alarm.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808
  1. /*
  2. * Copyright (c) 2006-2018, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2012-10-27 heyuanjie87 first version.
  9. * 2013-05-17 aozima initial alarm event & mutex in system init.
  10. * 2020-10-15 zhangsz add alarm flags hour minute second.
  11. * 2020-11-09 zhangsz fix alarm set when modify rtc time.
  12. */
  13. #include <rtthread.h>
  14. #include <rtdevice.h>
  15. #ifndef _WIN32
  16. #include <sys/time.h>
  17. #endif
  18. #define RT_RTC_YEARS_MAX 137
  19. #ifdef RT_USING_SOFT_RTC
  20. #define RT_ALARM_DELAY 0
  21. #else
  22. #define RT_ALARM_DELAY 2
  23. #endif
  24. #define RT_ALARM_STATE_INITED 0x02
  25. #define RT_ALARM_STATE_START 0x01
  26. #define RT_ALARM_STATE_STOP 0x00
  27. #if (defined(RT_USING_RTC) && defined(RT_USING_ALARM))
  28. static struct rt_alarm_container _container;
  29. rt_inline rt_uint32_t alarm_mkdaysec(struct tm *time)
  30. {
  31. rt_uint32_t sec;
  32. sec = time->tm_sec;
  33. sec += time->tm_min * 60;
  34. sec += time->tm_hour * 3600;
  35. return (sec);
  36. }
  37. static rt_err_t alarm_set(struct rt_alarm *alarm)
  38. {
  39. rt_device_t device;
  40. struct rt_rtc_wkalarm wkalarm;
  41. rt_err_t ret;
  42. device = rt_device_find("rtc");
  43. if (device == RT_NULL)
  44. {
  45. return (RT_ERROR);
  46. }
  47. if (alarm->flag & RT_ALARM_STATE_START)
  48. wkalarm.enable = RT_TRUE;
  49. else
  50. wkalarm.enable = RT_FALSE;
  51. wkalarm.tm_sec = alarm->wktime.tm_sec;
  52. wkalarm.tm_min = alarm->wktime.tm_min;
  53. wkalarm.tm_hour = alarm->wktime.tm_hour;
  54. ret = rt_device_control(device, RT_DEVICE_CTRL_RTC_SET_ALARM, &wkalarm);
  55. if ((ret == RT_EOK) && wkalarm.enable)
  56. {
  57. ret = rt_device_control(device, RT_DEVICE_CTRL_RTC_GET_ALARM, &wkalarm);
  58. if (ret == RT_EOK)
  59. {
  60. /*
  61. some RTC device like RX8025,it's alarms precision is 1 minute.
  62. in this case,low level RTC driver should set wkalarm->tm_sec to 0.
  63. */
  64. alarm->wktime.tm_sec = wkalarm.tm_sec;
  65. alarm->wktime.tm_min = wkalarm.tm_min;
  66. alarm->wktime.tm_hour = wkalarm.tm_hour;
  67. }
  68. }
  69. return (ret);
  70. }
  71. static void alarm_wakeup(struct rt_alarm *alarm, struct tm *now)
  72. {
  73. rt_uint32_t sec_alarm, sec_now;
  74. rt_bool_t wakeup = RT_FALSE;
  75. time_t timestamp;
  76. sec_alarm = alarm_mkdaysec(&alarm->wktime);
  77. sec_now = alarm_mkdaysec(now);
  78. if (alarm->flag & RT_ALARM_STATE_START)
  79. {
  80. switch (alarm->flag & 0xFF00)
  81. {
  82. case RT_ALARM_ONESHOT:
  83. {
  84. sec_alarm = mktime(&alarm->wktime);
  85. sec_now = mktime(now);
  86. if (((sec_now - sec_alarm) <= RT_ALARM_DELAY) && (sec_now >= sec_alarm))
  87. {
  88. /* stop alarm */
  89. alarm->flag &= ~RT_ALARM_STATE_START;
  90. alarm_set(alarm);
  91. wakeup = RT_TRUE;
  92. }
  93. }
  94. break;
  95. case RT_ALARM_SECOND:
  96. {
  97. alarm->wktime.tm_hour = now->tm_hour;
  98. alarm->wktime.tm_min = now->tm_min;
  99. alarm->wktime.tm_sec = now->tm_sec + 1;
  100. if (alarm->wktime.tm_sec > 59)
  101. {
  102. alarm->wktime.tm_sec = 0;
  103. alarm->wktime.tm_min = alarm->wktime.tm_min + 1;
  104. if (alarm->wktime.tm_min > 59)
  105. {
  106. alarm->wktime.tm_min = 0;
  107. alarm->wktime.tm_hour = alarm->wktime.tm_hour + 1;
  108. if (alarm->wktime.tm_hour > 23)
  109. {
  110. alarm->wktime.tm_hour = 0;
  111. }
  112. }
  113. }
  114. wakeup = RT_TRUE;
  115. }
  116. break;
  117. case RT_ALARM_MINUTE:
  118. {
  119. alarm->wktime.tm_hour = now->tm_hour;
  120. if (alarm->wktime.tm_sec == now->tm_sec)
  121. {
  122. alarm->wktime.tm_min = now->tm_min + 1;
  123. if (alarm->wktime.tm_min > 59)
  124. {
  125. alarm->wktime.tm_min = 0;
  126. alarm->wktime.tm_hour = alarm->wktime.tm_hour + 1;
  127. if (alarm->wktime.tm_hour > 23)
  128. {
  129. alarm->wktime.tm_hour = 0;
  130. }
  131. }
  132. wakeup = RT_TRUE;
  133. }
  134. }
  135. break;
  136. case RT_ALARM_HOUR:
  137. {
  138. if ((alarm->wktime.tm_min == now->tm_min) &&
  139. (alarm->wktime.tm_sec == now->tm_sec))
  140. {
  141. alarm->wktime.tm_hour = now->tm_hour + 1;
  142. if (alarm->wktime.tm_hour > 23)
  143. {
  144. alarm->wktime.tm_hour = 0;
  145. }
  146. wakeup = RT_TRUE;
  147. }
  148. }
  149. break;
  150. case RT_ALARM_DAILY:
  151. {
  152. if (((sec_now - sec_alarm) <= RT_ALARM_DELAY) && (sec_now >= sec_alarm))
  153. wakeup = RT_TRUE;
  154. }
  155. break;
  156. case RT_ALARM_WEEKLY:
  157. {
  158. /* alarm at wday */
  159. sec_alarm += alarm->wktime.tm_wday * 24 * 3600;
  160. sec_now += now->tm_wday * 24 * 3600;
  161. if (((sec_now - sec_alarm) <= RT_ALARM_DELAY) && (sec_now >= sec_alarm))
  162. wakeup = RT_TRUE;
  163. }
  164. break;
  165. case RT_ALARM_MONTHLY:
  166. {
  167. /* monthly someday generate alarm signals */
  168. if (alarm->wktime.tm_mday == now->tm_mday)
  169. {
  170. if ((sec_now - sec_alarm) <= RT_ALARM_DELAY)
  171. wakeup = RT_TRUE;
  172. }
  173. }
  174. break;
  175. case RT_ALARM_YAERLY:
  176. {
  177. if ((alarm->wktime.tm_mday == now->tm_mday) && \
  178. (alarm->wktime.tm_mon == now->tm_mon))
  179. {
  180. if ((sec_now - sec_alarm) <= RT_ALARM_DELAY)
  181. wakeup = RT_TRUE;
  182. }
  183. }
  184. break;
  185. }
  186. if ((wakeup == RT_TRUE) && (alarm->callback != RT_NULL))
  187. {
  188. timestamp = time(RT_NULL);
  189. alarm->callback(alarm, timestamp);
  190. }
  191. }
  192. }
  193. static void alarm_update(rt_uint32_t event)
  194. {
  195. struct rt_alarm *alm_prev = RT_NULL, *alm_next = RT_NULL;
  196. struct rt_alarm *alarm;
  197. rt_int32_t sec_now, sec_alarm, sec_tmp;
  198. rt_int32_t sec_next = 24 * 3600, sec_prev = 0;
  199. time_t timestamp;
  200. struct tm now;
  201. rt_list_t *next;
  202. rt_mutex_take(&_container.mutex, RT_WAITING_FOREVER);
  203. if (!rt_list_isempty(&_container.head))
  204. {
  205. /* get time of now */
  206. timestamp = time(RT_NULL);
  207. #ifdef _WIN32
  208. _gmtime32_s(&now, &timestamp);
  209. #else
  210. gmtime_r(&timestamp, &now);
  211. #endif
  212. for (next = _container.head.next; next != &_container.head; next = next->next)
  213. {
  214. alarm = rt_list_entry(next, struct rt_alarm, list);
  215. /* check the overtime alarm */
  216. alarm_wakeup(alarm, &now);
  217. }
  218. timestamp = time(RT_NULL);
  219. #ifdef _WIN32
  220. _gmtime32_s(&now, &timestamp);
  221. #else
  222. gmtime_r(&timestamp, &now);
  223. #endif
  224. sec_now = alarm_mkdaysec(&now);
  225. for (next = _container.head.next; next != &_container.head; next = next->next)
  226. {
  227. alarm = rt_list_entry(next, struct rt_alarm, list);
  228. /* calculate seconds from 00:00:00 */
  229. sec_alarm = alarm_mkdaysec(&alarm->wktime);
  230. if (alarm->flag & RT_ALARM_STATE_START)
  231. {
  232. sec_tmp = sec_alarm - sec_now;
  233. if (sec_tmp > 0)
  234. {
  235. /* find alarm after now(now to 23:59:59) and the most recent */
  236. if (sec_tmp < sec_next)
  237. {
  238. sec_next = sec_tmp;
  239. alm_next = alarm;
  240. }
  241. }
  242. else
  243. {
  244. /* find alarm before now(00:00:00 to now) and furthest from now */
  245. if (sec_tmp < sec_prev)
  246. {
  247. sec_prev = sec_tmp;
  248. alm_prev = alarm;
  249. }
  250. }
  251. }
  252. }
  253. /* enable the alarm after now first */
  254. if (sec_next < 24 * 3600)
  255. {
  256. if (alarm_set(alm_next) == RT_EOK)
  257. _container.current = alm_next;
  258. }
  259. else if (sec_prev < 0)
  260. {
  261. /* enable the alarm before now */
  262. if (alarm_set(alm_prev) == RT_EOK)
  263. _container.current = alm_prev;
  264. }
  265. else
  266. {
  267. if (_container.current != RT_NULL)
  268. alarm_set(_container.current);
  269. }
  270. }
  271. rt_mutex_release(&_container.mutex);
  272. }
  273. static rt_uint32_t days_of_year_month(int tm_year, int tm_mon)
  274. {
  275. rt_uint32_t ret, year;
  276. year = tm_year + 1900;
  277. if (tm_mon == 1)
  278. {
  279. ret = 28 + ((!(year % 4) && (year % 100)) || !(year % 400));
  280. }
  281. else if (((tm_mon <= 6) && (tm_mon % 2 == 0)) || ((tm_mon > 6) && (tm_mon % 2 == 1)))
  282. {
  283. ret = 31;
  284. }
  285. else
  286. {
  287. ret = 30;
  288. }
  289. return (ret);
  290. }
  291. static rt_bool_t is_valid_date(struct tm *date)
  292. {
  293. if ((date->tm_year < 0) || (date->tm_year > RT_RTC_YEARS_MAX))
  294. {
  295. return (RT_FALSE);
  296. }
  297. if ((date->tm_mon < 0) || (date->tm_mon > 11))
  298. {
  299. return (RT_FALSE);
  300. }
  301. if ((date->tm_mday < 1) || \
  302. (date->tm_mday > days_of_year_month(date->tm_year, date->tm_mon)))
  303. {
  304. return (RT_FALSE);
  305. }
  306. return (RT_TRUE);
  307. }
  308. static rt_err_t alarm_setup(rt_alarm_t alarm, struct tm *wktime)
  309. {
  310. rt_err_t ret = RT_ERROR;
  311. time_t timestamp;
  312. struct tm *setup, now;
  313. setup = &alarm->wktime;
  314. *setup = *wktime;
  315. timestamp = time(RT_NULL);
  316. #ifdef _WIN32
  317. _gmtime32_s(&now, &timestamp);
  318. #else
  319. gmtime_r(&timestamp, &now);
  320. #endif
  321. /* if these are a "don't care" value,we set them to now*/
  322. if ((setup->tm_sec > 59) || (setup->tm_sec < 0))
  323. setup->tm_sec = now.tm_sec;
  324. if ((setup->tm_min > 59) || (setup->tm_min < 0))
  325. setup->tm_min = now.tm_min;
  326. if ((setup->tm_hour > 23) || (setup->tm_hour < 0))
  327. setup->tm_hour = now.tm_hour;
  328. switch (alarm->flag & 0xFF00)
  329. {
  330. case RT_ALARM_SECOND:
  331. {
  332. alarm->wktime.tm_hour = now.tm_hour;
  333. alarm->wktime.tm_min = now.tm_min;
  334. alarm->wktime.tm_sec = now.tm_sec + 1;
  335. if (alarm->wktime.tm_sec > 59)
  336. {
  337. alarm->wktime.tm_sec = 0;
  338. alarm->wktime.tm_min = alarm->wktime.tm_min + 1;
  339. if (alarm->wktime.tm_min > 59)
  340. {
  341. alarm->wktime.tm_min = 0;
  342. alarm->wktime.tm_hour = alarm->wktime.tm_hour + 1;
  343. if (alarm->wktime.tm_hour > 23)
  344. {
  345. alarm->wktime.tm_hour = 0;
  346. }
  347. }
  348. }
  349. }
  350. break;
  351. case RT_ALARM_MINUTE:
  352. {
  353. alarm->wktime.tm_hour = now.tm_hour;
  354. alarm->wktime.tm_min = now.tm_min + 1;
  355. if (alarm->wktime.tm_min > 59)
  356. {
  357. alarm->wktime.tm_min = 0;
  358. alarm->wktime.tm_hour = alarm->wktime.tm_hour + 1;
  359. if (alarm->wktime.tm_hour > 23)
  360. {
  361. alarm->wktime.tm_hour = 0;
  362. }
  363. }
  364. }
  365. break;
  366. case RT_ALARM_HOUR:
  367. {
  368. alarm->wktime.tm_hour = now.tm_hour + 1;
  369. if (alarm->wktime.tm_hour > 23)
  370. {
  371. alarm->wktime.tm_hour = 0;
  372. }
  373. }
  374. break;
  375. case RT_ALARM_DAILY:
  376. {
  377. /* do nothing but needed */
  378. }
  379. break;
  380. case RT_ALARM_ONESHOT:
  381. {
  382. /* if these are "don't care" value we set them to now */
  383. if (setup->tm_year == RT_ALARM_TM_NOW)
  384. setup->tm_year = now.tm_year;
  385. if (setup->tm_mon == RT_ALARM_TM_NOW)
  386. setup->tm_mon = now.tm_mon;
  387. if (setup->tm_mday == RT_ALARM_TM_NOW)
  388. setup->tm_mday = now.tm_mday;
  389. /* make sure the setup is valid */
  390. if (!is_valid_date(setup))
  391. goto _exit;
  392. }
  393. break;
  394. case RT_ALARM_WEEKLY:
  395. {
  396. /* if tm_wday is a "don't care" value we set it to now */
  397. if ((setup->tm_wday < 0) || (setup->tm_wday > 6))
  398. setup->tm_wday = now.tm_wday;
  399. }
  400. break;
  401. case RT_ALARM_MONTHLY:
  402. {
  403. /* if tm_mday is a "don't care" value we set it to now */
  404. if ((setup->tm_mday < 1) || (setup->tm_mday > 31))
  405. setup->tm_mday = now.tm_mday;
  406. }
  407. break;
  408. case RT_ALARM_YAERLY:
  409. {
  410. /* if tm_mon is a "don't care" value we set it to now */
  411. if ((setup->tm_mon < 0) || (setup->tm_mon > 11))
  412. setup->tm_mon = now.tm_mon;
  413. if (setup->tm_mon == 1)
  414. {
  415. /* tm_mon is February */
  416. /* tm_mday should be 1~29.otherwise,it's a "don't care" value */
  417. if ((setup->tm_mday < 1) || (setup->tm_mday > 29))
  418. setup->tm_mday = now.tm_mday;
  419. }
  420. else if (((setup->tm_mon <= 6) && (setup->tm_mon % 2 == 0)) || \
  421. ((setup->tm_mon > 6) && (setup->tm_mon % 2 == 1)))
  422. {
  423. /* Jan,Mar,May,Jul,Aug,Oct,Dec */
  424. /* tm_mday should be 1~31.otherwise,it's a "don't care" value */
  425. if ((setup->tm_mday < 1) || (setup->tm_mday > 31))
  426. setup->tm_mday = now.tm_mday;
  427. }
  428. else
  429. {
  430. /* tm_mday should be 1~30.otherwise,it's a "don't care" value */
  431. if ((setup->tm_mday < 1) || (setup->tm_mday > 30))
  432. setup->tm_mday = now.tm_mday;
  433. }
  434. }
  435. break;
  436. default:
  437. {
  438. goto _exit;
  439. }
  440. }
  441. if ((setup->tm_hour == 23) && (setup->tm_min == 59) && (setup->tm_sec == 59))
  442. {
  443. /*
  444. for insurance purposes, we will generate an alarm
  445. signal two seconds ahead of.
  446. */
  447. setup->tm_sec = 60 - RT_ALARM_DELAY;
  448. }
  449. /* set initialized state */
  450. alarm->flag |= RT_ALARM_STATE_INITED;
  451. ret = RT_EOK;
  452. _exit:
  453. return (ret);
  454. }
  455. /** \brief send a rtc alarm event
  456. *
  457. * \param dev pointer to RTC device(currently unused,you can ignore it)
  458. * \param event RTC event(currently unused)
  459. * \return none
  460. */
  461. void rt_alarm_update(rt_device_t dev, rt_uint32_t event)
  462. {
  463. rt_event_send(&_container.event, 1);
  464. }
  465. /** \brief modify the alarm setup
  466. *
  467. * \param alarm pointer to alarm
  468. * \param cmd control command
  469. * \param arg argument
  470. */
  471. rt_err_t rt_alarm_control(rt_alarm_t alarm, int cmd, void *arg)
  472. {
  473. rt_err_t ret = RT_ERROR;
  474. RT_ASSERT(alarm != RT_NULL);
  475. rt_mutex_take(&_container.mutex, RT_WAITING_FOREVER);
  476. switch (cmd)
  477. {
  478. case RT_ALARM_CTRL_MODIFY:
  479. {
  480. struct rt_alarm_setup *setup;
  481. RT_ASSERT(arg != RT_NULL);
  482. setup = arg;
  483. rt_alarm_stop(alarm);
  484. alarm->flag = setup->flag & 0xFF00;
  485. alarm->wktime = setup->wktime;
  486. ret = alarm_setup(alarm, &alarm->wktime);
  487. }
  488. break;
  489. }
  490. rt_mutex_release(&_container.mutex);
  491. return (ret);
  492. }
  493. /** \brief start an alarm
  494. *
  495. * \param alarm pointer to alarm
  496. * \return RT_EOK
  497. */
  498. rt_err_t rt_alarm_start(rt_alarm_t alarm)
  499. {
  500. rt_int32_t sec_now, sec_old, sec_new;
  501. rt_err_t ret = RT_EOK;
  502. time_t timestamp;
  503. struct tm now;
  504. if (alarm == RT_NULL)
  505. return (RT_ERROR);
  506. rt_mutex_take(&_container.mutex, RT_WAITING_FOREVER);
  507. if (!(alarm->flag & RT_ALARM_STATE_START))
  508. {
  509. if (alarm_setup(alarm, &alarm->wktime) != RT_EOK)
  510. {
  511. ret = RT_ERROR;
  512. goto _exit;
  513. }
  514. timestamp = time(RT_NULL);
  515. #ifdef _WIN32
  516. _gmtime32_s(&now, &timestamp);
  517. #else
  518. gmtime_r(&timestamp, &now);
  519. #endif
  520. alarm->flag |= RT_ALARM_STATE_START;
  521. /* set alarm */
  522. if (_container.current == RT_NULL)
  523. {
  524. ret = alarm_set(alarm);
  525. }
  526. else
  527. {
  528. sec_now = alarm_mkdaysec(&now);
  529. sec_old = alarm_mkdaysec(&_container.current->wktime);
  530. sec_new = alarm_mkdaysec(&alarm->wktime);
  531. if ((sec_new < sec_old) && (sec_new > sec_now))
  532. {
  533. ret = alarm_set(alarm);
  534. }
  535. else if ((sec_new > sec_now) && (sec_old < sec_now))
  536. {
  537. ret = alarm_set(alarm);
  538. }
  539. else if ((sec_new < sec_old) && (sec_old < sec_now))
  540. {
  541. ret = alarm_set(alarm);
  542. }
  543. else
  544. {
  545. ret = RT_EOK;
  546. goto _exit;
  547. }
  548. }
  549. if (ret == RT_EOK)
  550. {
  551. _container.current = alarm;
  552. }
  553. }
  554. _exit:
  555. rt_mutex_release(&_container.mutex);
  556. return (ret);
  557. }
  558. /** \brief stop an alarm
  559. *
  560. * \param alarm pointer to alarm
  561. * \return RT_EOK
  562. */
  563. rt_err_t rt_alarm_stop(rt_alarm_t alarm)
  564. {
  565. rt_err_t ret = RT_EOK;
  566. if (alarm == RT_NULL)
  567. return (RT_ERROR);
  568. rt_mutex_take(&_container.mutex, RT_WAITING_FOREVER);
  569. if (!(alarm->flag & RT_ALARM_STATE_START))
  570. goto _exit;
  571. /* stop alarm */
  572. alarm->flag &= ~RT_ALARM_STATE_START;
  573. if (_container.current == alarm)
  574. {
  575. ret = alarm_set(alarm);
  576. _container.current = RT_NULL;
  577. }
  578. if (ret == RT_EOK)
  579. alarm_update(0);
  580. _exit:
  581. rt_mutex_release(&_container.mutex);
  582. return (ret);
  583. }
  584. /** \brief delete an alarm
  585. *
  586. * \param alarm pointer to alarm
  587. * \return RT_EOK
  588. */
  589. rt_err_t rt_alarm_delete(rt_alarm_t alarm)
  590. {
  591. rt_err_t ret = RT_EOK;
  592. if (alarm == RT_NULL)
  593. return RT_ERROR;
  594. rt_mutex_take(&_container.mutex, RT_WAITING_FOREVER);
  595. /* stop the alarm */
  596. alarm->flag &= ~RT_ALARM_STATE_START;
  597. if (_container.current == alarm)
  598. {
  599. ret = alarm_set(alarm);
  600. _container.current = RT_NULL;
  601. /* set new alarm if necessary */
  602. alarm_update(0);
  603. }
  604. rt_list_remove(&alarm->list);
  605. rt_free(alarm);
  606. rt_mutex_release(&_container.mutex);
  607. return (ret);
  608. }
  609. /** \brief create an alarm
  610. *
  611. * \param flag set alarm mode e.g: RT_ALARM_DAILY
  612. * \param setup pointer to setup infomation
  613. */
  614. rt_alarm_t rt_alarm_create(rt_alarm_callback_t callback, struct rt_alarm_setup *setup)
  615. {
  616. struct rt_alarm *alarm;
  617. if (setup == RT_NULL)
  618. return (RT_NULL);
  619. alarm = rt_malloc(sizeof(struct rt_alarm));
  620. if (alarm == RT_NULL)
  621. return (RT_NULL);
  622. rt_list_init(&alarm->list);
  623. alarm->wktime = setup->wktime;
  624. alarm->flag = setup->flag & 0xFF00;
  625. alarm->callback = callback;
  626. rt_mutex_take(&_container.mutex, RT_WAITING_FOREVER);
  627. rt_list_insert_after(&_container.head, &alarm->list);
  628. rt_mutex_release(&_container.mutex);
  629. return (alarm);
  630. }
  631. /** \brief rtc alarm service thread entry
  632. *
  633. */
  634. static void rt_alarmsvc_thread_init(void *param)
  635. {
  636. rt_uint32_t recv;
  637. _container.current = RT_NULL;
  638. while (1)
  639. {
  640. if (rt_event_recv(&_container.event, 0xFFFF,
  641. RT_EVENT_FLAG_OR | RT_EVENT_FLAG_CLEAR,
  642. RT_WAITING_FOREVER, &recv) == RT_EOK)
  643. {
  644. alarm_update(recv);
  645. }
  646. }
  647. }
  648. struct _alarm_flag
  649. {
  650. const char* name;
  651. rt_uint32_t flag;
  652. };
  653. static const struct _alarm_flag _alarm_flag_tbl[] =
  654. {
  655. {"N", 0xffff}, /* none */
  656. {"O", RT_ALARM_ONESHOT}, /* only alarm onece */
  657. {"D", RT_ALARM_DAILY}, /* alarm everyday */
  658. {"W", RT_ALARM_WEEKLY}, /* alarm weekly at Monday or Friday etc. */
  659. {"Mo", RT_ALARM_MONTHLY}, /* alarm monthly at someday */
  660. {"Y", RT_ALARM_YAERLY}, /* alarm yearly at a certain date */
  661. {"H", RT_ALARM_HOUR}, /* alarm each hour at a certain min:second */
  662. {"M", RT_ALARM_MINUTE}, /* alarm each minute at a certain second */
  663. {"S", RT_ALARM_SECOND}, /* alarm each second */
  664. };
  665. static rt_uint8_t _alarm_flag_tbl_size = sizeof(_alarm_flag_tbl) / sizeof(_alarm_flag_tbl[0]);
  666. static rt_uint8_t get_alarm_flag_index(rt_uint32_t alarm_flag)
  667. {
  668. for (rt_uint8_t index = 0; index < _alarm_flag_tbl_size; index++)
  669. {
  670. alarm_flag &= 0xff00;
  671. if (alarm_flag == _alarm_flag_tbl[index].flag)
  672. {
  673. return index;
  674. }
  675. }
  676. return 0;
  677. }
  678. void rt_alarm_dump(void)
  679. {
  680. rt_list_t *next;
  681. rt_alarm_t alarm;
  682. rt_uint8_t index = 0;
  683. rt_kprintf("| id | YYYY-MM-DD hh:mm:ss | week | flag | en |\n");
  684. rt_kprintf("+----+---------------------+------+------+----+\n");
  685. for (next = _container.head.next; next != &_container.head; next = next->next)
  686. {
  687. alarm = rt_list_entry(next, struct rt_alarm, list);
  688. rt_uint8_t flag_index = get_alarm_flag_index(alarm->flag);
  689. rt_kprintf("| %2d | %04d-%02d-%02d %02d:%02d:%02d | %2d | %2s | %2d |\n",
  690. index++, alarm->wktime.tm_year + 1900, alarm->wktime.tm_mon + 1, alarm->wktime.tm_mday,
  691. alarm->wktime.tm_hour, alarm->wktime.tm_min, alarm->wktime.tm_sec,
  692. alarm->wktime.tm_wday, _alarm_flag_tbl[flag_index].name, alarm->flag & RT_ALARM_STATE_START);
  693. }
  694. rt_kprintf("+----+---------------------+------+------+----+\n");
  695. }
  696. FINSH_FUNCTION_EXPORT_ALIAS(rt_alarm_dump, __cmd_alarm_dump, dump alarm info);
  697. /** \brief initialize alarm service system
  698. *
  699. * \param none
  700. * \return none
  701. */
  702. int rt_alarm_system_init(void)
  703. {
  704. rt_thread_t tid;
  705. rt_list_init(&_container.head);
  706. rt_event_init(&_container.event, "alarmsvc", RT_IPC_FLAG_FIFO);
  707. rt_mutex_init(&_container.mutex, "alarmsvc", RT_IPC_FLAG_FIFO);
  708. tid = rt_thread_create("alarmsvc",
  709. rt_alarmsvc_thread_init, RT_NULL,
  710. 2048, 10, 5);
  711. if (tid != RT_NULL)
  712. rt_thread_startup(tid);
  713. return 0;
  714. }
  715. INIT_PREV_EXPORT(rt_alarm_system_init);
  716. #endif