serial.c 35 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275
  1. /*
  2. * Copyright (c) 2006-2018, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2006-03-13 bernard first version
  9. * 2012-05-15 lgnq modified according bernard's implementation.
  10. * 2012-05-28 bernard code cleanup
  11. * 2012-11-23 bernard fix compiler warning.
  12. * 2013-02-20 bernard use RT_SERIAL_RB_BUFSZ to define
  13. * the size of ring buffer.
  14. * 2014-07-10 bernard rewrite serial framework
  15. * 2014-12-31 bernard use open_flag for poll_tx stream mode.
  16. * 2015-05-19 Quintin fix DMA tx mod tx_dma->activated flag !=RT_FALSE BUG
  17. * in open function.
  18. * 2015-11-10 bernard fix the poll rx issue when there is no data.
  19. * 2016-05-10 armink add fifo mode to DMA rx when serial->config.bufsz != 0.
  20. * 2017-01-19 aubr.cool prevent change serial rx bufsz when serial is opened.
  21. * 2017-11-07 JasonJia fix data bits error issue when using tcsetattr.
  22. * 2017-11-15 JasonJia fix poll rx issue when data is full.
  23. * add TCFLSH and FIONREAD support.
  24. * 2018-12-08 Ernest Chen add DMA choice
  25. */
  26. #include <rthw.h>
  27. #include <rtthread.h>
  28. #include <rtdevice.h>
  29. // #define DEBUG_ENABLE
  30. #define DEBUG_LEVEL DBG_LOG
  31. #define DBG_SECTION_NAME "UART"
  32. #define DEBUG_COLOR
  33. #include <rtdbg.h>
  34. #ifdef RT_USING_POSIX
  35. #include <dfs_posix.h>
  36. #include <dfs_poll.h>
  37. #ifdef RT_USING_POSIX_TERMIOS
  38. #include <posix_termios.h>
  39. #endif
  40. /* it's possible the 'getc/putc' is defined by stdio.h in gcc/newlib. */
  41. #ifdef getc
  42. #undef getc
  43. #endif
  44. #ifdef putc
  45. #undef putc
  46. #endif
  47. static rt_err_t serial_fops_rx_ind(rt_device_t dev, rt_size_t size)
  48. {
  49. rt_wqueue_wakeup(&(dev->wait_queue), (void*)POLLIN);
  50. return RT_EOK;
  51. }
  52. /* fops for serial */
  53. static int serial_fops_open(struct dfs_fd *fd)
  54. {
  55. rt_err_t ret = 0;
  56. rt_uint16_t flags = 0;
  57. rt_device_t device;
  58. device = (rt_device_t)fd->data;
  59. RT_ASSERT(device != RT_NULL);
  60. switch (fd->flags & O_ACCMODE)
  61. {
  62. case O_RDONLY:
  63. LOG_D("fops open: O_RDONLY!");
  64. flags = RT_DEVICE_FLAG_INT_RX | RT_DEVICE_FLAG_RDONLY;
  65. break;
  66. case O_WRONLY:
  67. LOG_D("fops open: O_WRONLY!");
  68. flags = RT_DEVICE_FLAG_WRONLY;
  69. break;
  70. case O_RDWR:
  71. LOG_D("fops open: O_RDWR!");
  72. flags = RT_DEVICE_FLAG_INT_RX | RT_DEVICE_FLAG_RDWR;
  73. break;
  74. default:
  75. LOG_E("fops open: unknown mode - %d!", fd->flags & O_ACCMODE);
  76. break;
  77. }
  78. if ((fd->flags & O_ACCMODE) != O_WRONLY)
  79. rt_device_set_rx_indicate(device, serial_fops_rx_ind);
  80. ret = rt_device_open(device, flags);
  81. if (ret == RT_EOK) return 0;
  82. return ret;
  83. }
  84. static int serial_fops_close(struct dfs_fd *fd)
  85. {
  86. rt_device_t device;
  87. device = (rt_device_t)fd->data;
  88. rt_device_set_rx_indicate(device, RT_NULL);
  89. rt_device_close(device);
  90. return 0;
  91. }
  92. static int serial_fops_ioctl(struct dfs_fd *fd, int cmd, void *args)
  93. {
  94. rt_device_t device;
  95. device = (rt_device_t)fd->data;
  96. switch (cmd)
  97. {
  98. case FIONREAD:
  99. break;
  100. case FIONWRITE:
  101. break;
  102. }
  103. return rt_device_control(device, cmd, args);
  104. }
  105. static int serial_fops_read(struct dfs_fd *fd, void *buf, size_t count)
  106. {
  107. int size = 0;
  108. rt_device_t device;
  109. device = (rt_device_t)fd->data;
  110. do
  111. {
  112. size = rt_device_read(device, -1, buf, count);
  113. if (size <= 0)
  114. {
  115. if (fd->flags & O_NONBLOCK)
  116. {
  117. size = -EAGAIN;
  118. break;
  119. }
  120. rt_wqueue_wait(&(device->wait_queue), 0, RT_WAITING_FOREVER);
  121. }
  122. }while (size <= 0);
  123. return size;
  124. }
  125. static int serial_fops_write(struct dfs_fd *fd, const void *buf, size_t count)
  126. {
  127. rt_device_t device;
  128. device = (rt_device_t)fd->data;
  129. return rt_device_write(device, -1, buf, count);
  130. }
  131. static int serial_fops_poll(struct dfs_fd *fd, struct rt_pollreq *req)
  132. {
  133. int mask = 0;
  134. int flags = 0;
  135. rt_device_t device;
  136. struct rt_serial_device *serial;
  137. device = (rt_device_t)fd->data;
  138. RT_ASSERT(device != RT_NULL);
  139. serial = (struct rt_serial_device *)device;
  140. /* only support POLLIN */
  141. flags = fd->flags & O_ACCMODE;
  142. if (flags == O_RDONLY || flags == O_RDWR)
  143. {
  144. rt_base_t level;
  145. struct rt_serial_rx_fifo* rx_fifo;
  146. rt_poll_add(&(device->wait_queue), req);
  147. rx_fifo = (struct rt_serial_rx_fifo*) serial->serial_rx;
  148. level = rt_hw_interrupt_disable();
  149. if ((rx_fifo->get_index != rx_fifo->put_index) || (rx_fifo->get_index == rx_fifo->put_index && rx_fifo->is_full == RT_TRUE))
  150. mask |= POLLIN;
  151. rt_hw_interrupt_enable(level);
  152. }
  153. return mask;
  154. }
  155. const static struct dfs_file_ops _serial_fops =
  156. {
  157. serial_fops_open,
  158. serial_fops_close,
  159. serial_fops_ioctl,
  160. serial_fops_read,
  161. serial_fops_write,
  162. RT_NULL, /* flush */
  163. RT_NULL, /* lseek */
  164. RT_NULL, /* getdents */
  165. serial_fops_poll,
  166. };
  167. #endif
  168. /*
  169. * Serial poll routines
  170. */
  171. rt_inline int _serial_poll_rx(struct rt_serial_device *serial, rt_uint8_t *data, int length)
  172. {
  173. int ch;
  174. int size;
  175. RT_ASSERT(serial != RT_NULL);
  176. size = length;
  177. while (length)
  178. {
  179. ch = serial->ops->getc(serial);
  180. if (ch == -1) break;
  181. *data = ch;
  182. data ++; length --;
  183. if (ch == '\n') break;
  184. }
  185. return size - length;
  186. }
  187. rt_inline int _serial_poll_tx(struct rt_serial_device *serial, const rt_uint8_t *data, int length)
  188. {
  189. int size;
  190. RT_ASSERT(serial != RT_NULL);
  191. size = length;
  192. while (length)
  193. {
  194. /*
  195. * to be polite with serial console add a line feed
  196. * to the carriage return character
  197. */
  198. if (*data == '\n' && (serial->parent.open_flag & RT_DEVICE_FLAG_STREAM))
  199. {
  200. serial->ops->putc(serial, '\r');
  201. }
  202. serial->ops->putc(serial, *data);
  203. ++ data;
  204. -- length;
  205. }
  206. return size - length;
  207. }
  208. /*
  209. * Serial interrupt routines
  210. */
  211. rt_inline int _serial_int_rx(struct rt_serial_device *serial, rt_uint8_t *data, int length)
  212. {
  213. int size;
  214. struct rt_serial_rx_fifo* rx_fifo;
  215. RT_ASSERT(serial != RT_NULL);
  216. size = length;
  217. rx_fifo = (struct rt_serial_rx_fifo*) serial->serial_rx;
  218. RT_ASSERT(rx_fifo != RT_NULL);
  219. /* read from software FIFO */
  220. while (length)
  221. {
  222. int ch;
  223. rt_base_t level;
  224. /* disable interrupt */
  225. level = rt_hw_interrupt_disable();
  226. /* there's no data: */
  227. if ((rx_fifo->get_index == rx_fifo->put_index) && (rx_fifo->is_full == RT_FALSE))
  228. {
  229. /* no data, enable interrupt and break out */
  230. rt_hw_interrupt_enable(level);
  231. break;
  232. }
  233. /* otherwise there's the data: */
  234. ch = rx_fifo->buffer[rx_fifo->get_index];
  235. rx_fifo->get_index += 1;
  236. if (rx_fifo->get_index >= serial->config.bufsz) rx_fifo->get_index = 0;
  237. if (rx_fifo->is_full == RT_TRUE)
  238. {
  239. rx_fifo->is_full = RT_FALSE;
  240. }
  241. /* enable interrupt */
  242. rt_hw_interrupt_enable(level);
  243. *data = ch & 0xff;
  244. data ++; length --;
  245. }
  246. return size - length;
  247. }
  248. rt_inline int _serial_int_tx(struct rt_serial_device *serial, const rt_uint8_t *data, int length)
  249. {
  250. int size;
  251. struct rt_serial_tx_fifo *tx;
  252. RT_ASSERT(serial != RT_NULL);
  253. size = length;
  254. tx = (struct rt_serial_tx_fifo*) serial->serial_tx;
  255. RT_ASSERT(tx != RT_NULL);
  256. while (length)
  257. {
  258. if (serial->ops->putc(serial, *(char*)data) == -1)
  259. {
  260. rt_completion_wait(&(tx->completion), RT_WAITING_FOREVER);
  261. continue;
  262. }
  263. data ++; length --;
  264. }
  265. return size - length;
  266. }
  267. #if defined(RT_USING_POSIX) || defined(RT_SERIAL_USING_DMA)
  268. static rt_size_t _serial_fifo_calc_recved_len(struct rt_serial_device *serial)
  269. {
  270. struct rt_serial_rx_fifo *rx_fifo = (struct rt_serial_rx_fifo *) serial->serial_rx;
  271. RT_ASSERT(rx_fifo != RT_NULL);
  272. if (rx_fifo->put_index == rx_fifo->get_index)
  273. {
  274. return (rx_fifo->is_full == RT_FALSE ? 0 : serial->config.bufsz);
  275. }
  276. else
  277. {
  278. if (rx_fifo->put_index > rx_fifo->get_index)
  279. {
  280. return rx_fifo->put_index - rx_fifo->get_index;
  281. }
  282. else
  283. {
  284. return serial->config.bufsz - (rx_fifo->get_index - rx_fifo->put_index);
  285. }
  286. }
  287. }
  288. #endif /* RT_USING_POSIX || RT_SERIAL_USING_DMA */
  289. #ifdef RT_SERIAL_USING_DMA
  290. /**
  291. * Calculate DMA received data length.
  292. *
  293. * @param serial serial device
  294. *
  295. * @return length
  296. */
  297. static rt_size_t rt_dma_calc_recved_len(struct rt_serial_device *serial)
  298. {
  299. return _serial_fifo_calc_recved_len(serial);
  300. }
  301. /**
  302. * Read data finish by DMA mode then update the get index for receive fifo.
  303. *
  304. * @param serial serial device
  305. * @param len get data length for this operate
  306. */
  307. static void rt_dma_recv_update_get_index(struct rt_serial_device *serial, rt_size_t len)
  308. {
  309. struct rt_serial_rx_fifo *rx_fifo = (struct rt_serial_rx_fifo *) serial->serial_rx;
  310. RT_ASSERT(rx_fifo != RT_NULL);
  311. RT_ASSERT(len <= rt_dma_calc_recved_len(serial));
  312. if (rx_fifo->is_full && len != 0) rx_fifo->is_full = RT_FALSE;
  313. rx_fifo->get_index += len;
  314. if (rx_fifo->get_index >= serial->config.bufsz)
  315. {
  316. rx_fifo->get_index %= serial->config.bufsz;
  317. }
  318. }
  319. /**
  320. * DMA received finish then update put index for receive fifo.
  321. *
  322. * @param serial serial device
  323. * @param len received length for this transmit
  324. */
  325. static void rt_dma_recv_update_put_index(struct rt_serial_device *serial, rt_size_t len)
  326. {
  327. struct rt_serial_rx_fifo *rx_fifo = (struct rt_serial_rx_fifo *)serial->serial_rx;
  328. RT_ASSERT(rx_fifo != RT_NULL);
  329. if (rx_fifo->get_index <= rx_fifo->put_index)
  330. {
  331. rx_fifo->put_index += len;
  332. /* beyond the fifo end */
  333. if (rx_fifo->put_index >= serial->config.bufsz)
  334. {
  335. rx_fifo->put_index %= serial->config.bufsz;
  336. /* force overwrite get index */
  337. if (rx_fifo->put_index >= rx_fifo->get_index)
  338. {
  339. rx_fifo->is_full = RT_TRUE;
  340. }
  341. }
  342. }
  343. else
  344. {
  345. rx_fifo->put_index += len;
  346. if (rx_fifo->put_index >= rx_fifo->get_index)
  347. {
  348. /* beyond the fifo end */
  349. if (rx_fifo->put_index >= serial->config.bufsz)
  350. {
  351. rx_fifo->put_index %= serial->config.bufsz;
  352. }
  353. /* force overwrite get index */
  354. rx_fifo->is_full = RT_TRUE;
  355. }
  356. }
  357. if(rx_fifo->is_full == RT_TRUE)
  358. {
  359. rx_fifo->get_index = rx_fifo->put_index;
  360. }
  361. if (rx_fifo->get_index >= serial->config.bufsz) rx_fifo->get_index = 0;
  362. }
  363. /*
  364. * Serial DMA routines
  365. */
  366. rt_inline int _serial_dma_rx(struct rt_serial_device *serial, rt_uint8_t *data, int length)
  367. {
  368. rt_base_t level;
  369. RT_ASSERT((serial != RT_NULL) && (data != RT_NULL));
  370. level = rt_hw_interrupt_disable();
  371. if (serial->config.bufsz == 0)
  372. {
  373. int result = RT_EOK;
  374. struct rt_serial_rx_dma *rx_dma;
  375. rx_dma = (struct rt_serial_rx_dma*)serial->serial_rx;
  376. RT_ASSERT(rx_dma != RT_NULL);
  377. if (rx_dma->activated != RT_TRUE)
  378. {
  379. rx_dma->activated = RT_TRUE;
  380. RT_ASSERT(serial->ops->dma_transmit != RT_NULL);
  381. serial->ops->dma_transmit(serial, data, length, RT_SERIAL_DMA_RX);
  382. }
  383. else result = -RT_EBUSY;
  384. rt_hw_interrupt_enable(level);
  385. if (result == RT_EOK) return length;
  386. rt_set_errno(result);
  387. return 0;
  388. }
  389. else
  390. {
  391. struct rt_serial_rx_fifo *rx_fifo = (struct rt_serial_rx_fifo *) serial->serial_rx;
  392. rt_size_t recv_len = 0, fifo_recved_len = rt_dma_calc_recved_len(serial);
  393. RT_ASSERT(rx_fifo != RT_NULL);
  394. if (length < fifo_recved_len)
  395. recv_len = length;
  396. else
  397. recv_len = fifo_recved_len;
  398. if (rx_fifo->get_index + recv_len < serial->config.bufsz)
  399. rt_memcpy(data, rx_fifo->buffer + rx_fifo->get_index, recv_len);
  400. else
  401. {
  402. rt_memcpy(data, rx_fifo->buffer + rx_fifo->get_index,
  403. serial->config.bufsz - rx_fifo->get_index);
  404. rt_memcpy(data + serial->config.bufsz - rx_fifo->get_index, rx_fifo->buffer,
  405. recv_len + rx_fifo->get_index - serial->config.bufsz);
  406. }
  407. rt_dma_recv_update_get_index(serial, recv_len);
  408. rt_hw_interrupt_enable(level);
  409. return recv_len;
  410. }
  411. }
  412. rt_inline int _serial_dma_tx(struct rt_serial_device *serial, const rt_uint8_t *data, int length)
  413. {
  414. rt_base_t level;
  415. rt_err_t result;
  416. struct rt_serial_tx_dma *tx_dma;
  417. tx_dma = (struct rt_serial_tx_dma*)(serial->serial_tx);
  418. result = rt_data_queue_push(&(tx_dma->data_queue), data, length, RT_WAITING_FOREVER);
  419. if (result == RT_EOK)
  420. {
  421. level = rt_hw_interrupt_disable();
  422. if (tx_dma->activated != RT_TRUE)
  423. {
  424. tx_dma->activated = RT_TRUE;
  425. rt_hw_interrupt_enable(level);
  426. /* make a DMA transfer */
  427. serial->ops->dma_transmit(serial, (rt_uint8_t *)data, length, RT_SERIAL_DMA_TX);
  428. }
  429. else
  430. {
  431. rt_hw_interrupt_enable(level);
  432. }
  433. return length;
  434. }
  435. else
  436. {
  437. rt_set_errno(result);
  438. return 0;
  439. }
  440. }
  441. #endif /* RT_SERIAL_USING_DMA */
  442. /* RT-Thread Device Interface */
  443. /*
  444. * This function initializes serial device.
  445. */
  446. static rt_err_t rt_serial_init(struct rt_device *dev)
  447. {
  448. rt_err_t result = RT_EOK;
  449. struct rt_serial_device *serial;
  450. RT_ASSERT(dev != RT_NULL);
  451. serial = (struct rt_serial_device *)dev;
  452. /* initialize rx/tx */
  453. serial->serial_rx = RT_NULL;
  454. serial->serial_tx = RT_NULL;
  455. /* apply configuration */
  456. if (serial->ops->configure)
  457. result = serial->ops->configure(serial, &serial->config);
  458. return result;
  459. }
  460. static rt_err_t rt_serial_open(struct rt_device *dev, rt_uint16_t oflag)
  461. {
  462. rt_uint16_t stream_flag = 0;
  463. struct rt_serial_device *serial;
  464. RT_ASSERT(dev != RT_NULL);
  465. serial = (struct rt_serial_device *)dev;
  466. LOG_D("open serial device: 0x%08x with open flag: 0x%04x",
  467. dev, oflag);
  468. #ifdef RT_SERIAL_USING_DMA
  469. /* check device flag with the open flag */
  470. if ((oflag & RT_DEVICE_FLAG_DMA_RX) && !(dev->flag & RT_DEVICE_FLAG_DMA_RX))
  471. return -RT_EIO;
  472. if ((oflag & RT_DEVICE_FLAG_DMA_TX) && !(dev->flag & RT_DEVICE_FLAG_DMA_TX))
  473. return -RT_EIO;
  474. #endif /* RT_SERIAL_USING_DMA */
  475. if ((oflag & RT_DEVICE_FLAG_INT_RX) && !(dev->flag & RT_DEVICE_FLAG_INT_RX))
  476. return -RT_EIO;
  477. if ((oflag & RT_DEVICE_FLAG_INT_TX) && !(dev->flag & RT_DEVICE_FLAG_INT_TX))
  478. return -RT_EIO;
  479. /* keep steam flag */
  480. if ((oflag & RT_DEVICE_FLAG_STREAM) || (dev->open_flag & RT_DEVICE_FLAG_STREAM))
  481. stream_flag = RT_DEVICE_FLAG_STREAM;
  482. /* get open flags */
  483. dev->open_flag = oflag & 0xff;
  484. /* initialize the Rx/Tx structure according to open flag */
  485. if (serial->serial_rx == RT_NULL)
  486. {
  487. if (oflag & RT_DEVICE_FLAG_INT_RX)
  488. {
  489. struct rt_serial_rx_fifo* rx_fifo;
  490. rx_fifo = (struct rt_serial_rx_fifo*) rt_malloc (sizeof(struct rt_serial_rx_fifo) +
  491. serial->config.bufsz);
  492. RT_ASSERT(rx_fifo != RT_NULL);
  493. rx_fifo->buffer = (rt_uint8_t*) (rx_fifo + 1);
  494. rt_memset(rx_fifo->buffer, 0, serial->config.bufsz);
  495. rx_fifo->put_index = 0;
  496. rx_fifo->get_index = 0;
  497. rx_fifo->is_full = RT_FALSE;
  498. serial->serial_rx = rx_fifo;
  499. dev->open_flag |= RT_DEVICE_FLAG_INT_RX;
  500. /* configure low level device */
  501. serial->ops->control(serial, RT_DEVICE_CTRL_SET_INT, (void *)RT_DEVICE_FLAG_INT_RX);
  502. }
  503. #ifdef RT_SERIAL_USING_DMA
  504. else if (oflag & RT_DEVICE_FLAG_DMA_RX)
  505. {
  506. if (serial->config.bufsz == 0) {
  507. struct rt_serial_rx_dma* rx_dma;
  508. rx_dma = (struct rt_serial_rx_dma*) rt_malloc (sizeof(struct rt_serial_rx_dma));
  509. RT_ASSERT(rx_dma != RT_NULL);
  510. rx_dma->activated = RT_FALSE;
  511. serial->serial_rx = rx_dma;
  512. } else {
  513. struct rt_serial_rx_fifo* rx_fifo;
  514. rx_fifo = (struct rt_serial_rx_fifo*) rt_malloc (sizeof(struct rt_serial_rx_fifo) +
  515. serial->config.bufsz);
  516. RT_ASSERT(rx_fifo != RT_NULL);
  517. rx_fifo->buffer = (rt_uint8_t*) (rx_fifo + 1);
  518. rt_memset(rx_fifo->buffer, 0, serial->config.bufsz);
  519. rx_fifo->put_index = 0;
  520. rx_fifo->get_index = 0;
  521. rx_fifo->is_full = RT_FALSE;
  522. serial->serial_rx = rx_fifo;
  523. /* configure fifo address and length to low level device */
  524. serial->ops->control(serial, RT_DEVICE_CTRL_CONFIG, (void *) RT_DEVICE_FLAG_DMA_RX);
  525. }
  526. dev->open_flag |= RT_DEVICE_FLAG_DMA_RX;
  527. }
  528. #endif /* RT_SERIAL_USING_DMA */
  529. else
  530. {
  531. serial->serial_rx = RT_NULL;
  532. }
  533. }
  534. else
  535. {
  536. if (oflag & RT_DEVICE_FLAG_INT_RX)
  537. dev->open_flag |= RT_DEVICE_FLAG_INT_RX;
  538. #ifdef RT_SERIAL_USING_DMA
  539. else if (oflag & RT_DEVICE_FLAG_DMA_RX)
  540. dev->open_flag |= RT_DEVICE_FLAG_DMA_RX;
  541. #endif /* RT_SERIAL_USING_DMA */
  542. }
  543. if (serial->serial_tx == RT_NULL)
  544. {
  545. if (oflag & RT_DEVICE_FLAG_INT_TX)
  546. {
  547. struct rt_serial_tx_fifo *tx_fifo;
  548. tx_fifo = (struct rt_serial_tx_fifo*) rt_malloc(sizeof(struct rt_serial_tx_fifo));
  549. RT_ASSERT(tx_fifo != RT_NULL);
  550. rt_completion_init(&(tx_fifo->completion));
  551. serial->serial_tx = tx_fifo;
  552. dev->open_flag |= RT_DEVICE_FLAG_INT_TX;
  553. /* configure low level device */
  554. serial->ops->control(serial, RT_DEVICE_CTRL_SET_INT, (void *)RT_DEVICE_FLAG_INT_TX);
  555. }
  556. #ifdef RT_SERIAL_USING_DMA
  557. else if (oflag & RT_DEVICE_FLAG_DMA_TX)
  558. {
  559. struct rt_serial_tx_dma* tx_dma;
  560. tx_dma = (struct rt_serial_tx_dma*) rt_malloc (sizeof(struct rt_serial_tx_dma));
  561. RT_ASSERT(tx_dma != RT_NULL);
  562. tx_dma->activated = RT_FALSE;
  563. rt_data_queue_init(&(tx_dma->data_queue), 8, 4, RT_NULL);
  564. serial->serial_tx = tx_dma;
  565. dev->open_flag |= RT_DEVICE_FLAG_DMA_TX;
  566. }
  567. #endif /* RT_SERIAL_USING_DMA */
  568. else
  569. {
  570. serial->serial_tx = RT_NULL;
  571. }
  572. }
  573. else
  574. {
  575. if (oflag & RT_DEVICE_FLAG_INT_TX)
  576. dev->open_flag |= RT_DEVICE_FLAG_INT_TX;
  577. #ifdef RT_SERIAL_USING_DMA
  578. else if (oflag & RT_DEVICE_FLAG_DMA_TX)
  579. dev->open_flag |= RT_DEVICE_FLAG_DMA_TX;
  580. #endif /* RT_SERIAL_USING_DMA */
  581. }
  582. /* set stream flag */
  583. dev->open_flag |= stream_flag;
  584. return RT_EOK;
  585. }
  586. static rt_err_t rt_serial_close(struct rt_device *dev)
  587. {
  588. struct rt_serial_device *serial;
  589. RT_ASSERT(dev != RT_NULL);
  590. serial = (struct rt_serial_device *)dev;
  591. /* this device has more reference count */
  592. if (dev->ref_count > 1) return RT_EOK;
  593. if (dev->open_flag & RT_DEVICE_FLAG_INT_RX)
  594. {
  595. struct rt_serial_rx_fifo* rx_fifo;
  596. rx_fifo = (struct rt_serial_rx_fifo*)serial->serial_rx;
  597. RT_ASSERT(rx_fifo != RT_NULL);
  598. rt_free(rx_fifo);
  599. serial->serial_rx = RT_NULL;
  600. dev->open_flag &= ~RT_DEVICE_FLAG_INT_RX;
  601. /* configure low level device */
  602. serial->ops->control(serial, RT_DEVICE_CTRL_CLR_INT, (void*)RT_DEVICE_FLAG_INT_RX);
  603. }
  604. #ifdef RT_SERIAL_USING_DMA
  605. else if (dev->open_flag & RT_DEVICE_FLAG_DMA_RX)
  606. {
  607. if (serial->config.bufsz == 0) {
  608. struct rt_serial_rx_dma* rx_dma;
  609. rx_dma = (struct rt_serial_rx_dma*)serial->serial_rx;
  610. RT_ASSERT(rx_dma != RT_NULL);
  611. rt_free(rx_dma);
  612. } else {
  613. struct rt_serial_rx_fifo* rx_fifo;
  614. rx_fifo = (struct rt_serial_rx_fifo*)serial->serial_rx;
  615. RT_ASSERT(rx_fifo != RT_NULL);
  616. rt_free(rx_fifo);
  617. }
  618. /* configure low level device */
  619. serial->ops->control(serial, RT_DEVICE_CTRL_CLR_INT, (void *) RT_DEVICE_FLAG_DMA_RX);
  620. serial->serial_rx = RT_NULL;
  621. dev->open_flag &= ~RT_DEVICE_FLAG_DMA_RX;
  622. }
  623. #endif /* RT_SERIAL_USING_DMA */
  624. if (dev->open_flag & RT_DEVICE_FLAG_INT_TX)
  625. {
  626. struct rt_serial_tx_fifo* tx_fifo;
  627. tx_fifo = (struct rt_serial_tx_fifo*)serial->serial_tx;
  628. RT_ASSERT(tx_fifo != RT_NULL);
  629. rt_free(tx_fifo);
  630. serial->serial_tx = RT_NULL;
  631. dev->open_flag &= ~RT_DEVICE_FLAG_INT_TX;
  632. /* configure low level device */
  633. serial->ops->control(serial, RT_DEVICE_CTRL_CLR_INT, (void*)RT_DEVICE_FLAG_INT_TX);
  634. }
  635. #ifdef RT_SERIAL_USING_DMA
  636. else if (dev->open_flag & RT_DEVICE_FLAG_DMA_TX)
  637. {
  638. struct rt_serial_tx_dma* tx_dma;
  639. tx_dma = (struct rt_serial_tx_dma*)serial->serial_tx;
  640. RT_ASSERT(tx_dma != RT_NULL);
  641. rt_free(tx_dma);
  642. serial->serial_tx = RT_NULL;
  643. dev->open_flag &= ~RT_DEVICE_FLAG_DMA_TX;
  644. }
  645. #endif /* RT_SERIAL_USING_DMA */
  646. return RT_EOK;
  647. }
  648. static rt_size_t rt_serial_read(struct rt_device *dev,
  649. rt_off_t pos,
  650. void *buffer,
  651. rt_size_t size)
  652. {
  653. struct rt_serial_device *serial;
  654. RT_ASSERT(dev != RT_NULL);
  655. if (size == 0) return 0;
  656. serial = (struct rt_serial_device *)dev;
  657. if (dev->open_flag & RT_DEVICE_FLAG_INT_RX)
  658. {
  659. return _serial_int_rx(serial, buffer, size);
  660. }
  661. #ifdef RT_SERIAL_USING_DMA
  662. else if (dev->open_flag & RT_DEVICE_FLAG_DMA_RX)
  663. {
  664. return _serial_dma_rx(serial, buffer, size);
  665. }
  666. #endif /* RT_SERIAL_USING_DMA */
  667. return _serial_poll_rx(serial, buffer, size);
  668. }
  669. static rt_size_t rt_serial_write(struct rt_device *dev,
  670. rt_off_t pos,
  671. const void *buffer,
  672. rt_size_t size)
  673. {
  674. struct rt_serial_device *serial;
  675. RT_ASSERT(dev != RT_NULL);
  676. if (size == 0) return 0;
  677. serial = (struct rt_serial_device *)dev;
  678. if (dev->open_flag & RT_DEVICE_FLAG_INT_TX)
  679. {
  680. return _serial_int_tx(serial, buffer, size);
  681. }
  682. #ifdef RT_SERIAL_USING_DMA
  683. else if (dev->open_flag & RT_DEVICE_FLAG_DMA_TX)
  684. {
  685. return _serial_dma_tx(serial, buffer, size);
  686. }
  687. #endif /* RT_SERIAL_USING_DMA */
  688. else
  689. {
  690. return _serial_poll_tx(serial, buffer, size);
  691. }
  692. }
  693. #ifdef RT_USING_POSIX_TERMIOS
  694. struct speed_baudrate_item
  695. {
  696. speed_t speed;
  697. int baudrate;
  698. };
  699. const static struct speed_baudrate_item _tbl[] =
  700. {
  701. {B2400, BAUD_RATE_2400},
  702. {B4800, BAUD_RATE_4800},
  703. {B9600, BAUD_RATE_9600},
  704. {B19200, BAUD_RATE_19200},
  705. {B38400, BAUD_RATE_38400},
  706. {B57600, BAUD_RATE_57600},
  707. {B115200, BAUD_RATE_115200},
  708. {B230400, BAUD_RATE_230400},
  709. {B460800, BAUD_RATE_460800},
  710. {B921600, BAUD_RATE_921600},
  711. {B2000000, BAUD_RATE_2000000},
  712. {B3000000, BAUD_RATE_3000000},
  713. };
  714. static speed_t _get_speed(int baudrate)
  715. {
  716. int index;
  717. for (index = 0; index < sizeof(_tbl)/sizeof(_tbl[0]); index ++)
  718. {
  719. if (_tbl[index].baudrate == baudrate)
  720. return _tbl[index].speed;
  721. }
  722. return B0;
  723. }
  724. static int _get_baudrate(speed_t speed)
  725. {
  726. int index;
  727. for (index = 0; index < sizeof(_tbl)/sizeof(_tbl[0]); index ++)
  728. {
  729. if (_tbl[index].speed == speed)
  730. return _tbl[index].baudrate;
  731. }
  732. return 0;
  733. }
  734. static void _tc_flush(struct rt_serial_device *serial, int queue)
  735. {
  736. int ch = -1;
  737. struct rt_serial_rx_fifo *rx_fifo = RT_NULL;
  738. struct rt_device *device = RT_NULL;
  739. RT_ASSERT(serial != RT_NULL);
  740. device = &(serial->parent);
  741. rx_fifo = (struct rt_serial_rx_fifo *) serial->serial_rx;
  742. switch(queue)
  743. {
  744. case TCIFLUSH:
  745. case TCIOFLUSH:
  746. RT_ASSERT(rx_fifo != RT_NULL);
  747. if((device->open_flag & RT_DEVICE_FLAG_INT_RX) || (device->open_flag & RT_DEVICE_FLAG_DMA_RX))
  748. {
  749. RT_ASSERT(RT_NULL != rx_fifo);
  750. rt_memset(rx_fifo->buffer, 0, serial->config.bufsz);
  751. rx_fifo->put_index = 0;
  752. rx_fifo->get_index = 0;
  753. rx_fifo->is_full = RT_FALSE;
  754. }
  755. else
  756. {
  757. while (1)
  758. {
  759. ch = serial->ops->getc(serial);
  760. if (ch == -1) break;
  761. }
  762. }
  763. break;
  764. case TCOFLUSH:
  765. break;
  766. }
  767. }
  768. #endif
  769. static rt_err_t rt_serial_control(struct rt_device *dev,
  770. int cmd,
  771. void *args)
  772. {
  773. rt_err_t ret = RT_EOK;
  774. struct rt_serial_device *serial;
  775. RT_ASSERT(dev != RT_NULL);
  776. serial = (struct rt_serial_device *)dev;
  777. switch (cmd)
  778. {
  779. case RT_DEVICE_CTRL_SUSPEND:
  780. /* suspend device */
  781. dev->flag |= RT_DEVICE_FLAG_SUSPENDED;
  782. break;
  783. case RT_DEVICE_CTRL_RESUME:
  784. /* resume device */
  785. dev->flag &= ~RT_DEVICE_FLAG_SUSPENDED;
  786. break;
  787. case RT_DEVICE_CTRL_CONFIG:
  788. if (args)
  789. {
  790. struct serial_configure *pconfig = (struct serial_configure *) args;
  791. if (pconfig->bufsz != serial->config.bufsz && serial->parent.ref_count)
  792. {
  793. /*can not change buffer size*/
  794. return RT_EBUSY;
  795. }
  796. /* set serial configure */
  797. serial->config = *pconfig;
  798. if (serial->parent.ref_count)
  799. {
  800. /* serial device has been opened, to configure it */
  801. serial->ops->configure(serial, (struct serial_configure *) args);
  802. }
  803. }
  804. break;
  805. #ifdef RT_USING_POSIX_TERMIOS
  806. case TCGETA:
  807. {
  808. struct termios *tio = (struct termios*)args;
  809. if (tio == RT_NULL) return -RT_EINVAL;
  810. tio->c_iflag = 0;
  811. tio->c_oflag = 0;
  812. tio->c_lflag = 0;
  813. /* update oflag for console device */
  814. if (rt_console_get_device() == dev)
  815. tio->c_oflag = OPOST | ONLCR;
  816. /* set cflag */
  817. tio->c_cflag = 0;
  818. if (serial->config.data_bits == DATA_BITS_5)
  819. tio->c_cflag = CS5;
  820. else if (serial->config.data_bits == DATA_BITS_6)
  821. tio->c_cflag = CS6;
  822. else if (serial->config.data_bits == DATA_BITS_7)
  823. tio->c_cflag = CS7;
  824. else if (serial->config.data_bits == DATA_BITS_8)
  825. tio->c_cflag = CS8;
  826. if (serial->config.stop_bits == STOP_BITS_2)
  827. tio->c_cflag |= CSTOPB;
  828. if (serial->config.parity == PARITY_EVEN)
  829. tio->c_cflag |= PARENB;
  830. else if (serial->config.parity == PARITY_ODD)
  831. tio->c_cflag |= (PARODD | PARENB);
  832. cfsetospeed(tio, _get_speed(serial->config.baud_rate));
  833. }
  834. break;
  835. case TCSETAW:
  836. case TCSETAF:
  837. case TCSETA:
  838. {
  839. int baudrate;
  840. struct serial_configure config;
  841. struct termios *tio = (struct termios*)args;
  842. if (tio == RT_NULL) return -RT_EINVAL;
  843. config = serial->config;
  844. baudrate = _get_baudrate(cfgetospeed(tio));
  845. config.baud_rate = baudrate;
  846. switch (tio->c_cflag & CSIZE)
  847. {
  848. case CS5:
  849. config.data_bits = DATA_BITS_5;
  850. break;
  851. case CS6:
  852. config.data_bits = DATA_BITS_6;
  853. break;
  854. case CS7:
  855. config.data_bits = DATA_BITS_7;
  856. break;
  857. default:
  858. config.data_bits = DATA_BITS_8;
  859. break;
  860. }
  861. if (tio->c_cflag & CSTOPB) config.stop_bits = STOP_BITS_2;
  862. else config.stop_bits = STOP_BITS_1;
  863. if (tio->c_cflag & PARENB)
  864. {
  865. if (tio->c_cflag & PARODD) config.parity = PARITY_ODD;
  866. else config.parity = PARITY_EVEN;
  867. }
  868. else config.parity = PARITY_NONE;
  869. serial->ops->configure(serial, &config);
  870. }
  871. break;
  872. case TCFLSH:
  873. {
  874. int queue = (int)args;
  875. _tc_flush(serial, queue);
  876. }
  877. break;
  878. case TCXONC:
  879. break;
  880. #endif
  881. #ifdef RT_USING_POSIX
  882. case FIONREAD:
  883. {
  884. rt_size_t recved = 0;
  885. rt_base_t level;
  886. level = rt_hw_interrupt_disable();
  887. recved = _serial_fifo_calc_recved_len(serial);
  888. rt_hw_interrupt_enable(level);
  889. *(rt_size_t *)args = recved;
  890. }
  891. break;
  892. #endif
  893. default :
  894. /* control device */
  895. ret = serial->ops->control(serial, cmd, args);
  896. break;
  897. }
  898. return ret;
  899. }
  900. #ifdef RT_USING_DEVICE_OPS
  901. const static struct rt_device_ops serial_ops =
  902. {
  903. rt_serial_init,
  904. rt_serial_open,
  905. rt_serial_close,
  906. rt_serial_read,
  907. rt_serial_write,
  908. rt_serial_control
  909. };
  910. #endif
  911. /*
  912. * serial register
  913. */
  914. rt_err_t rt_hw_serial_register(struct rt_serial_device *serial,
  915. const char *name,
  916. rt_uint32_t flag,
  917. void *data)
  918. {
  919. rt_err_t ret;
  920. struct rt_device *device;
  921. RT_ASSERT(serial != RT_NULL);
  922. device = &(serial->parent);
  923. device->type = RT_Device_Class_Char;
  924. device->rx_indicate = RT_NULL;
  925. device->tx_complete = RT_NULL;
  926. #ifdef RT_USING_DEVICE_OPS
  927. device->ops = &serial_ops;
  928. #else
  929. device->init = rt_serial_init;
  930. device->open = rt_serial_open;
  931. device->close = rt_serial_close;
  932. device->read = rt_serial_read;
  933. device->write = rt_serial_write;
  934. device->control = rt_serial_control;
  935. #endif
  936. device->user_data = data;
  937. /* register a character device */
  938. ret = rt_device_register(device, name, flag);
  939. #if defined(RT_USING_POSIX)
  940. /* set fops */
  941. device->fops = &_serial_fops;
  942. #endif
  943. return ret;
  944. }
  945. /* ISR for serial interrupt */
  946. void rt_hw_serial_isr(struct rt_serial_device *serial, int event)
  947. {
  948. switch (event & 0xff)
  949. {
  950. case RT_SERIAL_EVENT_RX_IND:
  951. {
  952. int ch = -1;
  953. rt_base_t level;
  954. struct rt_serial_rx_fifo* rx_fifo;
  955. /* interrupt mode receive */
  956. rx_fifo = (struct rt_serial_rx_fifo*)serial->serial_rx;
  957. RT_ASSERT(rx_fifo != RT_NULL);
  958. while (1)
  959. {
  960. ch = serial->ops->getc(serial);
  961. if (ch == -1) break;
  962. /* disable interrupt */
  963. level = rt_hw_interrupt_disable();
  964. rx_fifo->buffer[rx_fifo->put_index] = ch;
  965. rx_fifo->put_index += 1;
  966. if (rx_fifo->put_index >= serial->config.bufsz) rx_fifo->put_index = 0;
  967. /* if the next position is read index, discard this 'read char' */
  968. if (rx_fifo->put_index == rx_fifo->get_index)
  969. {
  970. rx_fifo->get_index += 1;
  971. rx_fifo->is_full = RT_TRUE;
  972. if (rx_fifo->get_index >= serial->config.bufsz) rx_fifo->get_index = 0;
  973. }
  974. /* enable interrupt */
  975. rt_hw_interrupt_enable(level);
  976. }
  977. /* invoke callback */
  978. if (serial->parent.rx_indicate != RT_NULL)
  979. {
  980. rt_size_t rx_length;
  981. /* get rx length */
  982. level = rt_hw_interrupt_disable();
  983. rx_length = (rx_fifo->put_index >= rx_fifo->get_index)? (rx_fifo->put_index - rx_fifo->get_index):
  984. (serial->config.bufsz - (rx_fifo->get_index - rx_fifo->put_index));
  985. rt_hw_interrupt_enable(level);
  986. if (rx_length)
  987. {
  988. serial->parent.rx_indicate(&serial->parent, rx_length);
  989. }
  990. }
  991. break;
  992. }
  993. case RT_SERIAL_EVENT_TX_DONE:
  994. {
  995. struct rt_serial_tx_fifo* tx_fifo;
  996. tx_fifo = (struct rt_serial_tx_fifo*)serial->serial_tx;
  997. rt_completion_done(&(tx_fifo->completion));
  998. break;
  999. }
  1000. #ifdef RT_SERIAL_USING_DMA
  1001. case RT_SERIAL_EVENT_TX_DMADONE:
  1002. {
  1003. const void *data_ptr;
  1004. rt_size_t data_size;
  1005. const void *last_data_ptr;
  1006. struct rt_serial_tx_dma *tx_dma;
  1007. tx_dma = (struct rt_serial_tx_dma*) serial->serial_tx;
  1008. rt_data_queue_pop(&(tx_dma->data_queue), &last_data_ptr, &data_size, 0);
  1009. if (rt_data_queue_peak(&(tx_dma->data_queue), &data_ptr, &data_size) == RT_EOK)
  1010. {
  1011. /* transmit next data node */
  1012. tx_dma->activated = RT_TRUE;
  1013. serial->ops->dma_transmit(serial, (rt_uint8_t *)data_ptr, data_size, RT_SERIAL_DMA_TX);
  1014. }
  1015. else
  1016. {
  1017. tx_dma->activated = RT_FALSE;
  1018. }
  1019. /* invoke callback */
  1020. if (serial->parent.tx_complete != RT_NULL)
  1021. {
  1022. serial->parent.tx_complete(&serial->parent, (void*)last_data_ptr);
  1023. }
  1024. break;
  1025. }
  1026. case RT_SERIAL_EVENT_RX_DMADONE:
  1027. {
  1028. int length;
  1029. rt_base_t level;
  1030. /* get DMA rx length */
  1031. length = (event & (~0xff)) >> 8;
  1032. if (serial->config.bufsz == 0)
  1033. {
  1034. struct rt_serial_rx_dma* rx_dma;
  1035. rx_dma = (struct rt_serial_rx_dma*) serial->serial_rx;
  1036. RT_ASSERT(rx_dma != RT_NULL);
  1037. RT_ASSERT(serial->parent.rx_indicate != RT_NULL);
  1038. serial->parent.rx_indicate(&(serial->parent), length);
  1039. rx_dma->activated = RT_FALSE;
  1040. }
  1041. else
  1042. {
  1043. /* disable interrupt */
  1044. level = rt_hw_interrupt_disable();
  1045. /* update fifo put index */
  1046. rt_dma_recv_update_put_index(serial, length);
  1047. /* calculate received total length */
  1048. length = rt_dma_calc_recved_len(serial);
  1049. /* enable interrupt */
  1050. rt_hw_interrupt_enable(level);
  1051. /* invoke callback */
  1052. if (serial->parent.rx_indicate != RT_NULL)
  1053. {
  1054. serial->parent.rx_indicate(&(serial->parent), length);
  1055. }
  1056. }
  1057. break;
  1058. }
  1059. #endif /* RT_SERIAL_USING_DMA */
  1060. }
  1061. }