msi.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949
  1. /*
  2. * Copyright (c) 2006-2022, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2022-11-07 GuEe-GUI first version
  9. */
  10. #include <drivers/pci_msi.h>
  11. #include <drivers/core/numa.h>
  12. #define DBG_TAG "pci.msi"
  13. #define DBG_LVL DBG_INFO
  14. #include <rtdbg.h>
  15. /* PCI has 2048 max IRQs in MSI-X */
  16. static RT_IRQ_AFFINITY_DECLARE(msi_affinity_default[2048]) rt_section(".bss.noclean.pci.msi");
  17. rt_inline void spin_lock(struct rt_spinlock *lock)
  18. {
  19. rt_hw_spin_lock(&lock->lock);
  20. }
  21. rt_inline void spin_unlock(struct rt_spinlock *lock)
  22. {
  23. rt_hw_spin_unlock(&lock->lock);
  24. }
  25. rt_inline void *msix_table_base(struct rt_pci_msix_conf *msix)
  26. {
  27. return msix->table_base + msix->index * PCIM_MSIX_ENTRY_SIZE;
  28. }
  29. rt_inline void *msix_vector_ctrl_base(struct rt_pci_msix_conf *msix)
  30. {
  31. return msix_table_base(msix) + PCIM_MSIX_ENTRY_VECTOR_CTRL;
  32. }
  33. rt_inline void msix_write_vector_ctrl(struct rt_pci_msix_conf *msix,
  34. rt_uint32_t ctrl)
  35. {
  36. void *vc_addr = msix_vector_ctrl_base(msix);
  37. HWREG32(vc_addr) = ctrl;
  38. }
  39. rt_inline void msix_mask(struct rt_pci_msix_conf *msix)
  40. {
  41. msix->msg_ctrl |= PCIM_MSIX_ENTRYVECTOR_CTRL_MASK;
  42. msix_write_vector_ctrl(msix, msix->msg_ctrl);
  43. /* Flush write to device */
  44. HWREG32(msix->table_base);
  45. }
  46. static void msix_update_ctrl(struct rt_pci_device *pdev,
  47. rt_uint16_t clear, rt_uint16_t set)
  48. {
  49. rt_uint16_t msgctl;
  50. rt_pci_read_config_u16(pdev, pdev->msix_cap + PCIR_MSIX_CTRL, &msgctl);
  51. msgctl &= ~clear;
  52. msgctl |= set;
  53. rt_pci_write_config_u16(pdev, pdev->msix_cap + PCIR_MSIX_CTRL, msgctl);
  54. }
  55. rt_inline void msix_unmask(struct rt_pci_msix_conf *msix)
  56. {
  57. msix->msg_ctrl &= ~PCIM_MSIX_ENTRYVECTOR_CTRL_MASK;
  58. msix_write_vector_ctrl(msix, msix->msg_ctrl);
  59. }
  60. rt_inline rt_uint32_t msi_multi_mask(struct rt_pci_msi_conf *msi)
  61. {
  62. if (msi->cap.multi_msg_max >= 5)
  63. {
  64. return 0xffffffff;
  65. }
  66. return (1 << (1 << msi->cap.multi_msg_max)) - 1;
  67. }
  68. static void msi_write_mask(struct rt_pci_msi_conf *msi,
  69. rt_uint32_t clear, rt_uint32_t set, struct rt_pci_device *pdev)
  70. {
  71. if (msi->cap.is_masking)
  72. {
  73. rt_ubase_t level = rt_spin_lock_irqsave(&pdev->msi_lock);
  74. msi->mask &= ~clear;
  75. msi->mask |= set;
  76. rt_pci_write_config_u32(pdev, msi->mask_pos, msi->mask);
  77. rt_spin_unlock_irqrestore(&pdev->msi_lock, level);
  78. }
  79. }
  80. rt_inline void msi_mask(struct rt_pci_msi_conf *msi,
  81. rt_uint32_t mask, struct rt_pci_device *pdev)
  82. {
  83. msi_write_mask(msi, 0, mask, pdev);
  84. }
  85. rt_inline void msi_unmask(struct rt_pci_msi_conf *msi,
  86. rt_uint32_t mask, struct rt_pci_device *pdev)
  87. {
  88. msi_write_mask(msi, mask, 0, pdev);
  89. }
  90. static void msi_write_enable(struct rt_pci_device *pdev, rt_bool_t enable)
  91. {
  92. rt_uint16_t msgctl;
  93. rt_pci_read_config_u16(pdev, pdev->msi_cap + PCIR_MSI_CTRL, &msgctl);
  94. msgctl &= ~PCIM_MSICTRL_MSI_ENABLE;
  95. if (enable)
  96. {
  97. msgctl |= PCIM_MSICTRL_MSI_ENABLE;
  98. }
  99. rt_pci_write_config_u16(pdev, pdev->msi_cap + PCIR_MSI_CTRL, msgctl);
  100. }
  101. static void msi_affinity_init(struct rt_pci_msi_desc *desc, int msi_index,
  102. rt_bitmap_t *cpumasks)
  103. {
  104. int irq;
  105. struct rt_pic_irq *pirq;
  106. struct rt_pci_device *pdev = desc->pdev;
  107. struct rt_pic *msi_pic = pdev->msi_pic;
  108. irq = desc->irq + desc->is_msix ? 0 : msi_index;
  109. pirq = rt_pic_find_pirq(msi_pic, irq);
  110. /* Save affinity */
  111. if (desc->is_msix)
  112. {
  113. desc->affinity = pirq->affinity;
  114. }
  115. else
  116. {
  117. desc->affinities[msi_index] = pirq->affinity;
  118. }
  119. if ((void *)cpumasks > (void *)msi_affinity_default &&
  120. (void *)cpumasks < (void *)msi_affinity_default + sizeof(msi_affinity_default))
  121. {
  122. rt_uint64_t data_address;
  123. /* Get MSI/MSI-X write data adddress */
  124. data_address = desc->msg.address_hi;
  125. data_address <<= 32;
  126. data_address |= desc->msg.address_lo;
  127. /* Prepare affinity */
  128. cpumasks = pirq->affinity;
  129. rt_numa_memory_affinity(data_address, cpumasks);
  130. }
  131. else if (rt_bitmap_next_set_bit(cpumasks, 0, RT_CPUS_NR) >= RT_CPUS_NR)
  132. {
  133. /* No affinity info found, give up */
  134. return;
  135. }
  136. if (!rt_pic_irq_set_affinity(irq, cpumasks))
  137. {
  138. if (msi_pic->ops->irq_write_msi_msg)
  139. {
  140. msi_pic->ops->irq_write_msi_msg(pirq, &desc->msg);
  141. }
  142. }
  143. }
  144. void rt_pci_msi_shutdown(struct rt_pci_device *pdev)
  145. {
  146. struct rt_pci_msi_desc *desc;
  147. if (!pdev)
  148. {
  149. return;
  150. }
  151. msi_write_enable(pdev, RT_FALSE);
  152. rt_pci_intx(pdev, RT_TRUE);
  153. if ((desc = rt_pci_msi_first_desc(pdev)))
  154. {
  155. msi_unmask(&desc->msi, msi_multi_mask(&desc->msi), pdev);
  156. }
  157. /* Restore pdev->irq to its default pin-assertion IRQ */
  158. pdev->irq = desc->msi.default_irq;
  159. pdev->msi_enabled = RT_FALSE;
  160. }
  161. void rt_pci_msix_shutdown(struct rt_pci_device *pdev)
  162. {
  163. struct rt_pci_msi_desc *desc;
  164. if (!pdev)
  165. {
  166. return;
  167. }
  168. rt_pci_msi_for_each_desc(pdev, desc)
  169. {
  170. msix_mask(&desc->msix);
  171. }
  172. msix_update_ctrl(pdev, PCIM_MSIXCTRL_MSIX_ENABLE, 0);
  173. rt_pci_intx(pdev, RT_TRUE);
  174. pdev->msix_enabled = RT_FALSE;
  175. }
  176. void rt_pci_msi_free_irqs(struct rt_pci_device *pdev)
  177. {
  178. struct rt_pci_msi_desc *desc, *last_desc = RT_NULL;
  179. if (!pdev)
  180. {
  181. return;
  182. }
  183. if (pdev->msix_base)
  184. {
  185. rt_iounmap(pdev->msix_base);
  186. pdev->msix_base = RT_NULL;
  187. }
  188. rt_pci_msi_for_each_desc(pdev, desc)
  189. {
  190. /* To safety */
  191. if (last_desc)
  192. {
  193. rt_list_remove(&last_desc->list);
  194. rt_free(last_desc);
  195. }
  196. last_desc = desc;
  197. }
  198. /* The last one */
  199. if (last_desc)
  200. {
  201. rt_list_remove(&last_desc->list);
  202. rt_free(last_desc);
  203. }
  204. }
  205. void rt_pci_msi_write_msg(struct rt_pci_msi_desc *desc, struct rt_pci_msi_msg *msg)
  206. {
  207. struct rt_pci_device *pdev = desc->pdev;
  208. if (desc->is_msix)
  209. {
  210. void *msix_entry;
  211. rt_bool_t unmasked;
  212. rt_uint32_t msgctl;
  213. struct rt_pci_msix_conf *msix = &desc->msix;
  214. msgctl = msix->msg_ctrl;
  215. unmasked = !(msgctl & PCIM_MSIX_ENTRYVECTOR_CTRL_MASK);
  216. msix_entry = msix_table_base(msix);
  217. if (unmasked)
  218. {
  219. msix_write_vector_ctrl(msix, msgctl | PCIM_MSIX_ENTRYVECTOR_CTRL_MASK);
  220. }
  221. HWREG32(msix_entry + PCIM_MSIX_ENTRY_LOWER_ADDR) = msg->address_lo;
  222. HWREG32(msix_entry + PCIM_MSIX_ENTRY_UPPER_ADDR) = msg->address_hi;
  223. HWREG32(msix_entry + PCIM_MSIX_ENTRY_DATA) = msg->data;
  224. if (unmasked)
  225. {
  226. msix_write_vector_ctrl(msix, msgctl);
  227. }
  228. /* Ensure that the writes are visible in the device */
  229. HWREG32(msix_entry + PCIM_MSIX_ENTRY_DATA);
  230. }
  231. else
  232. {
  233. rt_uint16_t msgctl;
  234. int pos = pdev->msi_cap;
  235. struct rt_pci_msi_conf *msi = &desc->msi;
  236. rt_pci_read_config_u16(pdev, pos + PCIR_MSI_CTRL, &msgctl);
  237. msgctl &= ~PCIM_MSICTRL_MME_MASK;
  238. msgctl |= msi->cap.multi_msg_use << PCIM_MSICTRL_MME_SHIFT;
  239. rt_pci_write_config_u16(pdev, pos + PCIR_MSI_CTRL, msgctl);
  240. rt_pci_write_config_u32(pdev, pos + PCIR_MSI_ADDR, msg->address_lo);
  241. /*
  242. * The value stored in this field is related to the processor system,
  243. * the processor will initialize this field
  244. * when the PCIe device is initialized, and the rules for filling
  245. * in this field are not the same for different processors.
  246. * If the Multiple Message Enable field is not 0b000 (multiple IRQs),
  247. * the PCIe device can send different interrupt requests
  248. * by changing the low data in the Message Data field
  249. */
  250. if (msi->cap.is_64bit)
  251. {
  252. rt_pci_write_config_u32(pdev, pos + PCIR_MSI_ADDR_HIGH, msg->address_hi);
  253. rt_pci_write_config_u16(pdev, pos + PCIR_MSI_DATA_64BIT, msg->data);
  254. }
  255. else
  256. {
  257. rt_pci_write_config_u16(pdev, pos + PCIR_MSI_DATA, msg->data);
  258. }
  259. /* Ensure that the writes are visible in the device */
  260. rt_pci_read_config_u16(pdev, pos + PCIR_MSI_CTRL, &msgctl);
  261. }
  262. desc->msg = *msg;
  263. if (desc->write_msi_msg)
  264. {
  265. desc->write_msi_msg(desc, desc->write_msi_msg_data);
  266. }
  267. }
  268. void rt_pci_msi_mask_irq(struct rt_pic_irq *pirq)
  269. {
  270. struct rt_pci_msi_desc *desc;
  271. if (pirq && (desc = pirq->msi_desc))
  272. {
  273. if (desc->is_msix)
  274. {
  275. msix_mask(&desc->msix);
  276. }
  277. else
  278. {
  279. msi_mask(&desc->msi, RT_BIT(pirq->irq - desc->irq), desc->pdev);
  280. }
  281. }
  282. }
  283. void rt_pci_msi_unmask_irq(struct rt_pic_irq *pirq)
  284. {
  285. struct rt_pci_msi_desc *desc;
  286. if (pirq && (desc = pirq->msi_desc))
  287. {
  288. if (desc->is_msix)
  289. {
  290. msix_unmask(&desc->msix);
  291. }
  292. else
  293. {
  294. msi_unmask(&desc->msi, RT_BIT(pirq->irq - desc->irq), desc->pdev);
  295. }
  296. }
  297. }
  298. rt_ssize_t rt_pci_alloc_vector(struct rt_pci_device *pdev, int min, int max,
  299. rt_uint32_t flags, RT_IRQ_AFFINITY_DECLARE((*affinities)))
  300. {
  301. rt_ssize_t res = -RT_ENOSYS;
  302. if (!pdev || min > max)
  303. {
  304. return -RT_EINVAL;
  305. }
  306. if (flags & RT_PCI_IRQ_F_AFFINITY)
  307. {
  308. if (!affinities)
  309. {
  310. affinities = msi_affinity_default;
  311. }
  312. }
  313. else
  314. {
  315. affinities = RT_NULL;
  316. }
  317. if (flags & RT_PCI_IRQ_F_MSIX)
  318. {
  319. res = rt_pci_msix_enable_range_affinity(pdev, RT_NULL, min, max, affinities);
  320. if (res > 0)
  321. {
  322. return res;
  323. }
  324. }
  325. if (flags & RT_PCI_IRQ_F_MSI)
  326. {
  327. res = rt_pci_msi_enable_range_affinity(pdev, min, max, affinities);
  328. if (res > 0)
  329. {
  330. return res;
  331. }
  332. }
  333. if (flags & RT_PCI_IRQ_F_LEGACY)
  334. {
  335. if (min == 1 && pdev->irq >= 0)
  336. {
  337. if (affinities)
  338. {
  339. int cpuid;
  340. RT_IRQ_AFFINITY_DECLARE(old_affinity);
  341. /* INTx is shared, we should update it */
  342. rt_pic_irq_get_affinity(pdev->irq, old_affinity);
  343. rt_bitmap_for_each_set_bit(affinities[0], cpuid, RT_CPUS_NR)
  344. {
  345. RT_IRQ_AFFINITY_SET(old_affinity, cpuid);
  346. }
  347. rt_pic_irq_set_affinity(pdev->irq, old_affinity);
  348. }
  349. rt_pci_intx(pdev, RT_TRUE);
  350. return min;
  351. }
  352. }
  353. return res;
  354. }
  355. void rt_pci_free_vector(struct rt_pci_device *pdev)
  356. {
  357. if (!pdev)
  358. {
  359. return;
  360. }
  361. rt_pci_msi_disable(pdev);
  362. rt_pci_msix_disable(pdev);
  363. rt_pci_irq_mask(pdev);
  364. }
  365. static rt_err_t msi_verify_entries(struct rt_pci_device *pdev)
  366. {
  367. if (pdev->no_64bit_msi)
  368. {
  369. struct rt_pci_msi_desc *desc;
  370. rt_pci_msi_for_each_desc(pdev, desc)
  371. {
  372. if (desc->msg.address_hi)
  373. {
  374. LOG_D("%s: Arch assigned 64-bit MSI address %08x%08x"
  375. "but device only supports 32 bits",
  376. rt_dm_dev_get_name(&pdev->parent),
  377. desc->msg.address_hi, desc->msg.address_lo);
  378. return -RT_EIO;
  379. }
  380. }
  381. }
  382. return RT_EOK;
  383. }
  384. static rt_err_t msi_insert_desc(struct rt_pci_device *pdev,
  385. struct rt_pci_msi_desc *init_desc)
  386. {
  387. rt_size_t msi_affinity_ptr_size = 0;
  388. struct rt_pci_msi_desc *msi_desc;
  389. if (!init_desc->is_msix)
  390. {
  391. msi_affinity_ptr_size += sizeof(msi_desc->affinities[0]) * 32;
  392. }
  393. msi_desc = rt_calloc(1, sizeof(*msi_desc) + msi_affinity_ptr_size);
  394. if (!msi_desc)
  395. {
  396. return -RT_ENOMEM;
  397. }
  398. rt_memcpy(msi_desc, init_desc, sizeof(*msi_desc));
  399. if (!init_desc->is_msix)
  400. {
  401. msi_desc->affinities = (void *)msi_desc + sizeof(*msi_desc);
  402. }
  403. msi_desc->pdev = pdev;
  404. rt_list_init(&msi_desc->list);
  405. rt_list_insert_before(&pdev->msi_desc_nodes, &msi_desc->list);
  406. return RT_EOK;
  407. }
  408. rt_ssize_t rt_pci_msi_vector_count(struct rt_pci_device *pdev)
  409. {
  410. rt_uint16_t msgctl;
  411. if (!pdev)
  412. {
  413. return -RT_EINVAL;
  414. }
  415. if (!pdev->msi_cap)
  416. {
  417. return -RT_EINVAL;
  418. }
  419. rt_pci_read_config_u16(pdev, pdev->msi_cap + PCIR_MSI_CTRL, &msgctl);
  420. return 1 << ((msgctl & PCIM_MSICTRL_MMC_MASK) >> 1);
  421. }
  422. rt_err_t rt_pci_msi_disable(struct rt_pci_device *pdev)
  423. {
  424. if (!pdev)
  425. {
  426. return -RT_EINVAL;
  427. }
  428. if (!pdev->msi_enabled)
  429. {
  430. return -RT_EINVAL;
  431. }
  432. spin_lock(&pdev->msi_lock);
  433. rt_pci_msi_shutdown(pdev);
  434. rt_pci_msi_free_irqs(pdev);
  435. spin_unlock(&pdev->msi_lock);
  436. return RT_EOK;
  437. }
  438. static rt_err_t msi_setup_msi_desc(struct rt_pci_device *pdev, int nvec)
  439. {
  440. rt_uint16_t msgctl;
  441. struct rt_pci_msi_desc desc;
  442. rt_memset(&desc, 0, sizeof(desc));
  443. desc.vector_used = nvec;
  444. desc.vector_count = rt_pci_msi_vector_count(pdev);
  445. desc.is_msix = RT_FALSE;
  446. rt_pci_read_config_u16(pdev, pdev->msi_cap + PCIR_MSI_CTRL, &msgctl);
  447. desc.msi.cap.is_64bit = !!(msgctl & PCIM_MSICTRL_64BIT);
  448. desc.msi.cap.is_masking = !!(msgctl & PCIM_MSICTRL_VECTOR);
  449. desc.msi.cap.multi_msg_max = (msgctl & PCIM_MSICTRL_MMC_MASK) >> 1;
  450. for (int log2 = 0; log2 < 5; ++log2)
  451. {
  452. if (nvec <= (1 << log2))
  453. {
  454. desc.msi.cap.multi_msg_use = log2;
  455. break;
  456. }
  457. }
  458. if (desc.msi.cap.is_64bit)
  459. {
  460. desc.msi.mask_pos = pdev->msi_cap + PCIR_MSI_MASK_64BIT;
  461. }
  462. else
  463. {
  464. desc.msi.mask_pos = pdev->msi_cap + PCIR_MSI_MASK;
  465. }
  466. /* Save pdev->irq for its default pin-assertion IRQ */
  467. desc.msi.default_irq = pdev->irq;
  468. if (desc.msi.cap.is_masking)
  469. {
  470. /* Get the old mask status */
  471. rt_pci_read_config_u32(pdev, desc.msi.mask_pos, &desc.msi.mask);
  472. }
  473. return msi_insert_desc(pdev, &desc);
  474. }
  475. static rt_ssize_t msi_capability_init(struct rt_pci_device *pdev,
  476. int nvec, RT_IRQ_AFFINITY_DECLARE((*affinities)))
  477. {
  478. rt_err_t err;
  479. struct rt_pci_msi_desc *desc;
  480. msi_write_enable(pdev, RT_FALSE);
  481. spin_lock(&pdev->msi_lock);
  482. if (!(err = msi_setup_msi_desc(pdev, nvec)))
  483. {
  484. /* All MSIs are unmasked by default; mask them all */
  485. desc = rt_pci_msi_first_desc(pdev);
  486. msi_mask(&desc->msi, msi_multi_mask(&desc->msi), pdev);
  487. if (!(err = rt_pci_msi_setup_irqs(pdev, nvec, PCIY_MSI)))
  488. {
  489. err = msi_verify_entries(pdev);
  490. }
  491. if (err)
  492. {
  493. msi_unmask(&desc->msi, msi_multi_mask(&desc->msi), pdev);
  494. }
  495. }
  496. spin_unlock(&pdev->msi_lock);
  497. if (err)
  498. {
  499. rt_pci_msi_free_irqs(pdev);
  500. LOG_E("%s: Setup %s interrupts(%d) error = %s",
  501. rt_dm_dev_get_name(&pdev->parent), "MSI", nvec, rt_strerror(err));
  502. return err;
  503. }
  504. if (affinities)
  505. {
  506. for (int idx = 0; idx < nvec; ++idx)
  507. {
  508. msi_affinity_init(desc, idx, affinities[idx]);
  509. }
  510. }
  511. /* Disable INTX */
  512. rt_pci_intx(pdev, RT_FALSE);
  513. /* Set MSI enabled bits */
  514. msi_write_enable(pdev, RT_TRUE);
  515. pdev->irq = desc->irq;
  516. pdev->msi_enabled = RT_TRUE;
  517. return nvec;
  518. }
  519. rt_ssize_t rt_pci_msi_enable_range_affinity(struct rt_pci_device *pdev,
  520. int min, int max, RT_IRQ_AFFINITY_DECLARE((*affinities)))
  521. {
  522. int nvec = max;
  523. rt_size_t entries_nr;
  524. if (!pdev || min > max)
  525. {
  526. return -RT_EINVAL;
  527. }
  528. if (pdev->no_msi)
  529. {
  530. return -RT_ENOSYS;
  531. }
  532. if (!pdev->msi_pic)
  533. {
  534. return -RT_ENOSYS;
  535. }
  536. if (pdev->msi_enabled)
  537. {
  538. LOG_W("%s: MSI is enabled", rt_dm_dev_get_name(&pdev->parent));
  539. return -RT_EINVAL;
  540. }
  541. entries_nr = rt_pci_msi_vector_count(pdev);
  542. if (entries_nr < 0)
  543. {
  544. return entries_nr;
  545. }
  546. if (nvec > entries_nr)
  547. {
  548. return -RT_EEMPTY;
  549. }
  550. return msi_capability_init(pdev, nvec, affinities);
  551. }
  552. rt_ssize_t rt_pci_msix_vector_count(struct rt_pci_device *pdev)
  553. {
  554. rt_uint16_t msgctl;
  555. if (!pdev)
  556. {
  557. return -RT_EINVAL;
  558. }
  559. if (!pdev->msix_cap)
  560. {
  561. return -RT_EINVAL;
  562. }
  563. rt_pci_read_config_u16(pdev, pdev->msix_cap + PCIR_MSIX_CTRL, &msgctl);
  564. return rt_pci_msix_table_size(msgctl);
  565. }
  566. rt_err_t rt_pci_msix_disable(struct rt_pci_device *pdev)
  567. {
  568. if (!pdev)
  569. {
  570. return -RT_EINVAL;
  571. }
  572. if (!pdev->msix_enabled)
  573. {
  574. return -RT_EINVAL;
  575. }
  576. spin_lock(&pdev->msi_lock);
  577. rt_pci_msix_shutdown(pdev);
  578. rt_pci_msi_free_irqs(pdev);
  579. spin_unlock(&pdev->msi_lock);
  580. return RT_EOK;
  581. }
  582. static void *msix_table_remap(struct rt_pci_device *pdev, rt_size_t entries_nr)
  583. {
  584. rt_uint8_t bir;
  585. rt_uint32_t table_offset;
  586. rt_ubase_t table_base_phys;
  587. rt_pci_read_config_u32(pdev, pdev->msix_cap + PCIR_MSIX_TABLE, &table_offset);
  588. bir = (rt_uint8_t)(table_offset & PCIM_MSIX_BIR_MASK);
  589. if (pdev->resource[bir].flags & PCI_BUS_REGION_F_NONE)
  590. {
  591. LOG_E("%s: BAR[bir = %d] is invalid", rt_dm_dev_get_name(&pdev->parent), bir);
  592. return RT_NULL;
  593. }
  594. table_base_phys = pdev->resource[bir].base + (table_offset & ~PCIM_MSIX_BIR_MASK);
  595. return rt_ioremap((void *)table_base_phys, entries_nr * PCIM_MSIX_ENTRY_SIZE);
  596. }
  597. static rt_err_t msix_setup_msi_descs(struct rt_pci_device *pdev,
  598. void *table_base, struct rt_pci_msix_entry *entries, int nvec)
  599. {
  600. rt_err_t err;
  601. struct rt_pci_msi_desc desc;
  602. rt_memset(&desc, 0, sizeof(desc));
  603. desc.vector_used = 1;
  604. desc.vector_count = rt_pci_msix_vector_count(pdev);
  605. desc.is_msix = RT_TRUE;
  606. desc.msix.table_base = table_base;
  607. for (int i = 0; i < nvec; ++i)
  608. {
  609. void *table_entry;
  610. int index = entries ? entries[i].index : i;
  611. desc.msix.index = index;
  612. table_entry = msix_table_base(&desc.msix);
  613. desc.msix.msg_ctrl = HWREG32(table_entry + PCIM_MSIX_ENTRY_VECTOR_CTRL);
  614. if ((err = msi_insert_desc(pdev, &desc)))
  615. {
  616. break;
  617. }
  618. }
  619. return err;
  620. }
  621. static rt_ssize_t msix_capability_init(struct rt_pci_device *pdev,
  622. struct rt_pci_msix_entry *entries, int nvec,
  623. RT_IRQ_AFFINITY_DECLARE((*affinities)))
  624. {
  625. rt_err_t err;
  626. rt_uint16_t msgctl;
  627. rt_size_t table_size;
  628. void *table_base, *table_entry;
  629. struct rt_pci_msi_desc *desc;
  630. struct rt_pci_msix_entry *entry;
  631. /*
  632. * Some devices require MSI-X to be enabled before the MSI-X
  633. * registers can be accessed.
  634. * Mask all the vectors to prevent interrupts coming in before
  635. * they're fully set up.
  636. */
  637. msix_update_ctrl(pdev, 0, PCIM_MSIXCTRL_FUNCTION_MASK | PCIM_MSIXCTRL_MSIX_ENABLE);
  638. rt_pci_read_config_u16(pdev, pdev->msix_cap + PCIR_MSIX_CTRL, &msgctl);
  639. /* Request & Map MSI-X table region */
  640. table_size = rt_pci_msix_table_size(msgctl);
  641. table_base = msix_table_remap(pdev, table_size);
  642. if (!table_base)
  643. {
  644. LOG_E("%s: Remap MSI-X table fail", rt_dm_dev_get_name(&pdev->parent));
  645. err = -RT_ENOMEM;
  646. goto _out_disbale_msix;
  647. }
  648. pdev->msix_base = table_base;
  649. spin_lock(&pdev->msi_lock);
  650. if (!(err = msix_setup_msi_descs(pdev, table_base, entries, nvec)))
  651. {
  652. if (!(err = rt_pci_msi_setup_irqs(pdev, nvec, PCIY_MSIX)))
  653. {
  654. /* Check if all MSI entries honor device restrictions */
  655. err = msi_verify_entries(pdev);
  656. }
  657. }
  658. spin_unlock(&pdev->msi_lock);
  659. if (err)
  660. {
  661. rt_pci_msi_free_irqs(pdev);
  662. LOG_E("%s: Setup %s interrupts(%d) error = %s",
  663. rt_dm_dev_get_name(&pdev->parent), "MSI-X", nvec, rt_strerror(err));
  664. goto _out_disbale_msix;
  665. }
  666. entry = entries;
  667. rt_pci_msi_for_each_desc(pdev, desc)
  668. {
  669. if (affinities)
  670. {
  671. msi_affinity_init(desc, desc->msix.index, affinities[entry->index]);
  672. }
  673. entry->irq = desc->irq;
  674. ++entry;
  675. }
  676. /* Disable INTX */
  677. rt_pci_intx(pdev, RT_FALSE);
  678. /* Maske all table entries */
  679. table_entry = table_base;
  680. for (int i = 0; i < table_size; ++i, table_entry += PCIM_MSIX_ENTRY_SIZE)
  681. {
  682. HWREG32(table_entry + PCIM_MSIX_ENTRY_VECTOR_CTRL) = PCIM_MSIX_ENTRYVECTOR_CTRL_MASK;
  683. }
  684. msix_update_ctrl(pdev, PCIM_MSIXCTRL_FUNCTION_MASK, 0);
  685. pdev->msix_enabled = RT_TRUE;
  686. return nvec;
  687. _out_disbale_msix:
  688. msix_update_ctrl(pdev, PCIM_MSIXCTRL_FUNCTION_MASK | PCIM_MSIXCTRL_MSIX_ENABLE, 0);
  689. return err;
  690. }
  691. rt_ssize_t rt_pci_msix_enable_range_affinity(struct rt_pci_device *pdev,
  692. struct rt_pci_msix_entry *entries, int min, int max,
  693. RT_IRQ_AFFINITY_DECLARE((*affinities)))
  694. {
  695. int nvec = max;
  696. rt_size_t entries_nr;
  697. if (!pdev || min > max)
  698. {
  699. return -RT_EINVAL;
  700. }
  701. if (pdev->no_msi)
  702. {
  703. return -RT_ENOSYS;
  704. }
  705. if (!pdev->msi_pic)
  706. {
  707. return -RT_ENOSYS;
  708. }
  709. if (pdev->msix_enabled)
  710. {
  711. LOG_W("%s: MSI-X is enabled", rt_dm_dev_get_name(&pdev->parent));
  712. return -RT_EINVAL;
  713. }
  714. entries_nr = rt_pci_msix_vector_count(pdev);
  715. if (entries_nr < 0)
  716. {
  717. return entries_nr;
  718. }
  719. if (nvec > entries_nr)
  720. {
  721. return -RT_EEMPTY;
  722. }
  723. if (!entries)
  724. {
  725. return 0;
  726. }
  727. /* Check if entries is valid */
  728. for (int i = 0; i < nvec; ++i)
  729. {
  730. struct rt_pci_msix_entry *target = &entries[i];
  731. if (target->index >= entries_nr)
  732. {
  733. return -RT_EINVAL;
  734. }
  735. for (int j = i + 1; j < nvec; ++j)
  736. {
  737. /* Check duplicate */
  738. if (target->index == entries[j].index)
  739. {
  740. LOG_E("%s: msix entry[%d].index = entry[%d].index",
  741. rt_dm_dev_get_name(&pdev->parent), i, j);
  742. return -RT_EINVAL;
  743. }
  744. }
  745. }
  746. return msix_capability_init(pdev, entries, nvec, affinities);
  747. }