dm9000.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476
  1. #include <rtthread.h>
  2. #include "dm9000.h"
  3. #include <netif/ethernetif.h>
  4. #include "lwipopts.h"
  5. /*
  6. * DM9000 interrupt line is connected to PF7
  7. */
  8. //--------------------------------------------------------
  9. #define DM9000_PHY 0x40 /* PHY address 0x01 */
  10. #define MAX_ADDR_LEN 6
  11. enum DM9000_PHY_mode
  12. {
  13. DM9000_10MHD = 0, DM9000_100MHD = 1,
  14. DM9000_10MFD = 4, DM9000_100MFD = 5,
  15. DM9000_AUTO = 8, DM9000_1M_HPNA = 0x10
  16. };
  17. enum DM9000_TYPE
  18. {
  19. TYPE_DM9000E,
  20. TYPE_DM9000A,
  21. TYPE_DM9000B
  22. };
  23. struct rt_dm9000_eth
  24. {
  25. /* inherit from ethernet device */
  26. struct eth_device parent;
  27. enum DM9000_TYPE type;
  28. rt_uint8_t imr_all;
  29. /* interface address info. */
  30. rt_uint8_t dev_addr[MAX_ADDR_LEN]; /* hw address */
  31. };
  32. static struct rt_dm9000_eth dm9000_device;
  33. static void delay_ms(rt_uint32_t ms)
  34. {
  35. rt_uint32_t len;
  36. for (;ms > 0; ms --)
  37. for (len = 0; len < 100; len++ );
  38. }
  39. /* Read a byte from I/O port */
  40. rt_inline rt_uint8_t dm9000_io_read(rt_uint16_t reg)
  41. {
  42. DM9000_IO = reg;
  43. return (rt_uint8_t) DM9000_DATA;
  44. }
  45. /* Write a byte to I/O port */
  46. rt_inline void dm9000_io_write(rt_uint16_t reg, rt_uint16_t value)
  47. {
  48. DM9000_IO = reg;
  49. DM9000_DATA = value;
  50. }
  51. /* Read a word from phyxcer */
  52. rt_inline rt_uint16_t phy_read(rt_uint16_t reg)
  53. {
  54. rt_uint16_t val;
  55. /* Fill the phyxcer register into REG_0C */
  56. dm9000_io_write(DM9000_EPAR, DM9000_PHY | reg);
  57. dm9000_io_write(DM9000_EPCR, 0xc); /* Issue phyxcer read command */
  58. delay_ms(100); /* Wait read complete */
  59. dm9000_io_write(DM9000_EPCR, 0x0); /* Clear phyxcer read command */
  60. val = (dm9000_io_read(DM9000_EPDRH) << 8) | dm9000_io_read(DM9000_EPDRL);
  61. return val;
  62. }
  63. /* Write a word to phyxcer */
  64. rt_inline void phy_write(rt_uint16_t reg, rt_uint16_t value)
  65. {
  66. /* Fill the phyxcer register into REG_0C */
  67. dm9000_io_write(DM9000_EPAR, DM9000_PHY | reg);
  68. /* Fill the written data into REG_0D & REG_0E */
  69. dm9000_io_write(DM9000_EPDRL, (value & 0xff));
  70. dm9000_io_write(DM9000_EPDRH, ((value >> 8) & 0xff));
  71. dm9000_io_write(DM9000_EPCR, 0xa); /* Issue phyxcer write command */
  72. delay_ms(500); /* Wait write complete */
  73. dm9000_io_write(DM9000_EPCR, 0x0); /* Clear phyxcer write command */
  74. }
  75. /* Set PHY operationg mode */
  76. rt_inline void phy_mode_set(rt_uint32_t media_mode)
  77. {
  78. rt_uint16_t phy_reg4 = 0x01e1, phy_reg0 = 0x1000;
  79. if (!(media_mode & DM9000_AUTO))
  80. {
  81. switch (media_mode)
  82. {
  83. case DM9000_10MHD:
  84. phy_reg4 = 0x21;
  85. phy_reg0 = 0x0000;
  86. break;
  87. case DM9000_10MFD:
  88. phy_reg4 = 0x41;
  89. phy_reg0 = 0x1100;
  90. break;
  91. case DM9000_100MHD:
  92. phy_reg4 = 0x81;
  93. phy_reg0 = 0x2000;
  94. break;
  95. case DM9000_100MFD:
  96. phy_reg4 = 0x101;
  97. phy_reg0 = 0x3100;
  98. break;
  99. }
  100. phy_write(4, phy_reg4); /* Set PHY media mode */
  101. phy_write(0, phy_reg0); /* Tmp */
  102. }
  103. dm9000_io_write(DM9000_GPCR, 0x01); /* Let GPIO0 output */
  104. dm9000_io_write(DM9000_GPR, 0x00); /* Enable PHY */
  105. }
  106. /* interrupt service routine */
  107. void rt_dm9000_isr(int irqno)
  108. {
  109. rt_uint32_t int_status;
  110. /* Disable all interrupts */
  111. dm9000_io_write(DM9000_IMR, IMR_PAR);
  112. /* Got DM9000 interrupt status */
  113. int_status = dm9000_io_read(DM9000_ISR); /* Got ISR */
  114. dm9000_io_write(DM9000_ISR, int_status); /* Clear ISR status */
  115. /* Received the coming packet */
  116. if (int_status & ISR_PRS)
  117. {
  118. rt_err_t result;
  119. /* a frame has been received */
  120. result = eth_device_ready(&(dm9000_device.parent));
  121. RT_ASSERT(result == RT_EOK);
  122. }
  123. /* Transmit Interrupt check */
  124. if (int_status & ISR_PTS)
  125. {
  126. /* transmit done */
  127. int tx_status = dm9000_io_read(DM9000_NSR); /* Got TX status */
  128. if (tx_status & (NSR_TX2END | NSR_TX1END))
  129. {
  130. /* One packet sent complete */
  131. }
  132. }
  133. /* Re-enable interrupt mask */
  134. dm9000_io_write(DM9000_IMR, dm9000_device.imr_all);
  135. }
  136. /* RT-Thread Device Interface */
  137. /* initialize the interface */
  138. static rt_err_t rt_dm9000_init(rt_device_t dev)
  139. {
  140. int i, oft, lnk;
  141. rt_uint32_t value;
  142. /* RESET device */
  143. dm9000_io_write(DM9000_NCR, NCR_RST);
  144. delay_ms(1000); /* delay 1ms */
  145. /* identfy DM9000 */
  146. value = dm9000_io_read(DM9000_VIDL);
  147. value |= dm9000_io_read(DM9000_VIDH) << 8;
  148. value |= dm9000_io_read(DM9000_PIDL) << 16;
  149. value |= dm9000_io_read(DM9000_PIDH) << 24;
  150. if (value == DM9000_ID)
  151. {
  152. rt_kprintf("dm9000 id: 0x%x\n", value);
  153. }
  154. else
  155. {
  156. return -RT_ERROR;
  157. }
  158. /* GPIO0 on pre-activate PHY */
  159. dm9000_io_write(DM9000_GPR, 0x00); /*REG_1F bit0 activate phyxcer */
  160. dm9000_io_write(DM9000_GPCR, GPCR_GEP_CNTL); /* Let GPIO0 output */
  161. dm9000_io_write(DM9000_GPR, 0); /* Enable PHY */
  162. /* Set PHY */
  163. phy_mode_set(DM9000_AUTO);
  164. /* Program operating register */
  165. dm9000_io_write(DM9000_NCR, 0x0); /* only intern phy supported by now */
  166. dm9000_io_write(DM9000_TCR, 0); /* TX Polling clear */
  167. dm9000_io_write(DM9000_BPTR, 0x3f); /* Less 3Kb, 200us */
  168. dm9000_io_write(DM9000_FCTR, FCTR_HWOT(3) | FCTR_LWOT(8)); /* Flow Control : High/Low Water */
  169. dm9000_io_write(DM9000_FCR, 0x0); /* SH FIXME: This looks strange! Flow Control */
  170. dm9000_io_write(DM9000_SMCR, 0); /* Special Mode */
  171. dm9000_io_write(DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END); /* clear TX status */
  172. dm9000_io_write(DM9000_ISR, 0x0f); /* Clear interrupt status */
  173. dm9000_io_write(0x2D, 0x80); /* Switch LED to mode 1 */
  174. /* set mac address */
  175. for (i = 0, oft = 0x10; i < 6; i++, oft++)
  176. dm9000_io_write(oft, dm9000_device.dev_addr[i]);
  177. for (i = 0, oft = 0x16; i < 8; i++, oft++)
  178. dm9000_io_write(oft, 0xff);
  179. /* Activate DM9000 */
  180. dm9000_io_write(DM9000_RCR, RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN); /* RX enable */
  181. i = 0;
  182. while (!(phy_read(1) & 0x20))
  183. {
  184. /* autonegation complete bit */
  185. delay_ms(1000);
  186. i++;
  187. if (i == 10000)
  188. {
  189. rt_kprintf("could not establish link\n");
  190. return 0;
  191. }
  192. }
  193. /* see what we've got */
  194. lnk = phy_read(17) >> 12;
  195. rt_kprintf("operating at ");
  196. switch (lnk) {
  197. case 1:
  198. rt_kprintf("10M half duplex ");
  199. break;
  200. case 2:
  201. rt_kprintf("10M full duplex ");
  202. break;
  203. case 4:
  204. rt_kprintf("100M half duplex ");
  205. break;
  206. case 8:
  207. rt_kprintf("100M full duplex ");
  208. break;
  209. default:
  210. rt_kprintf("unknown: %d ", lnk);
  211. break;
  212. }
  213. rt_kprintf("mode\n");
  214. dm9000_io_write(DM9000_IMR, dm9000_device.imr_all); /* Enable TX/RX interrupt mask */
  215. return RT_EOK;
  216. }
  217. static rt_err_t rt_dm9000_open(rt_device_t dev, rt_uint16_t oflag)
  218. {
  219. return RT_EOK;
  220. }
  221. static rt_err_t rt_dm9000_close(rt_device_t dev)
  222. {
  223. /* RESET devie */
  224. phy_write(0, 0x8000); /* PHY RESET */
  225. dm9000_io_write(DM9000_GPR, 0x01); /* Power-Down PHY */
  226. dm9000_io_write(DM9000_IMR, 0x80); /* Disable all interrupt */
  227. dm9000_io_write(DM9000_RCR, 0x00); /* Disable RX */
  228. return RT_EOK;
  229. }
  230. static rt_size_t rt_dm9000_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size)
  231. {
  232. rt_set_errno(-RT_ENOSYS);
  233. return 0;
  234. }
  235. static rt_size_t rt_dm9000_write (rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size)
  236. {
  237. rt_set_errno(-RT_ENOSYS);
  238. return 0;
  239. }
  240. static rt_err_t rt_dm9000_control(rt_device_t dev, rt_uint8_t cmd, void *args)
  241. {
  242. switch(cmd)
  243. {
  244. case NIOCTL_GADDR:
  245. /* get mac address */
  246. if(args) rt_memcpy(args, dm9000_device.dev_addr, 6);
  247. else return -RT_ERROR;
  248. break;
  249. default :
  250. break;
  251. }
  252. return RT_EOK;
  253. }
  254. /* ethernet device interface */
  255. /* transmit packet. */
  256. rt_err_t rt_dm9000_tx( rt_device_t dev, struct pbuf* p)
  257. {
  258. struct pbuf* q;
  259. rt_uint32_t len;
  260. rt_uint16_t* ptr;
  261. /* Move data to DM9000 TX RAM */
  262. DM9000_IO = DM9000_MWCMD;
  263. for (q = p; q != NULL; q = q->next)
  264. {
  265. len = q->len;
  266. ptr = q->payload;
  267. /* use 16bit mode to write data to DM9000 RAM */
  268. while (len)
  269. {
  270. DM9000_DATA = *ptr;
  271. ptr ++; len -= 2;
  272. }
  273. }
  274. if (p->tot_len < 64) /* add pading */
  275. {
  276. }
  277. /* Set TX length to DM9000 */
  278. dm9000_io_write(DM9000_TXPLL, p->tot_len & 0xff);
  279. dm9000_io_write(DM9000_TXPLH, (p->tot_len >> 8) & 0xff);
  280. return RT_EOK;
  281. }
  282. /* reception packet. */
  283. struct pbuf *rt_dm9000_rx(rt_device_t dev)
  284. {
  285. struct pbuf* p;
  286. rt_uint32_t len;
  287. /* init p pointer */
  288. p = RT_NULL;
  289. /* Check packet ready or not */
  290. dm9000_io_read(DM9000_MRCMDX); /* Dummy read */
  291. len = DM9000_DATA; /* Got most updated data */
  292. if (len)
  293. {
  294. rt_uint16_t rx_status, rx_len;
  295. rt_uint16_t* data;
  296. dm9000_io_write(DM9000_RCR, 0x00); /* Stop Device */
  297. dm9000_io_write(DM9000_ISR, 0x80); /* Stop INT request */
  298. /* A packet ready now & Get status/length */
  299. DM9000_IO = DM9000_MRCMD;
  300. rx_status = DM9000_DATA;
  301. rx_len = DM9000_DATA;
  302. /* allocate buffer */
  303. p = pbuf_alloc(PBUF_LINK, rx_len, PBUF_RAM);
  304. if (p != RT_NULL)
  305. {
  306. struct pbuf* q;
  307. for (q = p; q != RT_NULL; q= q->next)
  308. {
  309. data = (rt_uint16_t*)q->payload;
  310. len = q->len;
  311. while (len)
  312. {
  313. *data = DM9000_DATA;
  314. data ++; len -= 2;
  315. }
  316. }
  317. }
  318. else
  319. {
  320. rt_uint16_t dummy;
  321. /* no pbuf, discard data from DM9000 */
  322. data = &dummy;
  323. while (rx_len)
  324. {
  325. *data = DM9000_DATA;
  326. rx_len -= 2;
  327. }
  328. }
  329. if ((rx_status & 0xbf00) || (rx_len < 0x40)
  330. || (rx_len > DM9000_PKT_MAX))
  331. {
  332. if (rx_status & 0x100)
  333. {
  334. rt_kprintf("rx fifo error\n");
  335. }
  336. if (rx_status & 0x200) {
  337. rt_kprintf("rx crc error\n");
  338. }
  339. if (rx_status & 0x8000)
  340. {
  341. rt_kprintf("rx length error\n");
  342. }
  343. if (rx_len > DM9000_PKT_MAX)
  344. {
  345. rt_kprintf("rx length too big\n");
  346. /* RESET device */
  347. dm9000_io_write(DM9000_NCR, NCR_RST);
  348. delay_ms(1000); /* delay 1ms */
  349. }
  350. /* it issues an error, release pbuf */
  351. pbuf_free(p);
  352. p = RT_NULL;
  353. }
  354. }
  355. else
  356. {
  357. /* restore interrupt */
  358. dm9000_io_write(DM9000_IMR, dm9000_device.imr_all);
  359. }
  360. return p;
  361. }
  362. void rt_hw_dm9000_init()
  363. {
  364. dm9000_device.type = TYPE_DM9000A;
  365. dm9000_device.imr_all = IMR_PAR | IMR_PTM | IMR_PRM;
  366. dm9000_device.dev_addr[0] = 0x01;
  367. dm9000_device.dev_addr[1] = 0x60;
  368. dm9000_device.dev_addr[2] = 0x6E;
  369. dm9000_device.dev_addr[3] = 0x11;
  370. dm9000_device.dev_addr[4] = 0x02;
  371. dm9000_device.dev_addr[5] = 0x0F;
  372. dm9000_device.parent.parent.init = rt_dm9000_init;
  373. dm9000_device.parent.parent.open = rt_dm9000_open;
  374. dm9000_device.parent.parent.close = rt_dm9000_close;
  375. dm9000_device.parent.parent.read = rt_dm9000_read;
  376. dm9000_device.parent.parent.write = rt_dm9000_write;
  377. dm9000_device.parent.parent.control = rt_dm9000_control;
  378. dm9000_device.parent.parent.private = RT_NULL;
  379. dm9000_device.parent.eth_rx = rt_dm9000_rx;
  380. dm9000_device.parent.eth_tx = rt_dm9000_tx;
  381. rt_device_register((rt_device_t)&dm9000_device,
  382. "E0", RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_INT_RX | RT_DEVICE_FLAG_INT_TX);
  383. }
  384. #ifdef RT_USING_FINSH
  385. #include <finsh.h>
  386. void dm9000(void)
  387. {
  388. rt_kprintf("\n");
  389. rt_kprintf("NCR (0x00): %02x\n", dm9000_io_read(DM9000_NCR));
  390. rt_kprintf("NSR (0x01): %02x\n", dm9000_io_read(DM9000_NSR));
  391. rt_kprintf("TCR (0x02): %02x\n", dm9000_io_read(DM9000_TCR));
  392. rt_kprintf("TSRI (0x03): %02x\n", dm9000_io_read(DM9000_TSR1));
  393. rt_kprintf("TSRII (0x04): %02x\n", dm9000_io_read(DM9000_TSR2));
  394. rt_kprintf("RCR (0x05): %02x\n", dm9000_io_read(DM9000_RCR));
  395. rt_kprintf("RSR (0x06): %02x\n", dm9000_io_read(DM9000_RSR));
  396. rt_kprintf("ISR (0xFE): %02x\n", dm9000_io_read(DM9000_ISR));
  397. rt_kprintf("\n");
  398. }
  399. #endif