usart.c 6.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253
  1. /*
  2. * Copyright (c) 2006-2018, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2016-08-30 Aubr.Cool the first version
  9. */
  10. #include <stm32l0xx.h>
  11. #include <rtdevice.h>
  12. #include <board.h>
  13. #include "usart.h"
  14. /* USART1 */
  15. #ifdef RT_USING_UART1
  16. #define UART1_GPIO GPIOA
  17. #endif
  18. /* STM32 uart driver */
  19. struct stm32_uart
  20. {
  21. USART_TypeDef* uart_device;
  22. IRQn_Type irq;
  23. };
  24. typedef struct {
  25. USART_TypeDef *Instance;
  26. } stm32_hw_uart_def;
  27. static rt_err_t stm32_configure(struct rt_serial_device *serial, struct serial_configure *cfg)
  28. {
  29. UART_HandleTypeDef huart1;
  30. RT_ASSERT(serial != RT_NULL);
  31. RT_ASSERT(cfg != RT_NULL);
  32. struct stm32_uart* uart;
  33. uart = (struct stm32_uart *)serial->parent.user_data;
  34. huart1.Instance = uart->uart_device;
  35. huart1.Init.BaudRate = cfg->baud_rate;
  36. switch(cfg->data_bits) {
  37. case DATA_BITS_7:
  38. if(!cfg->parity) {
  39. huart1.Init.WordLength = UART_WORDLENGTH_7B;
  40. } else {
  41. huart1.Init.WordLength = UART_WORDLENGTH_8B;
  42. }
  43. break;
  44. case DATA_BITS_8:
  45. if(!cfg->parity) {
  46. huart1.Init.WordLength = UART_WORDLENGTH_8B;
  47. } else {
  48. huart1.Init.WordLength = UART_WORDLENGTH_9B;
  49. }
  50. break;
  51. case DATA_BITS_9:
  52. if(!cfg->parity) {
  53. huart1.Init.WordLength = UART_WORDLENGTH_9B;
  54. } else {
  55. return RT_EIO;
  56. }
  57. break;
  58. default:
  59. return RT_EIO;
  60. }
  61. switch(cfg->stop_bits) {
  62. case STOP_BITS_1:
  63. huart1.Init.StopBits = UART_STOPBITS_1;
  64. break;
  65. case STOP_BITS_2:
  66. huart1.Init.StopBits = UART_STOPBITS_2;
  67. break;
  68. default:
  69. return RT_EIO;
  70. }
  71. switch(cfg->parity) {
  72. case PARITY_NONE:
  73. huart1.Init.Parity = UART_PARITY_NONE;
  74. break;
  75. case PARITY_ODD:
  76. huart1.Init.Parity = UART_PARITY_ODD;
  77. break;
  78. case PARITY_EVEN:
  79. huart1.Init.Parity = UART_PARITY_EVEN;
  80. break;
  81. default:
  82. return RT_EIO;
  83. }
  84. huart1.Init.Mode = UART_MODE_TX_RX;
  85. huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  86. huart1.Init.OverSampling = UART_OVERSAMPLING_16;
  87. huart1.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
  88. huart1.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
  89. if (HAL_UART_Init(&huart1) != HAL_OK)
  90. {
  91. return RT_EIO;
  92. }
  93. return RT_EOK;
  94. }
  95. static rt_err_t stm32_control(struct rt_serial_device *serial, int cmd, void *arg)
  96. {
  97. struct stm32_uart* uart;
  98. stm32_hw_uart_def huart1;
  99. RT_ASSERT(serial != RT_NULL);
  100. uart = (struct stm32_uart *)serial->parent.user_data;
  101. huart1.Instance = uart->uart_device;
  102. switch (cmd)
  103. {
  104. case RT_DEVICE_CTRL_CLR_INT:
  105. __HAL_UART_DISABLE_IT((&huart1), UART_IT_RXNE);
  106. break;
  107. case RT_DEVICE_CTRL_SET_INT:
  108. /* enable rx irq */
  109. __HAL_UART_ENABLE_IT((&huart1), UART_IT_RXNE);
  110. break;
  111. }
  112. return RT_EOK;
  113. }
  114. static int stm32_putc(struct rt_serial_device *serial, char c)
  115. {
  116. struct stm32_uart* uart;
  117. RT_ASSERT(serial != RT_NULL);
  118. uart = (struct stm32_uart *)serial->parent.user_data;
  119. stm32_hw_uart_def huart1;
  120. huart1.Instance = uart->uart_device;
  121. if(serial->parent.open_flag & RT_DEVICE_FLAG_INT_TX) {
  122. if(!(uart->uart_device->ISR & UART_FLAG_TXE)) {
  123. __HAL_UART_ENABLE_IT((&huart1), UART_IT_TC);
  124. return -1;
  125. }
  126. uart->uart_device->TDR = c;
  127. __HAL_UART_ENABLE_IT((&huart1), UART_IT_TC);
  128. } else {
  129. while(!(uart->uart_device->ISR & UART_FLAG_TXE));
  130. uart->uart_device->TDR = c;
  131. }
  132. return 1;
  133. }
  134. static int stm32_getc(struct rt_serial_device *serial)
  135. {
  136. int ch;
  137. struct stm32_uart* uart;
  138. RT_ASSERT(serial != RT_NULL);
  139. uart = (struct stm32_uart *)serial->parent.user_data;
  140. ch = -1;
  141. if (uart->uart_device->ISR & UART_FLAG_RXNE)
  142. {
  143. ch = uart->uart_device->RDR & 0xff;
  144. }
  145. return ch;
  146. }
  147. static const struct rt_uart_ops stm32_uart_ops =
  148. {
  149. stm32_configure,
  150. stm32_control,
  151. stm32_putc,
  152. stm32_getc,
  153. };
  154. #if defined(RT_USING_UART1)
  155. /* UART1 device driver structure */
  156. struct stm32_uart uart1 =
  157. {
  158. USART1,
  159. USART1_IRQn,
  160. };
  161. struct rt_serial_device serial1;
  162. void USART1_IRQHandler(void)
  163. {
  164. struct stm32_uart* uart;
  165. uart = &uart1;
  166. stm32_hw_uart_def huart1;
  167. huart1.Instance = uart->uart_device;
  168. /* enter interrupt */
  169. rt_interrupt_enter();
  170. if(__HAL_UART_GET_IT(&huart1, UART_IT_RXNE))// RXIRQ
  171. {
  172. rt_hw_serial_isr(&serial1, RT_SERIAL_EVENT_RX_IND);
  173. }
  174. if (__HAL_UART_GET_IT(&huart1, UART_IT_TC))
  175. {
  176. /* clear interrupt */
  177. __HAL_UART_DISABLE_IT((&huart1), UART_IT_TC);
  178. __HAL_UART_CLEAR_IT(&huart1, UART_CLEAR_TCF);
  179. rt_hw_serial_isr(&serial1, RT_SERIAL_EVENT_TX_DONE);
  180. }
  181. /* leave interrupt */
  182. rt_interrupt_leave();
  183. }
  184. #endif /* RT_USING_UART1 */
  185. static void RCC_Configuration(void)
  186. {
  187. #ifdef RT_USING_UART1
  188. __HAL_RCC_GPIOA_CLK_ENABLE();
  189. __HAL_RCC_USART1_CLK_ENABLE();
  190. #endif /* RT_USING_UART1 */
  191. }
  192. static void GPIO_Configuration(void)
  193. {
  194. #ifdef RT_USING_UART1
  195. {
  196. rt_uint32_t mode;
  197. mode = (UART1_GPIO_AF << 8) | GPIO_MODE_AF_PP;
  198. stm32_pin_mode_early(UART1_GPIO_TX, mode);
  199. stm32_pin_mode_early(UART1_GPIO_RX, mode);
  200. }
  201. #endif /* RT_USING_UART1 */
  202. }
  203. static void NVIC_Configuration(struct stm32_uart* uart)
  204. {
  205. HAL_NVIC_SetPriority(uart->irq, 0, 0);
  206. UART_ENABLE_IRQ(uart->irq);
  207. }
  208. int rt_hw_usart_init(void)
  209. {
  210. struct stm32_uart* uart;
  211. struct serial_configure config = RT_SERIAL_CONFIG_DEFAULT;
  212. RCC_Configuration();
  213. GPIO_Configuration();
  214. #ifdef RT_USING_UART1
  215. uart = &uart1;
  216. config.baud_rate = BAUD_RATE_115200;
  217. serial1.ops = &stm32_uart_ops;
  218. serial1.config = config;
  219. NVIC_Configuration(&uart1);
  220. /* register UART1 device */
  221. rt_hw_serial_register(&serial1, "uart1",
  222. RT_DEVICE_FLAG_RDWR |
  223. RT_DEVICE_FLAG_INT_RX |
  224. RT_DEVICE_FLAG_INT_TX,
  225. uart);
  226. #endif /* RT_USING_UART1 */
  227. return 0;
  228. }
  229. INIT_BOARD_EXPORT(rt_hw_usart_init);