drv_usart.c 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080
  1. /*
  2. * Copyright (c) 2006-2018, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2018-10-30 SummerGift first version
  9. * 2020-03-16 SummerGift add device close feature
  10. * 2020-03-20 SummerGift fix bug caused by ORE
  11. * 2020-05-02 whj4674672 support stm32h7 uart dma
  12. * 2020-10-14 Dozingfiretruck Porting for stm32wbxx
  13. */
  14. #include "board.h"
  15. #include "drv_usart.h"
  16. #include "drv_config.h"
  17. #ifdef RT_USING_SERIAL
  18. //#define DRV_DEBUG
  19. #define LOG_TAG "drv.usart"
  20. #include <drv_log.h>
  21. #if !defined(BSP_USING_UART1) && !defined(BSP_USING_UART2) && !defined(BSP_USING_UART3) && \
  22. !defined(BSP_USING_UART4) && !defined(BSP_USING_UART5) && !defined(BSP_USING_UART6) && \
  23. !defined(BSP_USING_UART7) && !defined(BSP_USING_UART8) && !defined(BSP_USING_LPUART1)
  24. #error "Please define at least one BSP_USING_UARTx"
  25. /* this driver can be disabled at menuconfig -> RT-Thread Components -> Device Drivers */
  26. #endif
  27. #ifdef RT_SERIAL_USING_DMA
  28. static void stm32_dma_config(struct rt_serial_device *serial, rt_ubase_t flag);
  29. #endif
  30. enum
  31. {
  32. #ifdef BSP_USING_UART1
  33. UART1_INDEX,
  34. #endif
  35. #ifdef BSP_USING_UART2
  36. UART2_INDEX,
  37. #endif
  38. #ifdef BSP_USING_UART3
  39. UART3_INDEX,
  40. #endif
  41. #ifdef BSP_USING_UART4
  42. UART4_INDEX,
  43. #endif
  44. #ifdef BSP_USING_UART5
  45. UART5_INDEX,
  46. #endif
  47. #ifdef BSP_USING_UART6
  48. UART6_INDEX,
  49. #endif
  50. #ifdef BSP_USING_UART7
  51. UART7_INDEX,
  52. #endif
  53. #ifdef BSP_USING_UART8
  54. UART8_INDEX,
  55. #endif
  56. #ifdef BSP_USING_LPUART1
  57. LPUART1_INDEX,
  58. #endif
  59. };
  60. static struct stm32_uart_config uart_config[] =
  61. {
  62. #ifdef BSP_USING_UART1
  63. UART1_CONFIG,
  64. #endif
  65. #ifdef BSP_USING_UART2
  66. UART2_CONFIG,
  67. #endif
  68. #ifdef BSP_USING_UART3
  69. UART3_CONFIG,
  70. #endif
  71. #ifdef BSP_USING_UART4
  72. UART4_CONFIG,
  73. #endif
  74. #ifdef BSP_USING_UART5
  75. UART5_CONFIG,
  76. #endif
  77. #ifdef BSP_USING_UART6
  78. UART6_CONFIG,
  79. #endif
  80. #ifdef BSP_USING_UART7
  81. UART7_CONFIG,
  82. #endif
  83. #ifdef BSP_USING_UART8
  84. UART8_CONFIG,
  85. #endif
  86. #ifdef BSP_USING_LPUART1
  87. LPUART1_CONFIG,
  88. #endif
  89. };
  90. static struct stm32_uart uart_obj[sizeof(uart_config) / sizeof(uart_config[0])] = {0};
  91. static rt_err_t stm32_configure(struct rt_serial_device *serial, struct serial_configure *cfg)
  92. {
  93. struct stm32_uart *uart;
  94. RT_ASSERT(serial != RT_NULL);
  95. RT_ASSERT(cfg != RT_NULL);
  96. uart = rt_container_of(serial, struct stm32_uart, serial);
  97. uart->handle.Instance = uart->config->Instance;
  98. uart->handle.Init.BaudRate = cfg->baud_rate;
  99. uart->handle.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  100. uart->handle.Init.Mode = UART_MODE_TX_RX;
  101. uart->handle.Init.OverSampling = UART_OVERSAMPLING_16;
  102. switch (cfg->data_bits)
  103. {
  104. case DATA_BITS_8:
  105. uart->handle.Init.WordLength = UART_WORDLENGTH_8B;
  106. break;
  107. case DATA_BITS_9:
  108. uart->handle.Init.WordLength = UART_WORDLENGTH_9B;
  109. break;
  110. default:
  111. uart->handle.Init.WordLength = UART_WORDLENGTH_8B;
  112. break;
  113. }
  114. switch (cfg->stop_bits)
  115. {
  116. case STOP_BITS_1:
  117. uart->handle.Init.StopBits = UART_STOPBITS_1;
  118. break;
  119. case STOP_BITS_2:
  120. uart->handle.Init.StopBits = UART_STOPBITS_2;
  121. break;
  122. default:
  123. uart->handle.Init.StopBits = UART_STOPBITS_1;
  124. break;
  125. }
  126. switch (cfg->parity)
  127. {
  128. case PARITY_NONE:
  129. uart->handle.Init.Parity = UART_PARITY_NONE;
  130. break;
  131. case PARITY_ODD:
  132. uart->handle.Init.Parity = UART_PARITY_ODD;
  133. break;
  134. case PARITY_EVEN:
  135. uart->handle.Init.Parity = UART_PARITY_EVEN;
  136. break;
  137. default:
  138. uart->handle.Init.Parity = UART_PARITY_NONE;
  139. break;
  140. }
  141. #ifdef RT_SERIAL_USING_DMA
  142. uart->dma_rx.last_index = 0;
  143. #endif
  144. if (HAL_UART_Init(&uart->handle) != HAL_OK)
  145. {
  146. return -RT_ERROR;
  147. }
  148. return RT_EOK;
  149. }
  150. static rt_err_t stm32_control(struct rt_serial_device *serial, int cmd, void *arg)
  151. {
  152. struct stm32_uart *uart;
  153. #ifdef RT_SERIAL_USING_DMA
  154. rt_ubase_t ctrl_arg = (rt_ubase_t)arg;
  155. #endif
  156. RT_ASSERT(serial != RT_NULL);
  157. uart = rt_container_of(serial, struct stm32_uart, serial);
  158. switch (cmd)
  159. {
  160. /* disable interrupt */
  161. case RT_DEVICE_CTRL_CLR_INT:
  162. /* disable rx irq */
  163. NVIC_DisableIRQ(uart->config->irq_type);
  164. /* disable interrupt */
  165. __HAL_UART_DISABLE_IT(&(uart->handle), UART_IT_RXNE);
  166. #ifdef RT_SERIAL_USING_DMA
  167. /* disable DMA */
  168. if (ctrl_arg == RT_DEVICE_FLAG_DMA_RX)
  169. {
  170. HAL_NVIC_DisableIRQ(uart->config->dma_rx->dma_irq);
  171. if (HAL_DMA_Abort(&(uart->dma_rx.handle)) != HAL_OK)
  172. {
  173. RT_ASSERT(0);
  174. }
  175. if (HAL_DMA_DeInit(&(uart->dma_rx.handle)) != HAL_OK)
  176. {
  177. RT_ASSERT(0);
  178. }
  179. }
  180. else if(ctrl_arg == RT_DEVICE_FLAG_DMA_TX)
  181. {
  182. HAL_NVIC_DisableIRQ(uart->config->dma_tx->dma_irq);
  183. if (HAL_DMA_DeInit(&(uart->dma_tx.handle)) != HAL_OK)
  184. {
  185. RT_ASSERT(0);
  186. }
  187. }
  188. #endif
  189. break;
  190. /* enable interrupt */
  191. case RT_DEVICE_CTRL_SET_INT:
  192. /* enable rx irq */
  193. HAL_NVIC_SetPriority(uart->config->irq_type, 1, 0);
  194. HAL_NVIC_EnableIRQ(uart->config->irq_type);
  195. /* enable interrupt */
  196. __HAL_UART_ENABLE_IT(&(uart->handle), UART_IT_RXNE);
  197. break;
  198. #ifdef RT_SERIAL_USING_DMA
  199. case RT_DEVICE_CTRL_CONFIG:
  200. stm32_dma_config(serial, ctrl_arg);
  201. break;
  202. #endif
  203. case RT_DEVICE_CTRL_CLOSE:
  204. if (HAL_UART_DeInit(&(uart->handle)) != HAL_OK )
  205. {
  206. RT_ASSERT(0)
  207. }
  208. break;
  209. }
  210. return RT_EOK;
  211. }
  212. static int stm32_putc(struct rt_serial_device *serial, char c)
  213. {
  214. struct stm32_uart *uart;
  215. RT_ASSERT(serial != RT_NULL);
  216. uart = rt_container_of(serial, struct stm32_uart, serial);
  217. UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_TC);
  218. #if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32F0) \
  219. || defined(SOC_SERIES_STM32L0) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32H7) \
  220. || defined(SOC_SERIES_STM32G4) || defined(SOC_SERIES_STM32MP1) || defined(SOC_SERIES_STM32WB)
  221. uart->handle.Instance->TDR = c;
  222. #else
  223. uart->handle.Instance->DR = c;
  224. #endif
  225. while (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_TC) == RESET);
  226. return 1;
  227. }
  228. static int stm32_getc(struct rt_serial_device *serial)
  229. {
  230. int ch;
  231. struct stm32_uart *uart;
  232. RT_ASSERT(serial != RT_NULL);
  233. uart = rt_container_of(serial, struct stm32_uart, serial);
  234. ch = -1;
  235. if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_RXNE) != RESET)
  236. {
  237. #if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32F0) \
  238. || defined(SOC_SERIES_STM32L0) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32H7) \
  239. || defined(SOC_SERIES_STM32G4) || defined(SOC_SERIES_STM32MP1) || defined(SOC_SERIES_STM32WB)
  240. ch = uart->handle.Instance->RDR & 0xff;
  241. #else
  242. ch = uart->handle.Instance->DR & 0xff;
  243. #endif
  244. }
  245. return ch;
  246. }
  247. static rt_size_t stm32_dma_transmit(struct rt_serial_device *serial, rt_uint8_t *buf, rt_size_t size, int direction)
  248. {
  249. struct stm32_uart *uart;
  250. RT_ASSERT(serial != RT_NULL);
  251. RT_ASSERT(buf != RT_NULL);
  252. uart = rt_container_of(serial, struct stm32_uart, serial);
  253. if (size == 0)
  254. {
  255. return 0;
  256. }
  257. if (RT_SERIAL_DMA_TX == direction)
  258. {
  259. if (HAL_UART_Transmit_DMA(&uart->handle, buf, size) == HAL_OK)
  260. {
  261. return size;
  262. }
  263. else
  264. {
  265. return 0;
  266. }
  267. }
  268. return 0;
  269. }
  270. /**
  271. * Uart common interrupt process. This need add to uart ISR.
  272. *
  273. * @param serial serial device
  274. */
  275. static void uart_isr(struct rt_serial_device *serial)
  276. {
  277. struct stm32_uart *uart;
  278. #ifdef RT_SERIAL_USING_DMA
  279. rt_size_t recv_total_index, recv_len;
  280. rt_base_t level;
  281. #endif
  282. RT_ASSERT(serial != RT_NULL);
  283. uart = rt_container_of(serial, struct stm32_uart, serial);
  284. /* UART in mode Receiver -------------------------------------------------*/
  285. if ((__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_RXNE) != RESET) &&
  286. (__HAL_UART_GET_IT_SOURCE(&(uart->handle), UART_IT_RXNE) != RESET))
  287. {
  288. rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_IND);
  289. }
  290. #ifdef RT_SERIAL_USING_DMA
  291. else if ((uart->uart_dma_flag) && (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_IDLE) != RESET)
  292. && (__HAL_UART_GET_IT_SOURCE(&(uart->handle), UART_IT_IDLE) != RESET))
  293. {
  294. level = rt_hw_interrupt_disable();
  295. recv_total_index = serial->config.bufsz - __HAL_DMA_GET_COUNTER(&(uart->dma_rx.handle));
  296. recv_len = recv_total_index - uart->dma_rx.last_index;
  297. uart->dma_rx.last_index = recv_total_index;
  298. rt_hw_interrupt_enable(level);
  299. if (recv_len)
  300. {
  301. rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_DMADONE | (recv_len << 8));
  302. }
  303. __HAL_UART_CLEAR_IDLEFLAG(&uart->handle);
  304. }
  305. else if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_TC) &&
  306. (__HAL_UART_GET_IT_SOURCE(&(uart->handle), UART_IT_TC) != RESET))
  307. {
  308. if ((serial->parent.open_flag & RT_DEVICE_FLAG_DMA_TX) != 0)
  309. {
  310. HAL_UART_IRQHandler(&(uart->handle));
  311. }
  312. UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_TC);
  313. }
  314. #endif
  315. else
  316. {
  317. if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_ORE) != RESET)
  318. {
  319. __HAL_UART_CLEAR_OREFLAG(&uart->handle);
  320. }
  321. if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_NE) != RESET)
  322. {
  323. __HAL_UART_CLEAR_NEFLAG(&uart->handle);
  324. }
  325. if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_FE) != RESET)
  326. {
  327. __HAL_UART_CLEAR_FEFLAG(&uart->handle);
  328. }
  329. if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_PE) != RESET)
  330. {
  331. __HAL_UART_CLEAR_PEFLAG(&uart->handle);
  332. }
  333. #if !defined(SOC_SERIES_STM32L4) && !defined(SOC_SERIES_STM32F7) && !defined(SOC_SERIES_STM32F0) \
  334. && !defined(SOC_SERIES_STM32L0) && !defined(SOC_SERIES_STM32G0) && !defined(SOC_SERIES_STM32H7) \
  335. && !defined(SOC_SERIES_STM32G4) && !defined(SOC_SERIES_STM32MP1) && !defined(SOC_SERIES_STM32WB)
  336. if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_LBD) != RESET)
  337. {
  338. UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_LBD);
  339. }
  340. #endif
  341. if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_CTS) != RESET)
  342. {
  343. UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_CTS);
  344. }
  345. if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_TXE) != RESET)
  346. {
  347. UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_TXE);
  348. }
  349. if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_TC) != RESET)
  350. {
  351. UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_TC);
  352. }
  353. if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_RXNE) != RESET)
  354. {
  355. UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_RXNE);
  356. }
  357. }
  358. }
  359. #ifdef RT_SERIAL_USING_DMA
  360. static void dma_isr(struct rt_serial_device *serial)
  361. {
  362. struct stm32_uart *uart;
  363. rt_size_t recv_total_index, recv_len;
  364. rt_base_t level;
  365. RT_ASSERT(serial != RT_NULL);
  366. uart = rt_container_of(serial, struct stm32_uart, serial);
  367. if ((__HAL_DMA_GET_IT_SOURCE(&(uart->dma_rx.handle), DMA_IT_TC) != RESET) ||
  368. (__HAL_DMA_GET_IT_SOURCE(&(uart->dma_rx.handle), DMA_IT_HT) != RESET))
  369. {
  370. level = rt_hw_interrupt_disable();
  371. recv_total_index = serial->config.bufsz - __HAL_DMA_GET_COUNTER(&(uart->dma_rx.handle));
  372. if (recv_total_index == 0)
  373. {
  374. recv_len = serial->config.bufsz - uart->dma_rx.last_index;
  375. }
  376. else
  377. {
  378. recv_len = recv_total_index - uart->dma_rx.last_index;
  379. }
  380. uart->dma_rx.last_index = recv_total_index;
  381. rt_hw_interrupt_enable(level);
  382. if (recv_len)
  383. {
  384. rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_DMADONE | (recv_len << 8));
  385. }
  386. }
  387. }
  388. #endif
  389. #if defined(BSP_USING_UART1)
  390. void USART1_IRQHandler(void)
  391. {
  392. /* enter interrupt */
  393. rt_interrupt_enter();
  394. uart_isr(&(uart_obj[UART1_INDEX].serial));
  395. /* leave interrupt */
  396. rt_interrupt_leave();
  397. }
  398. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART1_RX_USING_DMA)
  399. void UART1_DMA_RX_IRQHandler(void)
  400. {
  401. /* enter interrupt */
  402. rt_interrupt_enter();
  403. HAL_DMA_IRQHandler(&uart_obj[UART1_INDEX].dma_rx.handle);
  404. /* leave interrupt */
  405. rt_interrupt_leave();
  406. }
  407. #endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART1_RX_USING_DMA) */
  408. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART1_TX_USING_DMA)
  409. void UART1_DMA_TX_IRQHandler(void)
  410. {
  411. /* enter interrupt */
  412. rt_interrupt_enter();
  413. HAL_DMA_IRQHandler(&uart_obj[UART1_INDEX].dma_tx.handle);
  414. /* leave interrupt */
  415. rt_interrupt_leave();
  416. }
  417. #endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART1_TX_USING_DMA) */
  418. #endif /* BSP_USING_UART1 */
  419. #if defined(BSP_USING_UART2)
  420. void USART2_IRQHandler(void)
  421. {
  422. /* enter interrupt */
  423. rt_interrupt_enter();
  424. uart_isr(&(uart_obj[UART2_INDEX].serial));
  425. /* leave interrupt */
  426. rt_interrupt_leave();
  427. }
  428. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART2_RX_USING_DMA)
  429. void UART2_DMA_RX_IRQHandler(void)
  430. {
  431. /* enter interrupt */
  432. rt_interrupt_enter();
  433. HAL_DMA_IRQHandler(&uart_obj[UART2_INDEX].dma_rx.handle);
  434. /* leave interrupt */
  435. rt_interrupt_leave();
  436. }
  437. #endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART2_RX_USING_DMA) */
  438. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART2_TX_USING_DMA)
  439. void UART2_DMA_TX_IRQHandler(void)
  440. {
  441. /* enter interrupt */
  442. rt_interrupt_enter();
  443. HAL_DMA_IRQHandler(&uart_obj[UART2_INDEX].dma_tx.handle);
  444. /* leave interrupt */
  445. rt_interrupt_leave();
  446. }
  447. #endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART2_TX_USING_DMA) */
  448. #endif /* BSP_USING_UART2 */
  449. #if defined(BSP_USING_UART3)
  450. void USART3_IRQHandler(void)
  451. {
  452. /* enter interrupt */
  453. rt_interrupt_enter();
  454. uart_isr(&(uart_obj[UART3_INDEX].serial));
  455. /* leave interrupt */
  456. rt_interrupt_leave();
  457. }
  458. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART3_RX_USING_DMA)
  459. void UART3_DMA_RX_IRQHandler(void)
  460. {
  461. /* enter interrupt */
  462. rt_interrupt_enter();
  463. HAL_DMA_IRQHandler(&uart_obj[UART3_INDEX].dma_rx.handle);
  464. /* leave interrupt */
  465. rt_interrupt_leave();
  466. }
  467. #endif /* defined(BSP_UART_USING_DMA_RX) && defined(BSP_UART3_RX_USING_DMA) */
  468. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART3_TX_USING_DMA)
  469. void UART3_DMA_TX_IRQHandler(void)
  470. {
  471. /* enter interrupt */
  472. rt_interrupt_enter();
  473. HAL_DMA_IRQHandler(&uart_obj[UART3_INDEX].dma_tx.handle);
  474. /* leave interrupt */
  475. rt_interrupt_leave();
  476. }
  477. #endif /* defined(BSP_UART_USING_DMA_TX) && defined(BSP_UART3_TX_USING_DMA) */
  478. #endif /* BSP_USING_UART3*/
  479. #if defined(BSP_USING_UART4)
  480. void UART4_IRQHandler(void)
  481. {
  482. /* enter interrupt */
  483. rt_interrupt_enter();
  484. uart_isr(&(uart_obj[UART4_INDEX].serial));
  485. /* leave interrupt */
  486. rt_interrupt_leave();
  487. }
  488. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART4_RX_USING_DMA)
  489. void UART4_DMA_RX_IRQHandler(void)
  490. {
  491. /* enter interrupt */
  492. rt_interrupt_enter();
  493. HAL_DMA_IRQHandler(&uart_obj[UART4_INDEX].dma_rx.handle);
  494. /* leave interrupt */
  495. rt_interrupt_leave();
  496. }
  497. #endif /* defined(BSP_UART_USING_DMA_RX) && defined(BSP_UART4_RX_USING_DMA) */
  498. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART4_TX_USING_DMA)
  499. void UART4_DMA_TX_IRQHandler(void)
  500. {
  501. /* enter interrupt */
  502. rt_interrupt_enter();
  503. HAL_DMA_IRQHandler(&uart_obj[UART4_INDEX].dma_tx.handle);
  504. /* leave interrupt */
  505. rt_interrupt_leave();
  506. }
  507. #endif /* defined(BSP_UART_USING_DMA_TX) && defined(BSP_UART4_TX_USING_DMA) */
  508. #endif /* BSP_USING_UART4*/
  509. #if defined(BSP_USING_UART5)
  510. void UART5_IRQHandler(void)
  511. {
  512. /* enter interrupt */
  513. rt_interrupt_enter();
  514. uart_isr(&(uart_obj[UART5_INDEX].serial));
  515. /* leave interrupt */
  516. rt_interrupt_leave();
  517. }
  518. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART5_RX_USING_DMA)
  519. void UART5_DMA_RX_IRQHandler(void)
  520. {
  521. /* enter interrupt */
  522. rt_interrupt_enter();
  523. HAL_DMA_IRQHandler(&uart_obj[UART5_INDEX].dma_rx.handle);
  524. /* leave interrupt */
  525. rt_interrupt_leave();
  526. }
  527. #endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART5_RX_USING_DMA) */
  528. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART5_TX_USING_DMA)
  529. void UART5_DMA_TX_IRQHandler(void)
  530. {
  531. /* enter interrupt */
  532. rt_interrupt_enter();
  533. HAL_DMA_IRQHandler(&uart_obj[UART5_INDEX].dma_tx.handle);
  534. /* leave interrupt */
  535. rt_interrupt_leave();
  536. }
  537. #endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART5_TX_USING_DMA) */
  538. #endif /* BSP_USING_UART5*/
  539. #if defined(BSP_USING_UART6)
  540. void USART6_IRQHandler(void)
  541. {
  542. /* enter interrupt */
  543. rt_interrupt_enter();
  544. uart_isr(&(uart_obj[UART6_INDEX].serial));
  545. /* leave interrupt */
  546. rt_interrupt_leave();
  547. }
  548. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART6_RX_USING_DMA)
  549. void UART6_DMA_RX_IRQHandler(void)
  550. {
  551. /* enter interrupt */
  552. rt_interrupt_enter();
  553. HAL_DMA_IRQHandler(&uart_obj[UART6_INDEX].dma_rx.handle);
  554. /* leave interrupt */
  555. rt_interrupt_leave();
  556. }
  557. #endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART6_RX_USING_DMA) */
  558. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART6_TX_USING_DMA)
  559. void UART6_DMA_TX_IRQHandler(void)
  560. {
  561. /* enter interrupt */
  562. rt_interrupt_enter();
  563. HAL_DMA_IRQHandler(&uart_obj[UART6_INDEX].dma_tx.handle);
  564. /* leave interrupt */
  565. rt_interrupt_leave();
  566. }
  567. #endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART6_TX_USING_DMA) */
  568. #endif /* BSP_USING_UART6*/
  569. #if defined(BSP_USING_UART7)
  570. void UART7_IRQHandler(void)
  571. {
  572. /* enter interrupt */
  573. rt_interrupt_enter();
  574. uart_isr(&(uart_obj[UART7_INDEX].serial));
  575. /* leave interrupt */
  576. rt_interrupt_leave();
  577. }
  578. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART7_RX_USING_DMA)
  579. void UART7_DMA_RX_IRQHandler(void)
  580. {
  581. /* enter interrupt */
  582. rt_interrupt_enter();
  583. HAL_DMA_IRQHandler(&uart_obj[UART7_INDEX].dma_rx.handle);
  584. /* leave interrupt */
  585. rt_interrupt_leave();
  586. }
  587. #endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART7_RX_USING_DMA) */
  588. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART7_TX_USING_DMA)
  589. void UART7_DMA_TX_IRQHandler(void)
  590. {
  591. /* enter interrupt */
  592. rt_interrupt_enter();
  593. HAL_DMA_IRQHandler(&uart_obj[UART7_INDEX].dma_tx.handle);
  594. /* leave interrupt */
  595. rt_interrupt_leave();
  596. }
  597. #endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART7_TX_USING_DMA) */
  598. #endif /* BSP_USING_UART7*/
  599. #if defined(BSP_USING_UART8)
  600. void UART8_IRQHandler(void)
  601. {
  602. /* enter interrupt */
  603. rt_interrupt_enter();
  604. uart_isr(&(uart_obj[UART8_INDEX].serial));
  605. /* leave interrupt */
  606. rt_interrupt_leave();
  607. }
  608. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART8_RX_USING_DMA)
  609. void UART8_DMA_RX_IRQHandler(void)
  610. {
  611. /* enter interrupt */
  612. rt_interrupt_enter();
  613. HAL_DMA_IRQHandler(&uart_obj[UART8_INDEX].dma_rx.handle);
  614. /* leave interrupt */
  615. rt_interrupt_leave();
  616. }
  617. #endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART8_RX_USING_DMA) */
  618. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART8_TX_USING_DMA)
  619. void UART8_DMA_TX_IRQHandler(void)
  620. {
  621. /* enter interrupt */
  622. rt_interrupt_enter();
  623. HAL_DMA_IRQHandler(&uart_obj[UART8_INDEX].dma_tx.handle);
  624. /* leave interrupt */
  625. rt_interrupt_leave();
  626. }
  627. #endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART8_TX_USING_DMA) */
  628. #endif /* BSP_USING_UART8*/
  629. #if defined(BSP_USING_LPUART1)
  630. void LPUART1_IRQHandler(void)
  631. {
  632. /* enter interrupt */
  633. rt_interrupt_enter();
  634. uart_isr(&(uart_obj[LPUART1_INDEX].serial));
  635. /* leave interrupt */
  636. rt_interrupt_leave();
  637. }
  638. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_LPUART1_RX_USING_DMA)
  639. void LPUART1_DMA_RX_IRQHandler(void)
  640. {
  641. /* enter interrupt */
  642. rt_interrupt_enter();
  643. HAL_DMA_IRQHandler(&uart_obj[LPUART1_INDEX].dma_rx.handle);
  644. /* leave interrupt */
  645. rt_interrupt_leave();
  646. }
  647. #endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_LPUART1_RX_USING_DMA) */
  648. #endif /* BSP_USING_LPUART1*/
  649. static void stm32_uart_get_dma_config(void)
  650. {
  651. #ifdef BSP_USING_UART1
  652. uart_obj[UART1_INDEX].uart_dma_flag = 0;
  653. #ifdef BSP_UART1_RX_USING_DMA
  654. uart_obj[UART1_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  655. static struct dma_config uart1_dma_rx = UART1_DMA_RX_CONFIG;
  656. uart_config[UART1_INDEX].dma_rx = &uart1_dma_rx;
  657. #endif
  658. #ifdef BSP_UART1_TX_USING_DMA
  659. uart_obj[UART1_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  660. static struct dma_config uart1_dma_tx = UART1_DMA_TX_CONFIG;
  661. uart_config[UART1_INDEX].dma_tx = &uart1_dma_tx;
  662. #endif
  663. #endif
  664. #ifdef BSP_USING_UART2
  665. uart_obj[UART2_INDEX].uart_dma_flag = 0;
  666. #ifdef BSP_UART2_RX_USING_DMA
  667. uart_obj[UART2_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  668. static struct dma_config uart2_dma_rx = UART2_DMA_RX_CONFIG;
  669. uart_config[UART2_INDEX].dma_rx = &uart2_dma_rx;
  670. #endif
  671. #ifdef BSP_UART2_TX_USING_DMA
  672. uart_obj[UART2_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  673. static struct dma_config uart2_dma_tx = UART2_DMA_TX_CONFIG;
  674. uart_config[UART2_INDEX].dma_tx = &uart2_dma_tx;
  675. #endif
  676. #endif
  677. #ifdef BSP_USING_UART3
  678. uart_obj[UART3_INDEX].uart_dma_flag = 0;
  679. #ifdef BSP_UART3_RX_USING_DMA
  680. uart_obj[UART3_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  681. static struct dma_config uart3_dma_rx = UART3_DMA_RX_CONFIG;
  682. uart_config[UART3_INDEX].dma_rx = &uart3_dma_rx;
  683. #endif
  684. #ifdef BSP_UART3_TX_USING_DMA
  685. uart_obj[UART3_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  686. static struct dma_config uart3_dma_tx = UART3_DMA_TX_CONFIG;
  687. uart_config[UART3_INDEX].dma_tx = &uart3_dma_tx;
  688. #endif
  689. #endif
  690. #ifdef BSP_USING_UART4
  691. uart_obj[UART4_INDEX].uart_dma_flag = 0;
  692. #ifdef BSP_UART4_RX_USING_DMA
  693. uart_obj[UART4_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  694. static struct dma_config uart4_dma_rx = UART4_DMA_RX_CONFIG;
  695. uart_config[UART4_INDEX].dma_rx = &uart4_dma_rx;
  696. #endif
  697. #ifdef BSP_UART4_TX_USING_DMA
  698. uart_obj[UART4_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  699. static struct dma_config uart4_dma_tx = UART4_DMA_TX_CONFIG;
  700. uart_config[UART4_INDEX].dma_tx = &uart4_dma_tx;
  701. #endif
  702. #endif
  703. #ifdef BSP_USING_UART5
  704. uart_obj[UART5_INDEX].uart_dma_flag = 0;
  705. #ifdef BSP_UART5_RX_USING_DMA
  706. uart_obj[UART5_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  707. static struct dma_config uart5_dma_rx = UART5_DMA_RX_CONFIG;
  708. uart_config[UART5_INDEX].dma_rx = &uart5_dma_rx;
  709. #endif
  710. #ifdef BSP_UART5_TX_USING_DMA
  711. uart_obj[UART5_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  712. static struct dma_config uart5_dma_tx = UART5_DMA_TX_CONFIG;
  713. uart_config[UART5_INDEX].dma_tx = &uart5_dma_tx;
  714. #endif
  715. #endif
  716. #ifdef BSP_USING_UART6
  717. uart_obj[UART6_INDEX].uart_dma_flag = 0;
  718. #ifdef BSP_UART6_RX_USING_DMA
  719. uart_obj[UART6_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  720. static struct dma_config uart6_dma_rx = UART6_DMA_RX_CONFIG;
  721. uart_config[UART6_INDEX].dma_rx = &uart6_dma_rx;
  722. #endif
  723. #ifdef BSP_UART6_TX_USING_DMA
  724. uart_obj[UART6_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  725. static struct dma_config uart6_dma_tx = UART6_DMA_TX_CONFIG;
  726. uart_config[UART6_INDEX].dma_tx = &uart6_dma_tx;
  727. #endif
  728. #endif
  729. }
  730. #ifdef RT_SERIAL_USING_DMA
  731. static void stm32_dma_config(struct rt_serial_device *serial, rt_ubase_t flag)
  732. {
  733. struct rt_serial_rx_fifo *rx_fifo;
  734. DMA_HandleTypeDef *DMA_Handle;
  735. struct dma_config *dma_config;
  736. struct stm32_uart *uart;
  737. RT_ASSERT(serial != RT_NULL);
  738. uart = rt_container_of(serial, struct stm32_uart, serial);
  739. if (RT_DEVICE_FLAG_DMA_RX == flag)
  740. {
  741. DMA_Handle = &uart->dma_rx.handle;
  742. dma_config = uart->config->dma_rx;
  743. }
  744. else if (RT_DEVICE_FLAG_DMA_TX == flag)
  745. {
  746. DMA_Handle = &uart->dma_tx.handle;
  747. dma_config = uart->config->dma_tx;
  748. }
  749. LOG_D("%s dma config start", uart->config->name);
  750. {
  751. rt_uint32_t tmpreg = 0x00U;
  752. #if defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32G0) \
  753. || defined(SOC_SERIES_STM32L0)
  754. /* enable DMA clock && Delay after an RCC peripheral clock enabling*/
  755. SET_BIT(RCC->AHBENR, dma_config->dma_rcc);
  756. tmpreg = READ_BIT(RCC->AHBENR, dma_config->dma_rcc);
  757. #elif defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32L4) \
  758. || defined(SOC_SERIES_STM32G4)|| defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32WB)
  759. /* enable DMA clock && Delay after an RCC peripheral clock enabling*/
  760. SET_BIT(RCC->AHB1ENR, dma_config->dma_rcc);
  761. tmpreg = READ_BIT(RCC->AHB1ENR, dma_config->dma_rcc);
  762. #elif defined(SOC_SERIES_STM32MP1)
  763. /* enable DMA clock && Delay after an RCC peripheral clock enabling*/
  764. SET_BIT(RCC->MP_AHB2ENSETR, dma_config->dma_rcc);
  765. tmpreg = READ_BIT(RCC->MP_AHB2ENSETR, dma_config->dma_rcc);
  766. #if (defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32G4) || defined(SOC_SERIES_STM32WB)) && defined(DMAMUX1)
  767. /* enable DMAMUX clock for L4+ and G4 */
  768. __HAL_RCC_DMAMUX1_CLK_ENABLE();
  769. #elif defined(SOC_SERIES_STM32MP1)
  770. __HAL_RCC_DMAMUX_CLK_ENABLE();
  771. #endif
  772. #endif
  773. UNUSED(tmpreg); /* To avoid compiler warnings */
  774. }
  775. if (RT_DEVICE_FLAG_DMA_RX == flag)
  776. {
  777. __HAL_LINKDMA(&(uart->handle), hdmarx, uart->dma_rx.handle);
  778. }
  779. else if (RT_DEVICE_FLAG_DMA_TX == flag)
  780. {
  781. __HAL_LINKDMA(&(uart->handle), hdmatx, uart->dma_tx.handle);
  782. }
  783. #if defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32L0)
  784. DMA_Handle->Instance = dma_config->Instance;
  785. #elif defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7)
  786. DMA_Handle->Instance = dma_config->Instance;
  787. DMA_Handle->Init.Channel = dma_config->channel;
  788. #elif defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32G4) || defined(SOC_SERIES_STM32WB)\
  789. || defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32MP1)
  790. DMA_Handle->Instance = dma_config->Instance;
  791. DMA_Handle->Init.Request = dma_config->request;
  792. #endif
  793. DMA_Handle->Init.PeriphInc = DMA_PINC_DISABLE;
  794. DMA_Handle->Init.MemInc = DMA_MINC_ENABLE;
  795. DMA_Handle->Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
  796. DMA_Handle->Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
  797. if (RT_DEVICE_FLAG_DMA_RX == flag)
  798. {
  799. DMA_Handle->Init.Direction = DMA_PERIPH_TO_MEMORY;
  800. DMA_Handle->Init.Mode = DMA_CIRCULAR;
  801. }
  802. else if (RT_DEVICE_FLAG_DMA_TX == flag)
  803. {
  804. DMA_Handle->Init.Direction = DMA_MEMORY_TO_PERIPH;
  805. DMA_Handle->Init.Mode = DMA_NORMAL;
  806. }
  807. DMA_Handle->Init.Priority = DMA_PRIORITY_MEDIUM;
  808. #if defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32MP1)
  809. DMA_Handle->Init.FIFOMode = DMA_FIFOMODE_DISABLE;
  810. #endif
  811. if (HAL_DMA_DeInit(DMA_Handle) != HAL_OK)
  812. {
  813. RT_ASSERT(0);
  814. }
  815. if (HAL_DMA_Init(DMA_Handle) != HAL_OK)
  816. {
  817. RT_ASSERT(0);
  818. }
  819. /* enable interrupt */
  820. if (flag == RT_DEVICE_FLAG_DMA_RX)
  821. {
  822. rx_fifo = (struct rt_serial_rx_fifo *)serial->serial_rx;
  823. /* Start DMA transfer */
  824. if (HAL_UART_Receive_DMA(&(uart->handle), rx_fifo->buffer, serial->config.bufsz) != HAL_OK)
  825. {
  826. /* Transfer error in reception process */
  827. RT_ASSERT(0);
  828. }
  829. CLEAR_BIT(uart->handle.Instance->CR3, USART_CR3_EIE);
  830. __HAL_UART_ENABLE_IT(&(uart->handle), UART_IT_IDLE);
  831. }
  832. /* DMA irq should set in DMA TX mode, or HAL_UART_TxCpltCallback function will not be called */
  833. HAL_NVIC_SetPriority(dma_config->dma_irq, 0, 0);
  834. HAL_NVIC_EnableIRQ(dma_config->dma_irq);
  835. HAL_NVIC_SetPriority(uart->config->irq_type, 1, 0);
  836. HAL_NVIC_EnableIRQ(uart->config->irq_type);
  837. LOG_D("%s dma %s instance: %x", uart->config->name, flag == RT_DEVICE_FLAG_DMA_RX ? "RX" : "TX", DMA_Handle->Instance);
  838. LOG_D("%s dma config done", uart->config->name);
  839. }
  840. /**
  841. * @brief UART error callbacks
  842. * @param huart: UART handle
  843. * @note This example shows a simple way to report transfer error, and you can
  844. * add your own implementation.
  845. * @retval None
  846. */
  847. void HAL_UART_ErrorCallback(UART_HandleTypeDef *huart)
  848. {
  849. RT_ASSERT(huart != NULL);
  850. struct stm32_uart *uart = (struct stm32_uart *)huart;
  851. LOG_D("%s: %s %d\n", __FUNCTION__, uart->config->name, huart->ErrorCode);
  852. UNUSED(uart);
  853. }
  854. /**
  855. * @brief Rx Transfer completed callback
  856. * @param huart: UART handle
  857. * @note This example shows a simple way to report end of DMA Rx transfer, and
  858. * you can add your own implementation.
  859. * @retval None
  860. */
  861. void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
  862. {
  863. struct stm32_uart *uart;
  864. RT_ASSERT(huart != NULL);
  865. uart = (struct stm32_uart *)huart;
  866. dma_isr(&uart->serial);
  867. }
  868. /**
  869. * @brief Rx Half transfer completed callback
  870. * @param huart: UART handle
  871. * @note This example shows a simple way to report end of DMA Rx Half transfer,
  872. * and you can add your own implementation.
  873. * @retval None
  874. */
  875. void HAL_UART_RxHalfCpltCallback(UART_HandleTypeDef *huart)
  876. {
  877. struct stm32_uart *uart;
  878. RT_ASSERT(huart != NULL);
  879. uart = (struct stm32_uart *)huart;
  880. dma_isr(&uart->serial);
  881. }
  882. static void _dma_tx_complete(struct rt_serial_device *serial)
  883. {
  884. struct stm32_uart *uart;
  885. rt_size_t trans_total_index;
  886. rt_base_t level;
  887. RT_ASSERT(serial != RT_NULL);
  888. uart = rt_container_of(serial, struct stm32_uart, serial);
  889. level = rt_hw_interrupt_disable();
  890. trans_total_index = __HAL_DMA_GET_COUNTER(&(uart->dma_tx.handle));
  891. rt_hw_interrupt_enable(level);
  892. if (trans_total_index == 0)
  893. {
  894. rt_hw_serial_isr(serial, RT_SERIAL_EVENT_TX_DMADONE);
  895. }
  896. }
  897. /**
  898. * @brief HAL_UART_TxCpltCallback
  899. * @param huart: UART handle
  900. * @note This callback can be called by two functions, first in UART_EndTransmit_IT when
  901. * UART Tx complete and second in UART_DMATransmitCplt function in DMA Circular mode.
  902. * @retval None
  903. */
  904. void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart)
  905. {
  906. struct stm32_uart *uart;
  907. RT_ASSERT(huart != NULL);
  908. uart = (struct stm32_uart *)huart;
  909. _dma_tx_complete(&uart->serial);
  910. }
  911. #endif /* RT_SERIAL_USING_DMA */
  912. static const struct rt_uart_ops stm32_uart_ops =
  913. {
  914. .configure = stm32_configure,
  915. .control = stm32_control,
  916. .putc = stm32_putc,
  917. .getc = stm32_getc,
  918. .dma_transmit = stm32_dma_transmit
  919. };
  920. int rt_hw_usart_init(void)
  921. {
  922. rt_size_t obj_num = sizeof(uart_obj) / sizeof(struct stm32_uart);
  923. struct serial_configure config = RT_SERIAL_CONFIG_DEFAULT;
  924. rt_err_t result = 0;
  925. stm32_uart_get_dma_config();
  926. for (int i = 0; i < obj_num; i++)
  927. {
  928. /* init UART object */
  929. uart_obj[i].config = &uart_config[i];
  930. uart_obj[i].serial.ops = &stm32_uart_ops;
  931. uart_obj[i].serial.config = config;
  932. /* register UART device */
  933. result = rt_hw_serial_register(&uart_obj[i].serial, uart_obj[i].config->name,
  934. RT_DEVICE_FLAG_RDWR
  935. | RT_DEVICE_FLAG_INT_RX
  936. | RT_DEVICE_FLAG_INT_TX
  937. | uart_obj[i].uart_dma_flag
  938. , NULL);
  939. RT_ASSERT(result == RT_EOK);
  940. }
  941. return result;
  942. }
  943. #endif /* RT_USING_SERIAL */