMC_OSAMutexDestroy(&card->lock);
  1456. }
  1457. status_t SDIO_HostInit(sdio_card_t *card)
  1458. {
  1459. assert(card != NULL);
  1460. if (!card->isHostReady)
  1461. {
  1462. if (SDMMCHOST_Init(card->host) != kStatus_Success)
  1463. {
  1464. return kStatus_Fail;
  1465. }
  1466. }
  1467. if ((card->usrParam.cd->type == kSD_DetectCardByHostCD) || (card->usrParam.cd->type == kSD_DetectCardByHostDATA3))
  1468. {
  1469. (void)SDMMCHOST_CardDetectInit(card->host, card->usrParam.cd);
  1470. }
  1471. if (card->usrParam.sdioInt != NULL)
  1472. {
  1473. (void)SDMMCHOST_CardIntInit(card->host, card->usrParam.sdioInt);
  1474. }
  1475. /* set the host status flag, after the card re-plug in, don't need init host again */
  1476. card->isHostReady = true;
  1477. return kStatus_Success;
  1478. }
  1479. void SDIO_HostDeinit(sdio_card_t *card)
  1480. {
  1481. assert(card != NULL);
  1482. SDMMCHOST_Deinit(card->host);
  1483. /* should re-init host */
  1484. card->isHostReady = false;
  1485. }
  1486. void SDIO_HostDoReset(sdio_card_t *card)
  1487. {
  1488. SDMMCHOST_Reset(card->host);
  1489. }
  1490. status_t SDIO_PollingCardInsert(sdio_card_t *card, uint32_t status)
  1491. {
  1492. assert(card != NULL);
  1493. assert(card->usrParam.cd != NULL);
  1494. if (card->usrParam.cd->type == kSD_DetectCardByGpioCD)
  1495. {
  1496. if (card->usrParam.cd->cardDetected == NULL)
  1497. {
  1498. return kStatus_Fail;
  1499. }
  1500. do
  1501. {
  1502. if ((card->usrParam.cd->cardDetected() == true) && (status == (uint32_t)kSD_Inserted))
  1503. {
  1504. SDMMC_OSADelay(card->usrParam.cd->cdDebounce_ms);
  1505. if (card->usrParam.cd->cardDetected() == true)
  1506. {
  1507. break;
  1508. }
  1509. }
  1510. if ((card->usrParam.cd->cardDetected() == false) && (status == (uint32_t)kSD_Removed))
  1511. {
  1512. break;
  1513. }
  1514. } while (true);
  1515. }
  1516. else
  1517. {
  1518. if (card->isHostReady == false)
  1519. {
  1520. return kStatus_Fail;
  1521. }
  1522. if (SDMMCHOST_PollingCardDetectStatus(card->host, status, ~0U) != kStatus_Success)
  1523. {
  1524. return kStatus_Fail;
  1525. }
  1526. }
  1527. return kStatus_Success;
  1528. }
  1529. bool SDIO_IsCardPresent(sdio_card_t *card)
  1530. {
  1531. assert(card != NULL);
  1532. assert(card->usrParam.cd != NULL);
  1533. if (card->usrParam.cd->type == kSD_DetectCardByGpioCD)
  1534. {
  1535. if (card->usrParam.cd->cardDetected == NULL)
  1536. {
  1537. return false;
  1538. }
  1539. return card->usrParam.cd->cardDetected();
  1540. }
  1541. else
  1542. {
  1543. if (card->isHostReady == false)
  1544. {
  1545. return false;
  1546. }
  1547. if (SDMMCHOST_CardDetectStatus(card->host) == (uint32_t)kSD_Removed)
  1548. {
  1549. return false;
  1550. }
  1551. }
  1552. return true;
  1553. }
  1554. void SDIO_SetCardPower(sdio_card_t *card, bool enable)
  1555. {
  1556. assert(card != NULL);
  1557. uint32_t powerDelay = 0U;
  1558. if (card->usrParam.pwr != NULL)
  1559. {
  1560. card->usrParam.pwr(enable);
  1561. }
  1562. else
  1563. {
  1564. SDMMCHOST_SetCardPower(card->host, enable);
  1565. }
  1566. if (enable)
  1567. {
  1568. powerDelay = card->usrParam.powerOnDelayMS == 0U ? SDIO_POWER_ON_DELAY : card->usrParam.powerOnDelayMS;
  1569. }
  1570. else
  1571. {
  1572. powerDelay = card->usrParam.powerOffDelayMS == 0U ? SDIO_POWER_OFF_DELAY : card->usrParam.powerOffDelayMS;
  1573. }
  1574. SDMMC_OSADelay(powerDelay);
  1575. }
  1576. status_t SDIO_Init(sdio_card_t *card)
  1577. {
  1578. assert(card != NULL);
  1579. assert(card->host != NULL);
  1580. status_t error = kStatus_Success;
  1581. if (!card->isHostReady)
  1582. {
  1583. if (SDIO_HostInit(card) != kStatus_Success)
  1584. {
  1585. error = kStatus_SDMMC_HostNotReady;
  1586. }
  1587. }
  1588. else
  1589. {
  1590. /* reset the host */
  1591. SDIO_HostDoReset(card);
  1592. }
  1593. if (error == kStatus_Success)
  1594. {
  1595. /* card detect */
  1596. if (SDIO_PollingCardInsert(card, kSD_Inserted) != kStatus_Success)
  1597. {
  1598. error = kStatus_SDMMC_CardDetectFailed;
  1599. }
  1600. else
  1601. {
  1602. error = SDIO_CardInit(card);
  1603. if (error != kStatus_Success)
  1604. {
  1605. error = kStatus_SDMMC_CardInitFailed;
  1606. }
  1607. }
  1608. }
  1609. return error;
  1610. }
  1611. void SDIO_Deinit(sdio_card_t *card)
  1612. {
  1613. assert(card != NULL);
  1614. SDIO_CardDeinit(card);
  1615. SDIO_HostDeinit(card);
  1616. }
  1617. status_t SDIO_EnableIOInterrupt(sdio_card_t *card, sdio_func_num_t func, bool enable)
  1618. {
  1619. assert(card != NULL);
  1620. assert(func <= kSDIO_FunctionNum7);
  1621. uint8_t intEn = 0U;
  1622. status_t error = kStatus_Success;
  1623. /* load io interrupt enable register */
  1624. error = SDIO_IO_Access_Direct(card, kSDIO_IORead, kSDIO_FunctionNum0, kSDIO_RegIOIntEnable, 0U, &intEn, false);
  1625. if (kStatus_Success != error)
  1626. {
  1627. return kStatus_SDMMC_TransferFailed;
  1628. }
  1629. if (enable)
  1630. {
  1631. /* if already enable , do not need enable again */
  1632. if ((((intEn >> (uint32_t)func) & 0x01U) == 0x01U) && ((intEn & 0x01U) != 0U))
  1633. {
  1634. return kStatus_Success;
  1635. }
  1636. /* enable the interrupt and interrupt master */
  1637. intEn |= (1U << (uint32_t)func) | 0x01U;
  1638. card->ioIntNums++;
  1639. }
  1640. else
  1641. {
  1642. /* if already disable , do not need enable again */
  1643. if (((intEn >> (uint32_t)func) & 0x01U) == 0x00U)
  1644. {
  1645. return kStatus_Success;
  1646. }
  1647. /* disable the interrupt, don't disable the interrupt master here */
  1648. intEn &= ~(1U << (uint32_t)func);
  1649. if (card->ioIntNums != 0U)
  1650. {
  1651. card->ioIntNums--;
  1652. }
  1653. }
  1654. /* write to register */
  1655. error = SDIO_IO_Access_Direct(card, kSDIO_IOWrite, kSDIO_FunctionNum0, kSDIO_RegIOIntEnable, intEn, &intEn, true);
  1656. if (kStatus_Success != error)
  1657. {
  1658. return kStatus_SDMMC_TransferFailed;
  1659. }
  1660. return kStatus_Success;
  1661. }
  1662. status_t SDIO_GetPendingInterrupt(sdio_card_t *card, uint8_t *pendingInt)
  1663. {
  1664. assert(card != NULL);
  1665. status_t error = kStatus_Success;
  1666. /* load io interrupt enable register */
  1667. error = SDIO_IO_Access_Direct(card, kSDIO_IORead, kSDIO_FunctionNum0, kSDIO_RegIOIntPending, 0U, pendingInt, false);
  1668. if (kStatus_Success != error)
  1669. {
  1670. return kStatus_SDMMC_TransferFailed;
  1671. }
  1672. return kStatus_Success;
  1673. }
  1674. status_t SDIO_EnableIO(sdio_card_t *card, sdio_func_num_t func, bool enable)
  1675. {
  1676. assert(card != NULL);
  1677. assert(func <= kSDIO_FunctionNum7);
  1678. assert(func != kSDIO_FunctionNum0);
  1679. uint8_t ioEn = 0U, ioReady = 0U;
  1680. volatile uint32_t i = SDIO_RETRY_TIMES;
  1681. uint32_t ioReadyTimeoutMS =
  1682. (uint32_t)card->funcCIS[(uint32_t)func - 1U].ioReadyTimeout * SDIO_IO_READY_TIMEOUT_UNIT;
  1683. status_t error = kStatus_Success;
  1684. if (ioReadyTimeoutMS != 0U)
  1685. {
  1686. /* do not poll the IO ready status, but use IO ready timeout */
  1687. i = 1U;
  1688. }
  1689. /* load io enable register */
  1690. error = SDIO_IO_Access_Direct(card, kSDIO_IORead, kSDIO_FunctionNum0, kSDIO_RegIOEnable, 0U, &ioEn, false);
  1691. if (kStatus_Success != error)
  1692. {
  1693. return kStatus_SDMMC_TransferFailed;
  1694. }
  1695. /* if already enable/disable , do not need enable/disable again */
  1696. if (((ioEn >> (uint8_t)func) & 0x01U) == (enable ? 1U : 0U))
  1697. {
  1698. return kStatus_Success;
  1699. }
  1700. /* enable the io */
  1701. if (enable)
  1702. {
  1703. ioEn |= (1U << (uint32_t)func);
  1704. }
  1705. else
  1706. {
  1707. ioEn &= ~(1U << (uint32_t)func);
  1708. }
  1709. /* write to register */
  1710. error = SDIO_IO_Access_Direct(card, kSDIO_IOWrite, kSDIO_FunctionNum0, kSDIO_RegIOEnable, ioEn, &ioEn, true);
  1711. if (kStatus_Success != error)
  1712. {
  1713. return kStatus_SDMMC_TransferFailed;
  1714. }
  1715. /* if enable io, need check the IO ready status */
  1716. if (enable)
  1717. {
  1718. do
  1719. {
  1720. SDMMC_OSADelay(ioReadyTimeoutMS);
  1721. /* wait IO ready */
  1722. error =
  1723. SDIO_IO_Access_Direct(card, kSDIO_IORead, kSDIO_FunctionNum0, kSDIO_RegIOReady, 0U, &ioReady, false);
  1724. if (kStatus_Success != error)
  1725. {
  1726. return kStatus_SDMMC_TransferFailed;
  1727. }
  1728. /* check if IO ready */
  1729. if ((ioReady & (1U << (uint32_t)func)) != 0U)
  1730. {
  1731. return kStatus_Success;
  1732. }
  1733. i--;
  1734. } while (i != 0U);
  1735. return kStatus_Fail;
  1736. }
  1737. return kStatus_Success;
  1738. }
  1739. status_t SDIO_SelectIO(sdio_card_t *card, sdio_func_num_t func)
  1740. {
  1741. assert(card != NULL);
  1742. assert(func <= kSDIO_FunctionMemory);
  1743. uint8_t ioSel = (uint8_t)func;
  1744. status_t error = kStatus_Success;
  1745. /* write to register */
  1746. error =
  1747. SDIO_IO_Access_Direct(card, kSDIO_IOWrite, kSDIO_FunctionNum0, kSDIO_RegFunctionSelect, ioSel, &ioSel, true);
  1748. if (kStatus_Success != error)
  1749. {
  1750. return kStatus_SDMMC_TransferFailed;
  1751. }
  1752. return kStatus_Success;
  1753. }
  1754. status_t SDIO_AbortIO(sdio_card_t *card, sdio_func_num_t func)
  1755. {
  1756. assert(card != NULL);
  1757. assert(func <= kSDIO_FunctionNum7);
  1758. uint8_t ioAbort = (uint8_t)func;
  1759. status_t error = kStatus_Success;
  1760. /* write to register */
  1761. error = SDIO_IO_Access_Direct(card, kSDIO_IOWrite, kSDIO_FunctionNum0, kSDIO_RegIOAbort, ioAbort, &ioAbort, true);
  1762. if (kStatus_Success != error)
  1763. {
  1764. return kStatus_SDMMC_TransferFailed;
  1765. }
  1766. return kStatus_Success;
  1767. }
  1768. void SDIO_SetIOIRQHandler(sdio_card_t *card, sdio_func_num_t func, sdio_io_irq_handler_t handler)
  1769. {
  1770. assert(card != NULL);
  1771. assert((func <= kSDIO_FunctionNum7) && (func != kSDIO_FunctionNum0));
  1772. card->ioIRQHandler[(uint32_t)func - 1U] = handler;
  1773. card->ioIntIndex = (uint8_t)func;
  1774. }
  1775. status_t SDIO_HandlePendingIOInterrupt(sdio_card_t *card)
  1776. {
  1777. assert(card != NULL);
  1778. uint8_t i = 0, pendingInt = 0;
  1779. /* call IRQ handler directly if one IRQ handler only */
  1780. if (card->ioIntNums == 1U)
  1781. {
  1782. if (card->ioIRQHandler[card->ioIntIndex - 1U] != NULL)
  1783. {
  1784. (card->ioIRQHandler[card->ioIntIndex - 1U])(card, card->ioIntIndex);
  1785. }
  1786. }
  1787. else
  1788. {
  1789. /* get pending int firstly */
  1790. if (SDIO_GetPendingInterrupt(card, &pendingInt) != kStatus_Success)
  1791. {
  1792. return kStatus_SDMMC_TransferFailed;
  1793. }
  1794. for (i = 1; i <= FSL_SDIO_MAX_IO_NUMS; i++)
  1795. {
  1796. if ((pendingInt & (1U << i)) != 0U)
  1797. {
  1798. if ((card->ioIRQHandler[i - 1U]) != NULL)
  1799. {
  1800. (card->ioIRQHandler[i - 1U])(card, i);
  1801. }
  1802. }
  1803. }
  1804. }
  1805. return kStatus_Success;
  1806. }