sensor.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458
  1. /*
  2. * Copyright (c) 2006-2018, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2019-01-31 flybreak first version
  9. */
  10. #include "sensor.h"
  11. #define DBG_TAG "sensor"
  12. #define DBG_LVL DBG_INFO
  13. #include <rtdbg.h>
  14. #include <string.h>
  15. static char *const sensor_name_str[] =
  16. {
  17. "none",
  18. "acce_", /* Accelerometer */
  19. "gyro_", /* Gyroscope */
  20. "mag_", /* Magnetometer */
  21. "temp_", /* Temperature */
  22. "humi_", /* Relative Humidity */
  23. "baro_", /* Barometer */
  24. "li_", /* Ambient light */
  25. "pr_", /* Proximity */
  26. "hr_", /* Heart Rate */
  27. "tvoc_", /* TVOC Level */
  28. "noi_", /* Noise Loudness */
  29. "step_", /* Step sensor */
  30. "forc_" /* Force sensor */
  31. };
  32. /* Sensor interrupt correlation function */
  33. /*
  34. * Sensor interrupt handler function
  35. */
  36. void rt_sensor_cb(rt_sensor_t sen)
  37. {
  38. if (sen->parent.rx_indicate == RT_NULL)
  39. {
  40. return;
  41. }
  42. if (sen->irq_handle != RT_NULL)
  43. {
  44. sen->irq_handle(sen);
  45. }
  46. /* The buffer is not empty. Read the data in the buffer first */
  47. if (sen->data_len > 0)
  48. {
  49. sen->parent.rx_indicate(&sen->parent, sen->data_len / sizeof(struct rt_sensor_data));
  50. }
  51. else if (sen->config.mode == RT_SENSOR_MODE_INT)
  52. {
  53. /* The interrupt mode only produces one data at a time */
  54. sen->parent.rx_indicate(&sen->parent, 1);
  55. }
  56. else if (sen->config.mode == RT_SENSOR_MODE_FIFO)
  57. {
  58. sen->parent.rx_indicate(&sen->parent, sen->info.fifo_max);
  59. }
  60. }
  61. /* ISR for sensor interrupt */
  62. static void irq_callback(void *args)
  63. {
  64. rt_sensor_t sensor = args;
  65. rt_uint8_t i;
  66. if (sensor->module)
  67. {
  68. /* Invoke a callback for all sensors in the module */
  69. for (i = 0; i < sensor->module->sen_num; i++)
  70. {
  71. rt_sensor_cb(sensor->module->sen[i]);
  72. }
  73. }
  74. else
  75. {
  76. rt_sensor_cb(sensor);
  77. }
  78. }
  79. /* Sensor interrupt initialization function */
  80. static rt_err_t rt_sensor_irq_init(rt_sensor_t sensor)
  81. {
  82. if (sensor->config.irq_pin.pin == RT_PIN_NONE)
  83. {
  84. return -RT_EINVAL;
  85. }
  86. rt_pin_mode(sensor->config.irq_pin.pin, sensor->config.irq_pin.mode);
  87. if (sensor->config.irq_pin.mode == PIN_MODE_INPUT_PULLDOWN)
  88. {
  89. rt_pin_attach_irq(sensor->config.irq_pin.pin, PIN_IRQ_MODE_RISING, irq_callback, (void *)sensor);
  90. }
  91. else if (sensor->config.irq_pin.mode == PIN_MODE_INPUT_PULLUP)
  92. {
  93. rt_pin_attach_irq(sensor->config.irq_pin.pin, PIN_IRQ_MODE_FALLING, irq_callback, (void *)sensor);
  94. }
  95. else if (sensor->config.irq_pin.mode == PIN_MODE_INPUT)
  96. {
  97. rt_pin_attach_irq(sensor->config.irq_pin.pin, PIN_IRQ_MODE_RISING_FALLING, irq_callback, (void *)sensor);
  98. }
  99. rt_pin_irq_enable(sensor->config.irq_pin.pin, RT_TRUE);
  100. LOG_I("interrupt init success");
  101. return 0;
  102. }
  103. /* Sensor interrupt enable */
  104. static void rt_sensor_irq_enable(rt_sensor_t sensor)
  105. {
  106. if (sensor->config.irq_pin.pin != RT_PIN_NONE)
  107. {
  108. rt_pin_irq_enable(sensor->config.irq_pin.pin, RT_TRUE);
  109. }
  110. }
  111. /* Sensor interrupt disable */
  112. static void rt_sensor_irq_disable(rt_sensor_t sensor)
  113. {
  114. if (sensor->config.irq_pin.pin != RT_PIN_NONE)
  115. {
  116. rt_pin_irq_enable(sensor->config.irq_pin.pin, RT_FALSE);
  117. }
  118. }
  119. /* RT-Thread Device Interface */
  120. static rt_err_t rt_sensor_init(rt_device_t dev)
  121. {
  122. rt_sensor_t sensor = (rt_sensor_t)dev;
  123. RT_ASSERT(dev != RT_NULL);
  124. if (sensor->module != RT_NULL && sensor->info.fifo_max > 0 && sensor->data_buf == RT_NULL)
  125. {
  126. /* Allocate memory for the sensor buffer */
  127. sensor->data_buf = rt_malloc(sizeof(struct rt_sensor_data) * sensor->info.fifo_max);
  128. if (sensor->data_buf == RT_NULL)
  129. {
  130. return -RT_ENOMEM;
  131. }
  132. }
  133. return RT_EOK;
  134. }
  135. static rt_err_t rt_sensor_open(rt_device_t dev, rt_uint16_t oflag)
  136. {
  137. rt_sensor_t sensor = (rt_sensor_t)dev;
  138. RT_ASSERT(dev != RT_NULL);
  139. if (sensor->module)
  140. {
  141. /* take the module mutex */
  142. rt_mutex_take(sensor->module->lock, RT_WAITING_FOREVER);
  143. }
  144. if (oflag & RT_DEVICE_FLAG_RDONLY && dev->flag & RT_DEVICE_FLAG_RDONLY)
  145. {
  146. /* If polling mode is supported, configure it to polling mode */
  147. if (sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_MODE, (void *)RT_SENSOR_MODE_POLLING) == RT_EOK)
  148. {
  149. sensor->config.mode = RT_SENSOR_MODE_POLLING;
  150. }
  151. }
  152. else if (oflag & RT_DEVICE_FLAG_INT_RX && dev->flag & RT_DEVICE_FLAG_INT_RX)
  153. {
  154. /* If interrupt mode is supported, configure it to interrupt mode */
  155. if (sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_MODE, (void *)RT_SENSOR_MODE_INT) == RT_EOK)
  156. {
  157. sensor->config.mode = RT_SENSOR_MODE_INT;
  158. /* Initialization sensor interrupt */
  159. rt_sensor_irq_init(sensor);
  160. }
  161. }
  162. else if (oflag & RT_DEVICE_FLAG_FIFO_RX && dev->flag & RT_DEVICE_FLAG_FIFO_RX)
  163. {
  164. /* If fifo mode is supported, configure it to fifo mode */
  165. if (sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_MODE, (void *)RT_SENSOR_MODE_FIFO) == RT_EOK)
  166. {
  167. sensor->config.mode = RT_SENSOR_MODE_FIFO;
  168. /* Initialization sensor interrupt */
  169. rt_sensor_irq_init(sensor);
  170. }
  171. }
  172. else
  173. {
  174. if (sensor->module)
  175. {
  176. /* release the module mutex */
  177. rt_mutex_release(sensor->module->lock);
  178. }
  179. return -RT_EINVAL;
  180. }
  181. /* Configure power mode to normal mode */
  182. if (sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_POWER, (void *)RT_SENSOR_POWER_NORMAL) == RT_EOK)
  183. {
  184. sensor->config.power = RT_SENSOR_POWER_NORMAL;
  185. }
  186. if (sensor->module)
  187. {
  188. /* release the module mutex */
  189. rt_mutex_release(sensor->module->lock);
  190. }
  191. return RT_EOK;
  192. }
  193. static rt_err_t rt_sensor_close(rt_device_t dev)
  194. {
  195. rt_sensor_t sensor = (rt_sensor_t)dev;
  196. RT_ASSERT(dev != RT_NULL);
  197. if (sensor->module)
  198. {
  199. rt_mutex_take(sensor->module->lock, RT_WAITING_FOREVER);
  200. }
  201. /* Configure power mode to power down mode */
  202. if (sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_POWER, (void *)RT_SENSOR_POWER_DOWN) == RT_EOK)
  203. {
  204. sensor->config.power = RT_SENSOR_POWER_DOWN;
  205. }
  206. /* Sensor disable interrupt */
  207. rt_sensor_irq_disable(sensor);
  208. if (sensor->module)
  209. {
  210. rt_mutex_release(sensor->module->lock);
  211. }
  212. return RT_EOK;
  213. }
  214. static rt_size_t rt_sensor_read(rt_device_t dev, rt_off_t pos, void *buf, rt_size_t len)
  215. {
  216. rt_sensor_t sensor = (rt_sensor_t)dev;
  217. rt_size_t result = 0;
  218. RT_ASSERT(dev != RT_NULL);
  219. if (buf == NULL || len == 0)
  220. {
  221. return 0;
  222. }
  223. if (sensor->module)
  224. {
  225. rt_mutex_take(sensor->module->lock, RT_WAITING_FOREVER);
  226. }
  227. /* The buffer is not empty. Read the data in the buffer first */
  228. if (sensor->data_len > 0)
  229. {
  230. if (len > sensor->data_len / sizeof(struct rt_sensor_data))
  231. {
  232. len = sensor->data_len / sizeof(struct rt_sensor_data);
  233. }
  234. rt_memcpy(buf, sensor->data_buf, len * sizeof(struct rt_sensor_data));
  235. /* Clear the buffer */
  236. sensor->data_len = 0;
  237. result = len;
  238. }
  239. else
  240. {
  241. /* If the buffer is empty read the data */
  242. result = sensor->ops->fetch_data(sensor, buf, len);
  243. }
  244. if (sensor->module)
  245. {
  246. rt_mutex_release(sensor->module->lock);
  247. }
  248. return result;
  249. }
  250. static rt_err_t rt_sensor_control(rt_device_t dev, int cmd, void *args)
  251. {
  252. rt_sensor_t sensor = (rt_sensor_t)dev;
  253. rt_err_t result = RT_EOK;
  254. RT_ASSERT(dev != RT_NULL);
  255. if (sensor->module)
  256. {
  257. rt_mutex_take(sensor->module->lock, RT_WAITING_FOREVER);
  258. }
  259. switch (cmd)
  260. {
  261. case RT_SENSOR_CTRL_GET_ID:
  262. if (args)
  263. {
  264. sensor->ops->control(sensor, RT_SENSOR_CTRL_GET_ID, args);
  265. }
  266. break;
  267. case RT_SENSOR_CTRL_GET_INFO:
  268. if (args)
  269. {
  270. rt_memcpy(args, &sensor->info, sizeof(struct rt_sensor_info));
  271. }
  272. break;
  273. case RT_SENSOR_CTRL_SET_RANGE:
  274. /* Configuration measurement range */
  275. result = sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_RANGE, args);
  276. if (result == RT_EOK)
  277. {
  278. sensor->config.range = (rt_int32_t)args;
  279. LOG_D("set range %d", sensor->config.range);
  280. }
  281. break;
  282. case RT_SENSOR_CTRL_SET_ODR:
  283. /* Configuration data output rate */
  284. result = sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_ODR, args);
  285. if (result == RT_EOK)
  286. {
  287. sensor->config.odr = (rt_uint32_t)args & 0xFFFF;
  288. LOG_D("set odr %d", sensor->config.odr);
  289. }
  290. break;
  291. case RT_SENSOR_CTRL_SET_MODE:
  292. /* Configuration sensor work mode */
  293. result = sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_MODE, args);
  294. if (result == RT_EOK)
  295. {
  296. sensor->config.mode = (rt_uint32_t)args & 0xFF;
  297. LOG_D("set work mode code:", sensor->config.mode);
  298. if (sensor->config.mode == RT_SENSOR_MODE_POLLING)
  299. {
  300. rt_sensor_irq_disable(sensor);
  301. }
  302. else if (sensor->config.mode == RT_SENSOR_MODE_INT || sensor->config.mode == RT_SENSOR_MODE_FIFO)
  303. {
  304. rt_sensor_irq_enable(sensor);
  305. }
  306. }
  307. break;
  308. case RT_SENSOR_CTRL_SET_POWER:
  309. /* Configuration sensor power mode */
  310. result = sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_POWER, args);
  311. if (result == RT_EOK)
  312. {
  313. sensor->config.power = (rt_uint32_t)args & 0xFF;
  314. LOG_D("set power mode code:", sensor->config.power);
  315. }
  316. break;
  317. case RT_SENSOR_CTRL_SELF_TEST:
  318. /* Device self-test */
  319. result = sensor->ops->control(sensor, RT_SENSOR_CTRL_SELF_TEST, args);
  320. break;
  321. default:
  322. return -RT_ERROR;
  323. }
  324. if (sensor->module)
  325. {
  326. rt_mutex_release(sensor->module->lock);
  327. }
  328. return result;
  329. }
  330. #ifdef RT_USING_DEVICE_OPS
  331. const static struct rt_device_ops rt_sensor_ops =
  332. {
  333. rt_sensor_init,
  334. rt_sensor_open,
  335. rt_sensor_close,
  336. rt_sensor_read,
  337. RT_NULL,
  338. rt_sensor_control
  339. };
  340. #endif
  341. /*
  342. * sensor register
  343. */
  344. int rt_hw_sensor_register(rt_sensor_t sensor,
  345. const char *name,
  346. rt_uint32_t flag,
  347. void *data)
  348. {
  349. rt_int8_t result;
  350. rt_device_t device;
  351. RT_ASSERT(sensor != RT_NULL);
  352. char *sensor_name = RT_NULL, *device_name = RT_NULL;
  353. /* Add a type name for the sensor device */
  354. sensor_name = sensor_name_str[sensor->info.type];
  355. device_name = rt_calloc(1, rt_strlen(sensor_name) + 1 + rt_strlen(name));
  356. if (device_name == RT_NULL)
  357. {
  358. LOG_E("device_name calloc failed!");
  359. return -RT_ERROR;
  360. }
  361. rt_memcpy(device_name, sensor_name, rt_strlen(sensor_name) + 1);
  362. strcat(device_name, name);
  363. if (sensor->module != RT_NULL && sensor->module->lock == RT_NULL)
  364. {
  365. /* Create a mutex lock for the module */
  366. sensor->module->lock = rt_mutex_create(name, RT_IPC_FLAG_FIFO);
  367. if (sensor->module->lock == RT_NULL)
  368. {
  369. rt_free(device_name);
  370. return -RT_ERROR;
  371. }
  372. }
  373. device = &sensor->parent;
  374. #ifdef RT_USING_DEVICE_OPS
  375. device->ops = &rt_sensor_ops;
  376. #else
  377. device->init = rt_sensor_init;
  378. device->open = rt_sensor_open;
  379. device->close = rt_sensor_close;
  380. device->read = rt_sensor_read;
  381. device->write = RT_NULL;
  382. device->control = rt_sensor_control;
  383. #endif
  384. device->type = RT_Device_Class_Sensor;
  385. device->rx_indicate = RT_NULL;
  386. device->tx_complete = RT_NULL;
  387. device->user_data = data;
  388. result = rt_device_register(device, device_name, flag | RT_DEVICE_FLAG_STANDALONE);
  389. if (result != RT_EOK)
  390. {
  391. LOG_E("rt_sensor register err code: %d", result);
  392. return result;
  393. }
  394. LOG_I("rt_sensor init success");
  395. return RT_EOK;
  396. }