drv_emac.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608
  1. /*
  2. * Copyright (c) 2006-2018, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2018-11-19 SummerGift first version
  9. */
  10. #include "board.h"
  11. #include "drv_config.h"
  12. #include <netif/ethernetif.h>
  13. #include "lwipopts.h"
  14. /*
  15. * Emac driver uses CubeMX tool to generate emac and phy's configuration,
  16. * the configuration files can be found in CubeMX_Config floder.
  17. */
  18. /* debug option */
  19. //#define ETH_RX_DUMP
  20. //#define ETH_TX_DUMP
  21. //#define DRV_DEBUG
  22. #define LOG_TAG "drv.emac"
  23. #include <drv_log.h>
  24. #define MAX_ADDR_LEN 6
  25. struct rt_stm32_eth
  26. {
  27. /* inherit from ethernet device */
  28. struct eth_device parent;
  29. /* interface address info. */
  30. rt_uint8_t dev_addr[MAX_ADDR_LEN]; /* hw address */
  31. uint32_t ETH_Speed; /*!< @ref ETH_Speed */
  32. uint32_t ETH_Mode; /*!< @ref ETH_Duplex_Mode */
  33. };
  34. static ETH_DMADescTypeDef *DMARxDscrTab, *DMATxDscrTab;
  35. static rt_uint8_t *Rx_Buff, *Tx_Buff;
  36. static rt_bool_t tx_is_waiting = RT_FALSE;
  37. static ETH_HandleTypeDef EthHandle;
  38. static struct rt_stm32_eth stm32_eth_device;
  39. static struct rt_semaphore tx_wait;
  40. #if defined(ETH_RX_DUMP) || defined(ETH_TX_DUMP)
  41. #define __is_print(ch) ((unsigned int)((ch) - ' ') < 127u - ' ')
  42. static void dump_hex(const rt_uint8_t *ptr, rt_size_t buflen)
  43. {
  44. unsigned char *buf = (unsigned char*)ptr;
  45. int i, j;
  46. for (i = 0; i < buflen; i += 16)
  47. {
  48. rt_kprintf("%08X: ", i);
  49. for (j = 0; j < 16; j++)
  50. if (i + j < buflen)
  51. rt_kprintf("%02X ", buf[i + j]);
  52. else
  53. rt_kprintf(" ");
  54. rt_kprintf(" ");
  55. for (j = 0; j < 16; j++)
  56. if (i + j < buflen)
  57. rt_kprintf("%c", __is_print(buf[i + j]) ? buf[i + j] : '.');
  58. rt_kprintf("\n");
  59. }
  60. }
  61. #endif
  62. extern void phy_reset(void);
  63. /* EMAC initialization function */
  64. static rt_err_t rt_stm32_eth_init(rt_device_t dev)
  65. {
  66. __HAL_RCC_ETH_CLK_ENABLE();
  67. phy_reset();
  68. /* ETHERNET Configuration --------------------------------------------------*/
  69. EthHandle.Instance = ETH;
  70. EthHandle.Init.MACAddr = (rt_uint8_t*)&stm32_eth_device.dev_addr[0];
  71. EthHandle.Init.AutoNegotiation = ETH_AUTONEGOTIATION_ENABLE;
  72. EthHandle.Init.Speed = ETH_SPEED_100M;
  73. EthHandle.Init.DuplexMode = ETH_MODE_FULLDUPLEX;
  74. EthHandle.Init.MediaInterface = ETH_MEDIA_INTERFACE_RMII;
  75. EthHandle.Init.RxMode = ETH_RXINTERRUPT_MODE;
  76. EthHandle.Init.ChecksumMode = ETH_CHECKSUM_BY_SOFTWARE;
  77. //EthHandle.Init.ChecksumMode = ETH_CHECKSUM_BY_HARDWARE;
  78. EthHandle.Init.PhyAddress = EXTERNAL_PHY_ADDRESS;
  79. HAL_ETH_DeInit(&EthHandle);
  80. /* configure ethernet peripheral (GPIOs, clocks, MAC, DMA) */
  81. if (HAL_ETH_Init(&EthHandle) == HAL_OK)
  82. {
  83. LOG_D("emac hardware init sucess");
  84. }
  85. else
  86. {
  87. LOG_D("emac hardware init faild");
  88. }
  89. /* Initialize Tx Descriptors list: Chain Mode */
  90. HAL_ETH_DMATxDescListInit(&EthHandle, DMATxDscrTab, Tx_Buff, ETH_TXBUFNB);
  91. /* Initialize Rx Descriptors list: Chain Mode */
  92. HAL_ETH_DMARxDescListInit(&EthHandle, DMARxDscrTab, Rx_Buff, ETH_RXBUFNB);
  93. /* Enable MAC and DMA transmission and reception */
  94. if (HAL_ETH_Start(&EthHandle) == HAL_OK)
  95. {
  96. LOG_D("emac hardware start");
  97. }
  98. else
  99. {
  100. LOG_D("emac hardware start faild");
  101. }
  102. /* ETH interrupt Init */
  103. HAL_NVIC_SetPriority(ETH_IRQn, 0x07, 0);
  104. HAL_NVIC_EnableIRQ(ETH_IRQn);
  105. return RT_EOK;
  106. }
  107. static rt_err_t rt_stm32_eth_open(rt_device_t dev, rt_uint16_t oflag)
  108. {
  109. LOG_D("emac open");
  110. return RT_EOK;
  111. }
  112. static rt_err_t rt_stm32_eth_close(rt_device_t dev)
  113. {
  114. LOG_D("emac close");
  115. return RT_EOK;
  116. }
  117. static rt_size_t rt_stm32_eth_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size)
  118. {
  119. LOG_D("emac read");
  120. rt_set_errno(-RT_ENOSYS);
  121. return 0;
  122. }
  123. static rt_size_t rt_stm32_eth_write (rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size)
  124. {
  125. LOG_D("emac write");
  126. rt_set_errno(-RT_ENOSYS);
  127. return 0;
  128. }
  129. static rt_err_t rt_stm32_eth_control(rt_device_t dev, int cmd, void *args)
  130. {
  131. switch(cmd)
  132. {
  133. case NIOCTL_GADDR:
  134. /* get mac address */
  135. if(args) rt_memcpy(args, stm32_eth_device.dev_addr, 6);
  136. else return -RT_ERROR;
  137. break;
  138. default :
  139. break;
  140. }
  141. return RT_EOK;
  142. }
  143. /* ethernet device interface */
  144. /* transmit data*/
  145. rt_err_t rt_stm32_eth_tx( rt_device_t dev, struct pbuf* p)
  146. {
  147. rt_err_t ret = RT_ERROR;
  148. HAL_StatusTypeDef state;
  149. struct pbuf *q;
  150. uint8_t *buffer = (uint8_t *)(EthHandle.TxDesc->Buffer1Addr);
  151. __IO ETH_DMADescTypeDef *DmaTxDesc;
  152. uint32_t framelength = 0;
  153. uint32_t bufferoffset = 0;
  154. uint32_t byteslefttocopy = 0;
  155. uint32_t payloadoffset = 0;
  156. DmaTxDesc = EthHandle.TxDesc;
  157. bufferoffset = 0;
  158. /* Check if the descriptor is owned by the ETHERNET DMA (when set) or CPU (when reset) */
  159. while ((DmaTxDesc->Status & ETH_DMATXDESC_OWN) != (uint32_t)RESET)
  160. {
  161. rt_err_t result;
  162. rt_uint32_t level;
  163. level = rt_hw_interrupt_disable();
  164. tx_is_waiting = RT_TRUE;
  165. rt_hw_interrupt_enable(level);
  166. /* it's own bit set, wait it */
  167. result = rt_sem_take(&tx_wait, RT_WAITING_FOREVER);
  168. if (result == RT_EOK) break;
  169. if (result == -RT_ERROR) return -RT_ERROR;
  170. }
  171. /* copy frame from pbufs to driver buffers */
  172. for(q = p; q != NULL; q = q->next)
  173. {
  174. /* Is this buffer available? If not, goto error */
  175. if((DmaTxDesc->Status & ETH_DMATXDESC_OWN) != (uint32_t)RESET)
  176. {
  177. LOG_D("buffer not valid");
  178. ret = ERR_USE;
  179. goto error;
  180. }
  181. /* Get bytes in current lwIP buffer */
  182. byteslefttocopy = q->len;
  183. payloadoffset = 0;
  184. /* Check if the length of data to copy is bigger than Tx buffer size*/
  185. while( (byteslefttocopy + bufferoffset) > ETH_TX_BUF_SIZE )
  186. {
  187. /* Copy data to Tx buffer*/
  188. memcpy( (uint8_t*)((uint8_t*)buffer + bufferoffset), (uint8_t*)((uint8_t*)q->payload + payloadoffset), (ETH_TX_BUF_SIZE - bufferoffset) );
  189. /* Point to next descriptor */
  190. DmaTxDesc = (ETH_DMADescTypeDef *)(DmaTxDesc->Buffer2NextDescAddr);
  191. /* Check if the buffer is available */
  192. if((DmaTxDesc->Status & ETH_DMATXDESC_OWN) != (uint32_t)RESET)
  193. {
  194. LOG_D("dma tx desc buffer is not valid");
  195. ret = ERR_USE;
  196. goto error;
  197. }
  198. buffer = (uint8_t *)(DmaTxDesc->Buffer1Addr);
  199. byteslefttocopy = byteslefttocopy - (ETH_TX_BUF_SIZE - bufferoffset);
  200. payloadoffset = payloadoffset + (ETH_TX_BUF_SIZE - bufferoffset);
  201. framelength = framelength + (ETH_TX_BUF_SIZE - bufferoffset);
  202. bufferoffset = 0;
  203. }
  204. /* Copy the remaining bytes */
  205. memcpy( (uint8_t*)((uint8_t*)buffer + bufferoffset), (uint8_t*)((uint8_t*)q->payload + payloadoffset), byteslefttocopy );
  206. bufferoffset = bufferoffset + byteslefttocopy;
  207. framelength = framelength + byteslefttocopy;
  208. }
  209. #ifdef ETH_TX_DUMP
  210. dump_hex(buffer, p->tot_len);
  211. #endif
  212. /* Prepare transmit descriptors to give to DMA */
  213. /* TODO Optimize data send speed*/
  214. LOG_D("transmit frame lenth :%d", framelength);
  215. rt_thread_mdelay(1);
  216. state = HAL_ETH_TransmitFrame(&EthHandle, framelength);
  217. if (state != HAL_OK)
  218. {
  219. LOG_D("eth transmit frame faild: %d", state);
  220. }
  221. ret = ERR_OK;
  222. error:
  223. /* When Transmit Underflow flag is set, clear it and issue a Transmit Poll Demand to resume transmission */
  224. if ((EthHandle.Instance->DMASR & ETH_DMASR_TUS) != (uint32_t)RESET)
  225. {
  226. /* Clear TUS ETHERNET DMA flag */
  227. EthHandle.Instance->DMASR = ETH_DMASR_TUS;
  228. /* Resume DMA transmission*/
  229. EthHandle.Instance->DMATPDR = 0;
  230. }
  231. return ret;
  232. }
  233. /* receive data*/
  234. struct pbuf *rt_stm32_eth_rx(rt_device_t dev)
  235. {
  236. struct pbuf *p = NULL;
  237. struct pbuf *q = NULL;
  238. HAL_StatusTypeDef state;
  239. uint16_t len = 0;
  240. uint8_t *buffer;
  241. __IO ETH_DMADescTypeDef *dmarxdesc;
  242. uint32_t bufferoffset = 0;
  243. uint32_t payloadoffset = 0;
  244. uint32_t byteslefttocopy = 0;
  245. uint32_t i = 0;
  246. /* Get received frame */
  247. state = HAL_ETH_GetReceivedFrame_IT(&EthHandle);
  248. if (state != HAL_OK)
  249. {
  250. LOG_D("receive frame faild");
  251. return NULL;
  252. }
  253. /* Obtain the size of the packet and put it into the "len" variable. */
  254. len = EthHandle.RxFrameInfos.length;
  255. buffer = (uint8_t *)EthHandle.RxFrameInfos.buffer;
  256. LOG_D("receive frame len : %d", len);
  257. if (len > 0)
  258. {
  259. /* We allocate a pbuf chain of pbufs from the Lwip buffer pool */
  260. p = pbuf_alloc(PBUF_RAW, len, PBUF_POOL);
  261. }
  262. #ifdef ETH_RX_DUMP
  263. dump_hex(buffer, p->tot_len);
  264. #endif
  265. if (p != NULL)
  266. {
  267. dmarxdesc = EthHandle.RxFrameInfos.FSRxDesc;
  268. bufferoffset = 0;
  269. for(q = p; q != NULL; q = q->next)
  270. {
  271. byteslefttocopy = q->len;
  272. payloadoffset = 0;
  273. /* Check if the length of bytes to copy in current pbuf is bigger than Rx buffer size*/
  274. while( (byteslefttocopy + bufferoffset) > ETH_RX_BUF_SIZE )
  275. {
  276. /* Copy data to pbuf */
  277. memcpy( (uint8_t*)((uint8_t*)q->payload + payloadoffset), (uint8_t*)((uint8_t*)buffer + bufferoffset), (ETH_RX_BUF_SIZE - bufferoffset));
  278. /* Point to next descriptor */
  279. dmarxdesc = (ETH_DMADescTypeDef *)(dmarxdesc->Buffer2NextDescAddr);
  280. buffer = (uint8_t *)(dmarxdesc->Buffer1Addr);
  281. byteslefttocopy = byteslefttocopy - (ETH_RX_BUF_SIZE - bufferoffset);
  282. payloadoffset = payloadoffset + (ETH_RX_BUF_SIZE - bufferoffset);
  283. bufferoffset = 0;
  284. }
  285. /* Copy remaining data in pbuf */
  286. memcpy( (uint8_t*)((uint8_t*)q->payload + payloadoffset), (uint8_t*)((uint8_t*)buffer + bufferoffset), byteslefttocopy);
  287. bufferoffset = bufferoffset + byteslefttocopy;
  288. }
  289. }
  290. /* Release descriptors to DMA */
  291. /* Point to first descriptor */
  292. dmarxdesc = EthHandle.RxFrameInfos.FSRxDesc;
  293. /* Set Own bit in Rx descriptors: gives the buffers back to DMA */
  294. for (i = 0; i < EthHandle.RxFrameInfos.SegCount; i++)
  295. {
  296. dmarxdesc->Status |= ETH_DMARXDESC_OWN;
  297. dmarxdesc = (ETH_DMADescTypeDef *)(dmarxdesc->Buffer2NextDescAddr);
  298. }
  299. /* Clear Segment_Count */
  300. EthHandle.RxFrameInfos.SegCount = 0;
  301. /* When Rx Buffer unavailable flag is set: clear it and resume reception */
  302. if ((EthHandle.Instance->DMASR & ETH_DMASR_RBUS) != (uint32_t)RESET)
  303. {
  304. /* Clear RBUS ETHERNET DMA flag */
  305. EthHandle.Instance->DMASR = ETH_DMASR_RBUS;
  306. /* Resume DMA reception */
  307. EthHandle.Instance->DMARPDR = 0;
  308. }
  309. return p;
  310. }
  311. /* interrupt service routine */
  312. void ETH_IRQHandler(void)
  313. {
  314. /* enter interrupt */
  315. rt_interrupt_enter();
  316. HAL_ETH_IRQHandler(&EthHandle);
  317. /* leave interrupt */
  318. rt_interrupt_leave();
  319. }
  320. void HAL_ETH_TxCpltCallback(ETH_HandleTypeDef *heth)
  321. {
  322. if (tx_is_waiting == RT_TRUE)
  323. {
  324. tx_is_waiting = RT_FALSE;
  325. rt_sem_release(&tx_wait);
  326. }
  327. }
  328. void HAL_ETH_RxCpltCallback(ETH_HandleTypeDef *heth)
  329. {
  330. rt_err_t result;
  331. result = eth_device_ready(&(stm32_eth_device.parent));
  332. if( result != RT_EOK )
  333. LOG_D("RX err = %d", result );
  334. }
  335. void HAL_ETH_ErrorCallback(ETH_HandleTypeDef *heth)
  336. {
  337. LOG_D("eth err");
  338. }
  339. /* PHY: LAN8720 */
  340. static uint8_t phy_speed = 0;
  341. #define PHY_LINK_MASK (1<<0)
  342. #define PHY_100M_MASK (1<<1)
  343. #define PHY_DUPLEX_MASK (1<<2)
  344. static void phy_monitor_thread_entry(void *parameter)
  345. {
  346. uint8_t phy_addr = 0xFF;
  347. uint8_t phy_speed_new = 0;
  348. /* phy search */
  349. rt_uint32_t i, temp;
  350. for(i=0; i<=0x1F; i++)
  351. {
  352. HAL_ETH_ReadPHYRegister(&EthHandle, 0x02, (uint32_t *)&temp);
  353. if( temp != 0xFFFF )
  354. {
  355. phy_addr = i;
  356. break;
  357. }
  358. }
  359. if(phy_addr == 0xFF)
  360. {
  361. LOG_D("phy not probe!\r\n");
  362. return;
  363. }
  364. else
  365. {
  366. LOG_D("found a phy, address:0x%02X\r\n", phy_addr);
  367. }
  368. /* RESET PHY */
  369. LOG_D("RESET PHY!");
  370. HAL_ETH_WritePHYRegister(&EthHandle, PHY_BCR, PHY_RESET);
  371. rt_thread_delay(RT_TICK_PER_SECOND * 2);
  372. HAL_ETH_WritePHYRegister(&EthHandle, PHY_BCR, PHY_AUTONEGOTIATION);
  373. while(1)
  374. {
  375. rt_uint32_t status;
  376. HAL_ETH_ReadPHYRegister(&EthHandle, PHY_BSR, (uint32_t *)&status);
  377. LOG_D("LAN8720 status:0x%04X\r\n", status);
  378. phy_speed_new = 0;
  379. if(status & (PHY_AUTONEGO_COMPLETE | PHY_LINKED_STATUS))
  380. {
  381. rt_uint32_t SR;
  382. SR = HAL_ETH_ReadPHYRegister(&EthHandle, 31, (uint32_t *)&SR);
  383. LOG_D("LAN8720 REG 31:0x%04X ", SR);
  384. SR = (SR >> 2) & 0x07; /* LAN8720, REG31[4:2], Speed Indication. */
  385. phy_speed_new = PHY_LINK_MASK;
  386. if((SR & 0x03) == 2)
  387. {
  388. phy_speed_new |= PHY_100M_MASK;
  389. }
  390. if(SR & 0x04)
  391. {
  392. phy_speed_new |= PHY_DUPLEX_MASK;
  393. }
  394. }
  395. /* linkchange */
  396. if(phy_speed_new != phy_speed)
  397. {
  398. if(phy_speed_new & PHY_LINK_MASK)
  399. {
  400. LOG_D("link up ");
  401. if(phy_speed_new & PHY_100M_MASK)
  402. {
  403. LOG_D("100Mbps");
  404. stm32_eth_device.ETH_Speed = ETH_SPEED_100M;
  405. }
  406. else
  407. {
  408. stm32_eth_device.ETH_Speed = ETH_SPEED_10M;
  409. LOG_D("10Mbps");
  410. }
  411. if(phy_speed_new & PHY_DUPLEX_MASK)
  412. {
  413. LOG_D("full-duplex");
  414. stm32_eth_device.ETH_Mode = ETH_MODE_FULLDUPLEX;
  415. }
  416. else
  417. {
  418. LOG_D("half-duplex");
  419. stm32_eth_device.ETH_Mode = ETH_MODE_HALFDUPLEX;
  420. }
  421. rt_stm32_eth_init((rt_device_t)&stm32_eth_device);
  422. /* send link up. */
  423. eth_device_linkchange(&stm32_eth_device.parent, RT_TRUE);
  424. } /* link up. */
  425. else
  426. {
  427. LOG_D("link down\r\n");
  428. /* send link down. */
  429. eth_device_linkchange(&stm32_eth_device.parent, RT_FALSE);
  430. }
  431. phy_speed = phy_speed_new;
  432. }
  433. rt_thread_delay(RT_TICK_PER_SECOND);
  434. }
  435. }
  436. /* Register the EMAC device */
  437. static int rt_hw_stm32_eth_init(void)
  438. {
  439. /* Prepare receive and send buffers */
  440. Rx_Buff = (rt_uint8_t *)rt_calloc(ETH_RXBUFNB, ETH_MAX_PACKET_SIZE);
  441. if (Rx_Buff == RT_NULL)
  442. {
  443. LOG_E("No memory");
  444. }
  445. Tx_Buff = (rt_uint8_t *)rt_calloc(ETH_TXBUFNB, ETH_MAX_PACKET_SIZE);
  446. if (Rx_Buff == RT_NULL)
  447. {
  448. LOG_E("No memory");
  449. }
  450. DMARxDscrTab = (ETH_DMADescTypeDef * )rt_calloc(ETH_RXBUFNB, sizeof(ETH_DMADescTypeDef));
  451. if (DMARxDscrTab == RT_NULL)
  452. {
  453. LOG_E("No memory");
  454. }
  455. DMATxDscrTab = (ETH_DMADescTypeDef * )rt_calloc(ETH_TXBUFNB, sizeof(ETH_DMADescTypeDef));
  456. if (DMATxDscrTab == RT_NULL)
  457. {
  458. LOG_E("No memory");
  459. }
  460. rt_err_t state;
  461. stm32_eth_device.ETH_Speed = ETH_SPEED_100M;
  462. stm32_eth_device.ETH_Mode = ETH_MODE_FULLDUPLEX;
  463. /* OUI 00-80-E1 STMICROELECTRONICS. */
  464. stm32_eth_device.dev_addr[0] = 0x00;
  465. stm32_eth_device.dev_addr[1] = 0x80;
  466. stm32_eth_device.dev_addr[2] = 0xE1;
  467. /* generate MAC addr from 96bit unique ID (only for test). */
  468. stm32_eth_device.dev_addr[3] = *(rt_uint8_t*)(UID_BASE + 4);
  469. stm32_eth_device.dev_addr[4] = *(rt_uint8_t*)(UID_BASE + 2);
  470. stm32_eth_device.dev_addr[5] = *(rt_uint8_t*)(UID_BASE + 0);
  471. stm32_eth_device.parent.parent.init = rt_stm32_eth_init;
  472. stm32_eth_device.parent.parent.open = rt_stm32_eth_open;
  473. stm32_eth_device.parent.parent.close = rt_stm32_eth_close;
  474. stm32_eth_device.parent.parent.read = rt_stm32_eth_read;
  475. stm32_eth_device.parent.parent.write = rt_stm32_eth_write;
  476. stm32_eth_device.parent.parent.control = rt_stm32_eth_control;
  477. stm32_eth_device.parent.parent.user_data = RT_NULL;
  478. stm32_eth_device.parent.eth_rx = rt_stm32_eth_rx;
  479. stm32_eth_device.parent.eth_tx = rt_stm32_eth_tx;
  480. /* init tx semaphore */
  481. rt_sem_init(&tx_wait, "tx_wait", 0, RT_IPC_FLAG_FIFO);
  482. LOG_D("initialize tx wait semaphore");
  483. /* register eth device */
  484. state = eth_device_init(&(stm32_eth_device.parent), "e0");
  485. if (RT_EOK == state)
  486. {
  487. LOG_D("emac device init success");
  488. }
  489. else
  490. {
  491. LOG_D("emac device init faild: %d", state);
  492. }
  493. /* start phy monitor */
  494. rt_thread_t tid;
  495. tid = rt_thread_create("phy",
  496. phy_monitor_thread_entry,
  497. RT_NULL,
  498. 1024,
  499. RT_THREAD_PRIORITY_MAX - 2,
  500. 2);
  501. if (tid != RT_NULL)
  502. {
  503. rt_thread_startup(tid);
  504. }
  505. return state;
  506. }
  507. INIT_APP_EXPORT(rt_hw_stm32_eth_init);