drv_spi.c 7.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282
  1. /*
  2. * Copyright (c) 2006-2018, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2016-09-02 Aubr.Cool the first version
  9. */
  10. #include <stm32l0xx.h>
  11. #include <rthw.h>
  12. #include <rtthread.h>
  13. #include <rtdevice.h>
  14. #include <board.h>
  15. #define SPIRXEVENT 0x01
  16. #define SPITXEVENT 0x02
  17. #ifdef RT_USING_SPI
  18. #define SPITIMEOUT 2
  19. #define SPICRCEN 0
  20. struct stm32_hw_spi;
  21. typedef void(*spiirqapi)(struct stm32_hw_spi *hspi);
  22. struct stm32_hw_spi {
  23. SPI_TypeDef* Instance;
  24. struct rt_spi_configuration* cfg;
  25. };
  26. struct stm32_spi {
  27. SPI_TypeDef* spi_device;
  28. struct stm32_hw_spi *data;
  29. };
  30. struct stm32_hw_spi_cs {
  31. rt_uint32_t pin;
  32. };
  33. static rt_err_t stml0xx_spi_init(SPI_TypeDef * spix, struct rt_spi_configuration * cfg)
  34. {
  35. SPI_HandleTypeDef hspi;
  36. hspi.Instance = spix;
  37. if(cfg->mode & RT_SPI_SLAVE) {
  38. hspi.Init.Mode = SPI_MODE_SLAVE;
  39. } else {
  40. hspi.Init.Mode = SPI_MODE_MASTER;
  41. }
  42. if(cfg->mode & RT_SPI_3WIRE) {
  43. hspi.Init.Direction = SPI_DIRECTION_1LINE;
  44. } else {
  45. hspi.Init.Direction = SPI_DIRECTION_2LINES;
  46. }
  47. if(cfg->data_width == 8) {
  48. hspi.Init.DataSize = SPI_DATASIZE_8BIT;
  49. } else if(cfg->data_width == 16) {
  50. hspi.Init.DataSize = SPI_DATASIZE_16BIT;
  51. } else {
  52. return RT_EIO;
  53. }
  54. if(cfg->mode & RT_SPI_CPHA) {
  55. hspi.Init.CLKPhase = SPI_PHASE_2EDGE;
  56. } else {
  57. hspi.Init.CLKPhase = SPI_PHASE_1EDGE;
  58. }
  59. if(cfg->mode & RT_SPI_CPOL) {
  60. hspi.Init.CLKPolarity = SPI_POLARITY_HIGH;
  61. } else {
  62. hspi.Init.CLKPolarity = SPI_POLARITY_LOW;
  63. }
  64. if(cfg->mode & RT_SPI_NO_CS) {
  65. hspi.Init.NSS = SPI_NSS_SOFT;
  66. } else {
  67. hspi.Init.NSS = SPI_NSS_HARD_OUTPUT;
  68. }
  69. hspi.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_4;
  70. if(cfg->mode & RT_SPI_MSB) {
  71. hspi.Init.FirstBit = SPI_FIRSTBIT_MSB;
  72. } else {
  73. hspi.Init.FirstBit = SPI_FIRSTBIT_LSB;
  74. }
  75. hspi.Init.TIMode = SPI_TIMODE_DISABLE;
  76. hspi.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
  77. hspi.Init.CRCPolynomial = 7;
  78. if (HAL_SPI_Init(&hspi) != HAL_OK)
  79. {
  80. return RT_EIO;
  81. }
  82. __HAL_SPI_ENABLE(&hspi);
  83. return RT_EOK;
  84. }
  85. #define SPISTEP(datalen) (((datalen) == 8) ? 1 : 2)
  86. #define SPISEND_1(reg, ptr, datalen) \
  87. do {\
  88. if(datalen == 8) { \
  89. (reg) = *(rt_uint8_t *)(ptr); \
  90. } else { \
  91. (reg) = *(rt_uint16_t *) (ptr); \
  92. } \
  93. } while(0)
  94. #define SPIRECV_1(reg, ptr, datalen) \
  95. do {\
  96. if(datalen == 8) { \
  97. *(rt_uint8_t *)(ptr) = (reg); \
  98. } else { \
  99. *(rt_uint16_t *) (ptr) = reg; \
  100. } \
  101. } while(0)
  102. static rt_err_t spitxrx1b(struct stm32_hw_spi *hspi, void *rcvb, const void *sndb)
  103. {
  104. rt_uint32_t padrcv = 0;
  105. rt_uint32_t padsnd = 0xFF;
  106. if(! rcvb && !sndb) {
  107. return RT_ERROR;
  108. }
  109. if(!rcvb) {
  110. rcvb = &padrcv;
  111. }
  112. if(!sndb) {
  113. sndb = &padsnd;
  114. }
  115. while(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_TXE) == RESET);
  116. SPISEND_1(hspi->Instance->DR, sndb, hspi->cfg->data_width);
  117. while(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_RXNE) == RESET);
  118. SPIRECV_1(hspi->Instance->DR, rcvb, hspi->cfg->data_width);
  119. return RT_EOK;
  120. }
  121. static rt_uint32_t spixfer(struct rt_spi_device *device, struct rt_spi_message *message)
  122. {
  123. rt_err_t res;
  124. RT_ASSERT(device != RT_NULL);
  125. RT_ASSERT(device->bus != RT_NULL);
  126. RT_ASSERT(device->bus->parent.user_data != RT_NULL);
  127. struct stm32_spi* spix;
  128. spix = (struct stm32_spi *)device->bus->parent.user_data;
  129. struct stm32_hw_spi *hspi = spix->data;
  130. struct stm32_hw_spi_cs * cs = device->parent.user_data;
  131. if(message->cs_take) {
  132. rt_pin_write(cs->pin, 0);
  133. }
  134. const rt_uint8_t *sndb = message->send_buf;
  135. rt_uint8_t *rcvb = message->recv_buf;
  136. rt_int32_t length = message->length;
  137. while(length) {
  138. res = spitxrx1b(hspi, rcvb, sndb);
  139. if(rcvb) {
  140. rcvb += SPISTEP(hspi->cfg->data_width);
  141. }
  142. if(sndb) {
  143. sndb += SPISTEP(hspi->cfg->data_width);
  144. }
  145. if(res != RT_EOK) {
  146. break;
  147. }
  148. length--;
  149. }
  150. /* Wait until Busy flag is reset before disabling SPI */
  151. while(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_BSY) == SET);
  152. if(message->cs_release) {
  153. rt_pin_write(cs->pin, 1);
  154. }
  155. return message->length - length;
  156. }
  157. #ifdef RT_USING_SPI1
  158. static struct stm32_hw_spi spi1hwdata = {
  159. .Instance = SPI1,
  160. };
  161. const static struct stm32_spi spi1 = {
  162. SPI1,
  163. &spi1hwdata,
  164. };
  165. const static struct stm32_hw_spi_cs stm32_spi1_cs = {
  166. SPI1PINNSS,
  167. };
  168. rt_err_t spi1configure(struct rt_spi_device *device,
  169. struct rt_spi_configuration *configuration)
  170. {
  171. spi1hwdata.cfg = configuration;
  172. return stml0xx_spi_init(spi1.spi_device, configuration);
  173. }
  174. const struct rt_spi_ops stm_spi_ops1 =
  175. {
  176. .configure = spi1configure,
  177. .xfer = spixfer,
  178. };
  179. static struct rt_spi_bus stm_spi_bus1 = {
  180. .parent = {
  181. .user_data = (void *)&spi1,
  182. },
  183. };
  184. #endif /*RT_USING_SPI1*/
  185. #ifdef RT_USING_SPI2
  186. static struct stm32_hw_spi spi2hwdata = {
  187. .Instance = SPI2,
  188. };
  189. const struct stm32_spi spi2 = {
  190. SPI2,
  191. &spi2hwdata,
  192. };
  193. rt_err_t spi2configure(struct rt_spi_device *device,
  194. struct rt_spi_configuration *configuration)
  195. {
  196. spi2hwdata.cfg = configuration;
  197. return stml0xx_spi_init(spi2.spi_device, configuration);
  198. }
  199. const struct rt_spi_ops stm_spi_ops2 =
  200. {
  201. .configure = spi2configure,
  202. .xfer = spixfer,
  203. };
  204. const static struct stm32_hw_spi_cs stm32_spi2_cs = {
  205. SPI2PINNSS,
  206. };
  207. static struct rt_spi_bus stm_spi_bus2 = {
  208. .parent = {
  209. .user_data = (void *)&spi2,
  210. },
  211. };
  212. #endif /*RT_USING_SPI2*/
  213. static void RCC_Configuration(void)
  214. {
  215. #ifdef RT_USING_SPI1
  216. __HAL_RCC_SPI1_CLK_ENABLE();
  217. #endif /*RT_USING_SPI1*/
  218. #ifdef RT_USING_SPI2
  219. __HAL_RCC_SPI2_CLK_ENABLE();
  220. #endif /*RT_USING_SPI2*/
  221. }
  222. static void GPIO_Configuration(void)
  223. {
  224. #ifdef RT_USING_SPI1
  225. {
  226. /**SPI1 GPIO Configuration **/
  227. rt_uint32_t mode;
  228. mode = (GPIO_AF0_SPI1 << 8) | GPIO_MODE_AF_PP;
  229. stm32_pin_mode_early(SPI1PINSCK, mode);
  230. stm32_pin_mode_early(SPI1PINMISO, mode);
  231. stm32_pin_mode_early(SPI1PINMOSI, mode);
  232. }
  233. #endif /*RT_USING_SPI1*/
  234. #ifdef RT_USING_SPI2
  235. #endif /*RT_USING_SPI1*/
  236. }
  237. int stm32_hw_spi_init(void)
  238. {
  239. int result1 = RT_EOK, result2 = RT_EOK;
  240. RCC_Configuration();
  241. GPIO_Configuration();
  242. #ifdef RT_USING_SPI1
  243. {
  244. result1 = rt_spi_bus_register(&stm_spi_bus1, "spi1", &stm_spi_ops1);
  245. static struct rt_spi_device spi_device;
  246. rt_uint32_t mode = GPIO_MODE_OUTPUT_PP;
  247. stm32_pin_mode_early(SPI1PINNSS, mode);
  248. stm32_pin_write_early(SPI1PINNSS, 1);
  249. rt_spi_bus_attach_device(&spi_device, "spi10", "spi1", (void *)&stm32_spi1_cs);
  250. }
  251. #endif /*RT_USING_SPI1*/
  252. #ifdef RT_USING_SPI2
  253. {
  254. result2 = rt_spi_bus_register(&stm_spi_bus2, "spi2", &stm_spi_ops1);
  255. static struct rt_spi_device spi_device;
  256. rt_uint32_t mode = GPIO_MODE_OUTPUT_PP;
  257. stm32_pin_mode_early(SPI2PINNSS, mode);
  258. stm32_pin_write_early(SPI2PINNSS, 1);
  259. rt_spi_bus_attach_device(&spi_device, "spi20", "spi2", (void *)&stm32_spi2_cs);
  260. }
  261. #endif /*RT_USING_SPI2*/
  262. return result1 | result2;
  263. }
  264. INIT_BOARD_EXPORT(stm32_hw_spi_init);
  265. #endif /*RT_USING_SPI*/