drv_qspi.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413
  1. /*
  2. * Copyright (c) 2006-2018, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2018-11-27 zylx change to new framework
  9. * 2018-12-12 greedyhao Porting for stm32f7xx
  10. */
  11. #include "board.h"
  12. #include "drv_qspi.h"
  13. #include "drv_config.h"
  14. #ifdef RT_USING_QSPI
  15. #define DRV_DEBUG
  16. #define LOG_TAG "drv.qspi"
  17. #include <drv_log.h>
  18. #if defined(BSP_USING_QSPI)
  19. #if defined (SOC_SERIES_STM32L4)
  20. #define QUADSPI_DMA_IRQ DMA1_Channel5_IRQn
  21. #define QUADSPI_DMA_IRQHandler DMA1_Channel5_IRQHandler
  22. #elif defined (SOC_SERIES_STM32F7)
  23. #define QUADSPI_DMA_IRQ DMA2_Stream2_IRQn
  24. #define QUADSPI_DMA_IRQHandler DMA2_Stream2_IRQHandler
  25. #endif /* SOC_SERIES_STM32L4 */
  26. struct stm32_hw_spi_cs
  27. {
  28. uint16_t Pin;
  29. };
  30. struct stm32_qspi_bus
  31. {
  32. QSPI_HandleTypeDef QSPI_Handler;
  33. char *bus_name;
  34. #ifdef BSP_QSPI_USING_DMA
  35. DMA_HandleTypeDef hdma_quadspi;
  36. #endif
  37. };
  38. struct rt_spi_bus _qspi_bus1;
  39. struct stm32_qspi_bus _stm32_qspi_bus;
  40. static int stm32_qspi_init(struct rt_qspi_device *device, struct rt_qspi_configuration *qspi_cfg)
  41. {
  42. int result = RT_EOK;
  43. unsigned int i = 1;
  44. RT_ASSERT(device != RT_NULL);
  45. RT_ASSERT(qspi_cfg != RT_NULL);
  46. struct rt_spi_configuration *cfg = &qspi_cfg->parent;
  47. struct stm32_qspi_bus *qspi_bus = device->parent.bus->parent.user_data;
  48. rt_memset(&qspi_bus->QSPI_Handler, 0, sizeof(qspi_bus->QSPI_Handler));
  49. while (cfg->max_hz < HAL_RCC_GetHCLKFreq() / (i + 1))
  50. {
  51. i++;
  52. if (i == 255)
  53. {
  54. LOG_E("QSPI init failed, QSPI frequency(%d) is too low.", cfg->max_hz);
  55. return -RT_ERROR;
  56. }
  57. }
  58. /* 80/(1+i) */
  59. qspi_bus->QSPI_Handler.Init.ClockPrescaler = i;
  60. if (!(cfg->mode & RT_SPI_CPOL))
  61. {
  62. /* QSPI MODE0 */
  63. qspi_bus->QSPI_Handler.Init.ClockMode = QSPI_CLOCK_MODE_0;
  64. }
  65. else
  66. {
  67. /* QSPI MODE3 */
  68. qspi_bus->QSPI_Handler.Init.ClockMode = QSPI_CLOCK_MODE_3;
  69. }
  70. /* flash size */
  71. qspi_bus->QSPI_Handler.Init.FlashSize = POSITION_VAL(qspi_cfg->medium_size) - 1;
  72. qspi_bus->QSPI_Handler.Instance = QUADSPI;
  73. /* fifo threshold is 4 byte */
  74. qspi_bus->QSPI_Handler.Init.FifoThreshold = 4;
  75. /* Sampling shift half a cycle */
  76. qspi_bus->QSPI_Handler.Init.SampleShifting = QSPI_SAMPLE_SHIFTING_HALFCYCLE;
  77. /* cs high time */
  78. qspi_bus->QSPI_Handler.Init.ChipSelectHighTime = QSPI_CS_HIGH_TIME_4_CYCLE;
  79. result = HAL_QSPI_Init(&qspi_bus->QSPI_Handler);
  80. if (result == HAL_OK)
  81. {
  82. LOG_D("qspi init succsee!");
  83. }
  84. else
  85. {
  86. LOG_E("qspi init failed (%d)!", result);
  87. }
  88. #ifdef BSP_QSPI_USING_DMA
  89. /* QSPI interrupts must be enabled when using the HAL_QSPI_Receive_DMA */
  90. HAL_NVIC_SetPriority(QUADSPI_IRQn, 0, 0);
  91. HAL_NVIC_EnableIRQ(QUADSPI_IRQn);
  92. HAL_NVIC_SetPriority(QUADSPI_DMA_IRQ, 0, 0);
  93. HAL_NVIC_EnableIRQ(QUADSPI_DMA_IRQ);
  94. /* init QSPI DMA */
  95. __HAL_RCC_DMA1_CLK_ENABLE();
  96. HAL_DMA_DeInit(qspi_bus->QSPI_Handler.hdma);
  97. #if defined(SOC_SERIES_STM32F4)
  98. qspi_bus->hdma_quadspi.Instance = DMA1_Channel5;
  99. qspi_bus->hdma_quadspi.Init.Request = DMA_REQUEST_5;
  100. #elif defined(SOC_SERIES_STM32F7)
  101. qspi_bus->hdma_quadspi.Instance = DMA2_Stream2;
  102. qspi_bus->hdma_quadspi.Init.channel = DMA_CHANNEL_11;
  103. #endif
  104. qspi_bus->hdma_quadspi.Init.Direction = DMA_PERIPH_TO_MEMORY;
  105. qspi_bus->hdma_quadspi.Init.PeriphInc = DMA_PINC_DISABLE;
  106. qspi_bus->hdma_quadspi.Init.MemInc = DMA_MINC_ENABLE;
  107. qspi_bus->hdma_quadspi.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
  108. qspi_bus->hdma_quadspi.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
  109. qspi_bus->hdma_quadspi.Init.Mode = DMA_NORMAL;
  110. qspi_bus->hdma_quadspi.Init.Priority = DMA_PRIORITY_LOW;
  111. if (HAL_DMA_Init(&qspi_bus->hdma_quadspi) != HAL_OK)
  112. {
  113. LOG_E("qspi dma init failed (%d)!", result);
  114. }
  115. __HAL_LINKDMA(&qspi_bus->QSPI_Handler,hdma,qspi_bus->hdma_quadspi);
  116. #endif /* BSP_QSPI_USING_DMA */
  117. return result;
  118. }
  119. static void qspi_send_cmd(struct stm32_qspi_bus *qspi_bus, struct rt_qspi_message *message)
  120. {
  121. RT_ASSERT(qspi_bus != RT_NULL);
  122. RT_ASSERT(message != RT_NULL);
  123. QSPI_CommandTypeDef Cmdhandler;
  124. /* set QSPI cmd struct */
  125. Cmdhandler.Instruction = message->instruction.content;
  126. Cmdhandler.Address = message->address.content;
  127. Cmdhandler.DummyCycles = message->dummy_cycles;
  128. if (message->instruction.qspi_lines == 0)
  129. {
  130. Cmdhandler.InstructionMode = QSPI_INSTRUCTION_NONE;
  131. }
  132. else if (message->instruction.qspi_lines == 1)
  133. {
  134. Cmdhandler.InstructionMode = QSPI_INSTRUCTION_1_LINE;
  135. }
  136. else if (message->instruction.qspi_lines == 2)
  137. {
  138. Cmdhandler.InstructionMode = QSPI_INSTRUCTION_2_LINES;
  139. }
  140. else if (message->instruction.qspi_lines == 4)
  141. {
  142. Cmdhandler.InstructionMode = QSPI_INSTRUCTION_4_LINES;
  143. }
  144. if (message->address.qspi_lines == 0)
  145. {
  146. Cmdhandler.AddressMode = QSPI_ADDRESS_NONE;
  147. }
  148. else if (message->address.qspi_lines == 1)
  149. {
  150. Cmdhandler.AddressMode = QSPI_ADDRESS_1_LINE;
  151. }
  152. else if (message->address.qspi_lines == 2)
  153. {
  154. Cmdhandler.AddressMode = QSPI_ADDRESS_2_LINES;
  155. }
  156. else if (message->address.qspi_lines == 4)
  157. {
  158. Cmdhandler.AddressMode = QSPI_ADDRESS_4_LINES;
  159. }
  160. if (message->address.size == 24)
  161. {
  162. Cmdhandler.AddressSize = QSPI_ADDRESS_24_BITS;
  163. }
  164. else
  165. {
  166. Cmdhandler.AddressSize = QSPI_ADDRESS_32_BITS;
  167. }
  168. if (message->qspi_data_lines == 0)
  169. {
  170. Cmdhandler.DataMode = QSPI_DATA_NONE;
  171. }
  172. else if (message->qspi_data_lines == 1)
  173. {
  174. Cmdhandler.DataMode = QSPI_DATA_1_LINE;
  175. }
  176. else if (message->qspi_data_lines == 2)
  177. {
  178. Cmdhandler.DataMode = QSPI_DATA_2_LINES;
  179. }
  180. else if (message->qspi_data_lines == 4)
  181. {
  182. Cmdhandler.DataMode = QSPI_DATA_4_LINES;
  183. }
  184. Cmdhandler.SIOOMode = QSPI_SIOO_INST_EVERY_CMD;
  185. Cmdhandler.AlternateByteMode = QSPI_ALTERNATE_BYTES_NONE;
  186. Cmdhandler.DdrMode = QSPI_DDR_MODE_DISABLE;
  187. Cmdhandler.DdrHoldHalfCycle = QSPI_DDR_HHC_ANALOG_DELAY;
  188. Cmdhandler.NbData = message->parent.length;
  189. HAL_QSPI_Command(&qspi_bus->QSPI_Handler, &Cmdhandler, 5000);
  190. }
  191. static rt_uint32_t qspixfer(struct rt_spi_device *device, struct rt_spi_message *message)
  192. {
  193. rt_size_t len = 0;
  194. RT_ASSERT(device != RT_NULL);
  195. RT_ASSERT(device->bus != RT_NULL);
  196. struct rt_qspi_message *qspi_message = (struct rt_qspi_message *)message;
  197. struct stm32_qspi_bus *qspi_bus = device->bus->parent.user_data;
  198. #ifdef BSP_QSPI_USING_SOFTCS
  199. struct stm32_hw_spi_cs *cs = device->parent.user_data;
  200. #endif
  201. const rt_uint8_t *sndb = message->send_buf;
  202. rt_uint8_t *rcvb = message->recv_buf;
  203. rt_int32_t length = message->length;
  204. #ifdef BSP_QSPI_USING_SOFTCS
  205. if (message->cs_take)
  206. {
  207. rt_pin_write(cs->pin, 0);
  208. }
  209. #endif
  210. /* send data */
  211. if (sndb)
  212. {
  213. qspi_send_cmd(qspi_bus, qspi_message);
  214. if (qspi_message->parent.length != 0)
  215. {
  216. if (HAL_QSPI_Transmit(&qspi_bus->QSPI_Handler, (rt_uint8_t *)sndb, 5000) == HAL_OK)
  217. {
  218. len = length;
  219. }
  220. else
  221. {
  222. LOG_E("QSPI send data failed(%d)!", qspi_bus->QSPI_Handler.ErrorCode);
  223. qspi_bus->QSPI_Handler.State = HAL_QSPI_STATE_READY;
  224. goto __exit;
  225. }
  226. }
  227. else
  228. {
  229. len = 1;
  230. }
  231. }
  232. else if (rcvb)/* recv data */
  233. {
  234. qspi_send_cmd(qspi_bus, qspi_message);
  235. #ifdef BSP_QSPI_USING_DMA
  236. if (HAL_QSPI_Receive_DMA(&qspi_bus->QSPI_Handler, rcvb) == HAL_OK)
  237. #else
  238. if (HAL_QSPI_Receive(&qspi_bus->QSPI_Handler, rcvb, 5000) == HAL_OK)
  239. #endif
  240. {
  241. len = length;
  242. #ifdef BSP_QSPI_USING_DMA
  243. while(qspi_bus->QSPI_Handler.RxXferCount != 0);
  244. #endif
  245. }
  246. else
  247. {
  248. LOG_E("QSPI recv data failed(%d)!", qspi_bus->QSPI_Handler.ErrorCode);
  249. qspi_bus->QSPI_Handler.State = HAL_QSPI_STATE_READY;
  250. goto __exit;
  251. }
  252. }
  253. __exit:
  254. #ifdef BSP_QSPI_USING_SOFTCS
  255. if (message->cs_release)
  256. {
  257. rt_pin_write(cs->pin, 1);
  258. }
  259. #endif
  260. return len;
  261. }
  262. static rt_err_t qspi_configure(struct rt_spi_device *device, struct rt_spi_configuration *configuration)
  263. {
  264. RT_ASSERT(device != RT_NULL);
  265. RT_ASSERT(configuration != RT_NULL);
  266. struct rt_qspi_device *qspi_device = (struct rt_qspi_device *)device;
  267. return stm32_qspi_init(qspi_device, &qspi_device->config);
  268. }
  269. static const struct rt_spi_ops stm32_qspi_ops =
  270. {
  271. .configure = qspi_configure,
  272. .xfer = qspixfer,
  273. };
  274. static int stm32_qspi_register_bus(struct stm32_qspi_bus *qspi_bus, const char *name)
  275. {
  276. RT_ASSERT(qspi_bus != RT_NULL);
  277. RT_ASSERT(name != RT_NULL);
  278. _qspi_bus1.parent.user_data = qspi_bus;
  279. return rt_qspi_bus_register(&_qspi_bus1, name, &stm32_qspi_ops);
  280. }
  281. /**
  282. * @brief This function attach device to QSPI bus.
  283. * @param device_name QSPI device name
  284. * @param pin QSPI cs pin number
  285. * @param data_line_width QSPI data lines width, such as 1, 2, 4
  286. * @param enter_qspi_mode Callback function that lets FLASH enter QSPI mode
  287. * @param exit_qspi_mode Callback function that lets FLASH exit QSPI mode
  288. * @retval 0 : success
  289. * -1 : failed
  290. */
  291. rt_err_t stm32_qspi_bus_attach_device(const char *bus_name, const char *device_name, rt_uint32_t pin, rt_uint8_t data_line_width, void (*enter_qspi_mode)(), void (*exit_qspi_mode)())
  292. {
  293. struct rt_qspi_device *qspi_device = RT_NULL;
  294. struct stm32_hw_spi_cs *cs_pin = RT_NULL;
  295. rt_err_t result = RT_EOK;
  296. RT_ASSERT(bus_name != RT_NULL);
  297. RT_ASSERT(device_name != RT_NULL);
  298. RT_ASSERT(data_line_width == 1 || data_line_width == 2 || data_line_width == 4);
  299. qspi_device = (struct rt_qspi_device *)rt_malloc(sizeof(struct rt_qspi_device));
  300. if (qspi_device == RT_NULL)
  301. {
  302. LOG_E("no memory, qspi bus attach device failed!");
  303. result = RT_ENOMEM;
  304. goto __exit;
  305. }
  306. cs_pin = (struct stm32_hw_spi_cs *)rt_malloc(sizeof(struct stm32_hw_spi_cs));
  307. if (qspi_device == RT_NULL)
  308. {
  309. LOG_E("no memory, qspi bus attach device failed!");
  310. result = RT_ENOMEM;
  311. goto __exit;
  312. }
  313. qspi_device->enter_qspi_mode = enter_qspi_mode;
  314. qspi_device->exit_qspi_mode = exit_qspi_mode;
  315. qspi_device->config.qspi_dl_width = data_line_width;
  316. cs_pin->Pin = pin;
  317. #ifdef BSP_QSPI_USING_SOFTCS
  318. rt_pin_mode(pin, PIN_MODE_OUTPUT);
  319. rt_pin_write(pin, 1);
  320. #endif
  321. result = rt_spi_bus_attach_device(&qspi_device->parent, device_name, bus_name, (void *)cs_pin);
  322. __exit:
  323. if (result != RT_EOK)
  324. {
  325. if (qspi_device)
  326. {
  327. rt_free(qspi_device);
  328. }
  329. if (cs_pin)
  330. {
  331. rt_free(cs_pin);
  332. }
  333. }
  334. return result;
  335. }
  336. #ifdef BSP_QSPI_USING_DMA
  337. void QUADSPI_IRQHandler(void)
  338. {
  339. /* enter interrupt */
  340. rt_interrupt_enter();
  341. HAL_QSPI_IRQHandler(&_stm32_qspi_bus.QSPI_Handler);
  342. /* leave interrupt */
  343. rt_interrupt_leave();
  344. }
  345. void QUADSPI_DMA_IRQHandler(void)
  346. {
  347. /* enter interrupt */
  348. rt_interrupt_enter();
  349. HAL_DMA_IRQHandler(&_stm32_qspi_bus.hdma_quadspi);
  350. /* leave interrupt */
  351. rt_interrupt_leave();
  352. }
  353. #endif /* BSP_QSPI_USING_DMA */
  354. static int rt_hw_qspi_bus_init(void)
  355. {
  356. return stm32_qspi_register_bus(&_stm32_qspi_bus, "qspi1");
  357. }
  358. INIT_BOARD_EXPORT(rt_hw_qspi_bus_init);
  359. #endif /* BSP_USING_QSPI */
  360. #endif /* RT_USING_QSPI */