mutex_pi_tc.c 9.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353
  1. /*
  2. * Copyright (c) 2006-2019, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. */
  9. #define __RT_IPC_SOURCE__
  10. #include <rtthread.h>
  11. #include <stdlib.h>
  12. #include "utest.h"
  13. #ifdef ARCH_CPU_64BIT
  14. #define THREAD_STACKSIZE 8192
  15. #else
  16. #define THREAD_STACKSIZE 4096
  17. #endif
  18. #define MUTEX_NUM 3
  19. #define THREAD_NUM 5
  20. static struct rt_mutex _mutex[MUTEX_NUM];
  21. static volatile int _sync_flag;
  22. static void test_thread_entry(void *para)
  23. {
  24. while (!_sync_flag)
  25. {
  26. rt_thread_delay(1);
  27. }
  28. rt_ubase_t thread_id = (rt_ubase_t)para;
  29. rt_err_t ret;
  30. rt_thread_mdelay(50 + thread_id * 100);
  31. ret = rt_mutex_take(&_mutex[thread_id % MUTEX_NUM], RT_WAITING_FOREVER);
  32. uassert_true(ret == RT_EOK);
  33. uassert_true(RT_SCHED_PRIV(rt_thread_self()).current_priority == RT_SCHED_PRIV(rt_thread_self()).init_priority);
  34. if (thread_id == 1)
  35. {
  36. rt_thread_mdelay(100); // wait for main thread re-get _mutex[1]
  37. uassert_true(RT_SCHED_PRIV(rt_thread_self()).current_priority == 8);
  38. }
  39. ret = rt_mutex_release(&_mutex[thread_id % MUTEX_NUM]);
  40. uassert_true(ret == RT_EOK);
  41. uassert_true(RT_SCHED_PRIV(rt_thread_self()).current_priority == RT_SCHED_PRIV(rt_thread_self()).init_priority);
  42. _sync_flag ++;
  43. }
  44. static void test_main_thread_entry(void *para)
  45. {
  46. while (!_sync_flag)
  47. {
  48. rt_thread_delay(1);
  49. }
  50. rt_err_t ret;
  51. ret = rt_mutex_take(&_mutex[0], RT_WAITING_FOREVER);
  52. uassert_true(ret == RT_EOK);
  53. uassert_true(RT_SCHED_PRIV(rt_thread_self()).current_priority == 12);
  54. rt_thread_mdelay(100); // wait for t0 take mutex0
  55. uassert_true(RT_SCHED_PRIV(rt_thread_self()).current_priority == 12);
  56. ret = rt_mutex_take(&_mutex[1], RT_WAITING_FOREVER);
  57. uassert_true(ret == RT_EOK);
  58. uassert_true(RT_SCHED_PRIV(rt_thread_self()).current_priority == 12);
  59. rt_thread_mdelay(100); // wait for t1 take mutex1
  60. uassert_true(RT_SCHED_PRIV(rt_thread_self()).current_priority == 9);
  61. ret = rt_mutex_take(&_mutex[2], RT_WAITING_FOREVER);
  62. uassert_true(ret == RT_EOK);
  63. uassert_true(RT_SCHED_PRIV(rt_thread_self()).current_priority == 9);
  64. rt_thread_mdelay(100); // wait for t2 take mutex2
  65. uassert_true(RT_SCHED_PRIV(rt_thread_self()).current_priority == 8);
  66. rt_thread_mdelay(100); // wait for t3 take mutex0
  67. uassert_true(RT_SCHED_PRIV(rt_thread_self()).current_priority == 7);
  68. rt_thread_mdelay(100); // wait for t4 take mutex1
  69. uassert_true(RT_SCHED_PRIV(rt_thread_self()).current_priority == 7);
  70. rt_thread_mdelay(100);
  71. rt_mutex_release(&_mutex[0]); // give _mutex0 to t3
  72. uassert_true(RT_SCHED_PRIV(rt_thread_self()).current_priority == 8);
  73. rt_thread_mdelay(100);
  74. rt_mutex_release(&_mutex[1]); // give _mutex1 to t1
  75. uassert_true(RT_SCHED_PRIV(rt_thread_self()).current_priority == 8);
  76. rt_thread_mdelay(50);
  77. rt_mutex_take(&_mutex[1], RT_WAITING_FOREVER); // re-get _mutex1, which is hold by t1
  78. uassert_true(RT_SCHED_PRIV(rt_thread_self()).current_priority == 8);
  79. rt_mutex_release(&_mutex[1]); // give _mutex1 to thread t1
  80. uassert_true(RT_SCHED_PRIV(rt_thread_self()).current_priority == 8);
  81. rt_thread_mdelay(100);
  82. rt_mutex_release(&_mutex[2]);
  83. uassert_true(RT_SCHED_PRIV(rt_thread_self()).current_priority == 12);
  84. _sync_flag ++;
  85. }
  86. static void test_mutex_pi(void)
  87. {
  88. rt_thread_t t_main;
  89. rt_thread_t t[THREAD_NUM];
  90. rt_uint8_t prio[THREAD_NUM] = {13, 9, 8, 7, 11}; // prio of threads
  91. for (int i = 0; i < MUTEX_NUM; i++)
  92. {
  93. rt_mutex_init(&_mutex[i], "test1", 0);
  94. }
  95. _sync_flag = 0;
  96. t_main = rt_thread_create("t_main", test_main_thread_entry, RT_NULL, THREAD_STACKSIZE, 12, 10000);
  97. uassert_true(t_main != RT_NULL);
  98. rt_thread_startup(t_main);
  99. for (rt_ubase_t i = 0; i < THREAD_NUM; i++)
  100. {
  101. t[i] = rt_thread_create("t", test_thread_entry, (void *)i, THREAD_STACKSIZE, prio[i], 10000);
  102. uassert_true(t[i] != RT_NULL);
  103. rt_thread_startup(t[i]);
  104. }
  105. _sync_flag = 1;
  106. while (_sync_flag != THREAD_NUM + 1 + 1)
  107. {
  108. rt_thread_mdelay(100);
  109. }
  110. for (int i = 0; i < MUTEX_NUM; i++)
  111. {
  112. rt_mutex_detach(&_mutex[i]);
  113. }
  114. }
  115. static struct rt_mutex _timeout_mutex;
  116. static void test_main_timeout_entry(void *para)
  117. {
  118. rt_err_t ret;
  119. ret = rt_mutex_take(&_timeout_mutex, RT_WAITING_FOREVER);
  120. uassert_true(ret == -RT_EOK);
  121. rt_thread_mdelay(100);
  122. uassert_true(RT_SCHED_PRIV(rt_thread_self()).current_priority == 10);
  123. rt_thread_mdelay(100);
  124. uassert_true(RT_SCHED_PRIV(rt_thread_self()).current_priority == 12);
  125. rt_mutex_release(&_timeout_mutex);
  126. _sync_flag ++;
  127. }
  128. static void test_timeout_entry(void *para)
  129. {
  130. rt_err_t ret;
  131. rt_thread_mdelay(50);
  132. ret = rt_mutex_take(&_timeout_mutex, rt_tick_from_millisecond(100));
  133. uassert_true(ret == -RT_ETIMEOUT);
  134. _sync_flag ++;
  135. }
  136. static void test_mutex_pi_timeout(void)
  137. {
  138. _sync_flag = 0;
  139. rt_mutex_init(&_timeout_mutex, "_timeout_mutex", 0);
  140. rt_thread_t t1 = rt_thread_create("t1", test_main_timeout_entry, RT_NULL, THREAD_STACKSIZE, 12, 10000);
  141. uassert_true(t1 != RT_NULL);
  142. rt_thread_startup(t1);
  143. rt_thread_t t2 = rt_thread_create("t2", test_timeout_entry, (void *)t1, THREAD_STACKSIZE, 10, 10000);
  144. uassert_true(t2 != RT_NULL);
  145. rt_thread_startup(t2);
  146. while (_sync_flag != 2)
  147. {
  148. rt_thread_mdelay(100);
  149. }
  150. rt_mutex_detach(&_timeout_mutex);
  151. }
  152. #define TC_THREAD_NUM 4
  153. #define TC_MUTEX_NUM TC_THREAD_NUM
  154. static rt_thread_t t[TC_THREAD_NUM], t_hi_prio;
  155. static struct rt_mutex m[TC_MUTEX_NUM];
  156. static void test_recursive_mutex_depend_entry(void *para)
  157. {
  158. rt_ubase_t id = (rt_ubase_t)para;
  159. rt_mutex_take(&m[id], RT_WAITING_FOREVER);
  160. rt_thread_mdelay(50);
  161. if (id != 0)
  162. {
  163. rt_mutex_take(&m[id - 1], RT_WAITING_FOREVER);
  164. }
  165. if (id == 0)
  166. {
  167. rt_thread_mdelay(250);
  168. rt_mutex_release(&m[id]);
  169. }
  170. else
  171. {
  172. rt_mutex_release(&m[id - 1]);
  173. rt_mutex_release(&m[id]);
  174. }
  175. _sync_flag ++;
  176. }
  177. static void test_recursive_mutex_depend_hi_pri_entry(void *para)
  178. {
  179. rt_thread_mdelay(100);
  180. rt_err_t err = rt_mutex_take(&m[TC_MUTEX_NUM - 1], rt_tick_from_millisecond(100));
  181. uassert_true(err == -RT_ETIMEOUT);
  182. _sync_flag ++;
  183. }
  184. static void test_mutex_pi_recursive_prio_update(void)
  185. {
  186. _sync_flag = 0;
  187. for (int i = 0; i < TC_MUTEX_NUM; i++)
  188. {
  189. rt_mutex_init(&m[i], "test", 0);
  190. }
  191. for (rt_ubase_t i = 0; i < TC_THREAD_NUM; i++)
  192. {
  193. t[i] = rt_thread_create("t", test_recursive_mutex_depend_entry, (void *)i, THREAD_STACKSIZE, 10, 10000);
  194. rt_thread_startup(t[i]);
  195. }
  196. t_hi_prio = rt_thread_create("t", test_recursive_mutex_depend_hi_pri_entry, (void *)RT_NULL, THREAD_STACKSIZE, 3, 10000);
  197. rt_thread_startup(t_hi_prio);
  198. rt_thread_mdelay(150);
  199. for (int i = 0; i < TC_THREAD_NUM; i++)
  200. {
  201. uassert_true(RT_SCHED_PRIV(t[i]).current_priority == 3);
  202. }
  203. rt_thread_mdelay(100);
  204. for (int i = 0; i < TC_THREAD_NUM; i++)
  205. {
  206. uassert_true(RT_SCHED_PRIV(t[i]).current_priority == 10);
  207. }
  208. while (_sync_flag != TC_THREAD_NUM + 1)
  209. {
  210. rt_thread_mdelay(100);
  211. }
  212. for (int i = 0; i < TC_MUTEX_NUM; i++)
  213. {
  214. rt_mutex_detach(&m[i]);
  215. }
  216. _sync_flag ++;
  217. }
  218. static void test_mutex_waiter_to_wakeup_entry(void *para)
  219. {
  220. rt_thread_mdelay(100);
  221. rt_err_t err = rt_mutex_take(&m[TC_MUTEX_NUM - 1], RT_WAITING_FOREVER);
  222. uassert_true(err == -RT_EINTR);
  223. _sync_flag ++;
  224. }
  225. static void wakeup_func(void *para)
  226. {
  227. rt_thread_resume(t_hi_prio);
  228. }
  229. static void test_mutex_pi_wakeup_mutex_waiter(void)
  230. {
  231. struct rt_timer wakeup_timer;
  232. _sync_flag = 0;
  233. for (int i = 0; i < TC_MUTEX_NUM; i++)
  234. {
  235. rt_mutex_init(&m[i], "test", 0);
  236. }
  237. for (rt_ubase_t i = 0; i < TC_THREAD_NUM; i++)
  238. {
  239. t[i] = rt_thread_create("t", test_recursive_mutex_depend_entry, (void *)i, THREAD_STACKSIZE, 10, 10000);
  240. rt_thread_startup(t[i]);
  241. }
  242. t_hi_prio = rt_thread_create("t", test_mutex_waiter_to_wakeup_entry, (void *)RT_NULL, THREAD_STACKSIZE, 3, 10000);
  243. rt_thread_startup(t_hi_prio);
  244. rt_timer_init(&wakeup_timer, "wakeup_timer", wakeup_func, RT_NULL, rt_tick_from_millisecond(200), RT_TIMER_FLAG_ONE_SHOT);
  245. rt_timer_start(&wakeup_timer);
  246. rt_thread_mdelay(150);
  247. for (int i = 0; i < TC_THREAD_NUM; i++)
  248. {
  249. uassert_true(RT_SCHED_PRIV(t[i]).current_priority == 3);
  250. }
  251. rt_thread_mdelay(100);
  252. for (int i = 0; i < TC_THREAD_NUM; i++)
  253. {
  254. uassert_true(RT_SCHED_PRIV(t[i]).current_priority == 10);
  255. }
  256. while (_sync_flag != TC_THREAD_NUM + 1)
  257. {
  258. rt_thread_mdelay(100);
  259. }
  260. for (int i = 0; i < TC_MUTEX_NUM; i++)
  261. {
  262. rt_mutex_detach(&m[i]);
  263. }
  264. rt_timer_detach(&wakeup_timer);
  265. }
  266. static rt_err_t utest_tc_init(void)
  267. {
  268. return RT_EOK;
  269. }
  270. static rt_err_t utest_tc_cleanup(void)
  271. {
  272. return RT_EOK;
  273. }
  274. static void testcase(void)
  275. {
  276. UTEST_UNIT_RUN(test_mutex_pi);
  277. UTEST_UNIT_RUN(test_mutex_pi_recursive_prio_update);
  278. UTEST_UNIT_RUN(test_mutex_pi_timeout);
  279. UTEST_UNIT_RUN(test_mutex_pi_wakeup_mutex_waiter);
  280. }
  281. UTEST_TC_EXPORT(testcase, "testcases.kernel.mutex_pi_tc", utest_tc_init, utest_tc_cleanup, 1000);
  282. /********************* end of file ************************/