sensor_bmx055.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657
  1. /**************************************************************************//**
  2. *
  3. * @copyright (C) 2019 Nuvoton Technology Corp. All rights reserved.
  4. *
  5. * SPDX-License-Identifier: Apache-2.0
  6. *
  7. * Change Logs:
  8. * Date Author Notes
  9. * 2020-1-16 Wayne First version
  10. *
  11. ******************************************************************************/
  12. #include <rtconfig.h>
  13. #if defined(NU_PKG_USING_BMX055)
  14. #include <sys/time.h>
  15. #include <string.h>
  16. #include "sensor_bmx055.h"
  17. #define DBG_ENABLE
  18. #define DBG_LEVEL DBG_LOG
  19. #define DBG_SECTION_NAME "sensor.bmx055"
  20. #define DBG_COLOR
  21. #include <rtdbg.h>
  22. struct bmx055
  23. {
  24. /* Structure used for Magnetometer */
  25. struct bmm050_t mag;
  26. /* Structure used for read the mag xyz data*/
  27. struct bmm050_mag_data_s16_t mag_data;
  28. /* Structure used for Accelerometer */
  29. struct bma2x2_t accel;
  30. /* Structure used to read accel xyz and temperature data*/
  31. struct bma2x2_accel_data_temp accel_xyzt;
  32. /* Structure used for Gyroscope */
  33. struct bmg160_t gyro;
  34. /* structure used to read gyro xyz and interrupt status*/
  35. struct bmg160_data_t gyro_xyzi;
  36. } ;
  37. typedef struct bmx055 *bmx055_t;
  38. struct bmx055_param_pair
  39. {
  40. int val;
  41. int reg;
  42. };
  43. typedef struct bmx055_param_pair *bmx055_param_pair_t;
  44. static const struct bmx055_param_pair accel_ranges[] =
  45. {
  46. {2000, BMA2x2_RANGE_2G},
  47. {4000, BMA2x2_RANGE_4G},
  48. {8000, BMA2x2_RANGE_8G},
  49. {16000, BMA2x2_RANGE_16G},
  50. };
  51. static const struct bmx055_param_pair gyro_ranges[] =
  52. {
  53. {125, BMG160_RANGE_125},
  54. {250, BMG160_RANGE_250},
  55. {500, BMG160_RANGE_500},
  56. {1000, BMG160_RANGE_1000},
  57. {2000, BMG160_RANGE_2000},
  58. };
  59. static const struct bmx055_param_pair accel_odr[] =
  60. {
  61. {8, BMA2x2_BW_7_81HZ},
  62. {16, BMA2x2_BW_15_63HZ},
  63. {32, BMA2x2_BW_31_25HZ},
  64. {63, BMA2x2_BW_62_50HZ},
  65. {125, BMA2x2_BW_125HZ},
  66. {250, BMA2x2_BW_250HZ},
  67. {500, BMA2x2_BW_500HZ},
  68. {1000, BMA2x2_BW_1000HZ},
  69. };
  70. static const struct bmx055_param_pair gyro_odr[] =
  71. {
  72. {12, BMG160_BW_12_HZ},
  73. {23, BMG160_BW_23_HZ},
  74. {32, BMG160_BW_32_HZ},
  75. {47, BMG160_BW_47_HZ},
  76. {64, BMG160_BW_64_HZ},
  77. {116, BMG160_BW_116_HZ},
  78. {230, BMG160_BW_230_HZ},
  79. {500, BMG160_BW_500_HZ},
  80. };
  81. static const struct bmx055_param_pair mag_odr[] =
  82. {
  83. {2, BMM050_DR_02HZ},
  84. {6, BMM050_DR_06HZ},
  85. {8, BMM050_DR_08HZ},
  86. {15, BMM050_DR_15HZ},
  87. {20, BMM050_DR_20HZ},
  88. {25, BMM050_DR_25HZ},
  89. {30, BMM050_DR_30HZ},
  90. };
  91. static struct bmx055 g_sbmx055;
  92. static struct rt_i2c_bus_device *i2c_bus_dev;
  93. static uint8_t g_u8Range_accel = 0;
  94. static uint8_t g_u8Range_gyro = 0;
  95. static int8_t bmx055_i2c_write_reg(uint8_t dev_id, uint8_t reg_addr, uint8_t *reg_data, uint8_t len)
  96. {
  97. struct rt_i2c_msg msgs[2];
  98. msgs[0].addr = dev_id; /* Slave address */
  99. msgs[0].flags = RT_I2C_WR; /* Write flag */
  100. msgs[0].buf = (rt_uint8_t *)&reg_addr; /* Slave register address */
  101. msgs[0].len = 1; /* Number of bytes sent */
  102. msgs[1].addr = dev_id; /* Slave address */
  103. msgs[1].flags = RT_I2C_WR | RT_I2C_NO_START; /* Read flag without NO_START */
  104. msgs[1].buf = (rt_uint8_t *)reg_data; /* Read data pointer */
  105. msgs[1].len = len; /* Number of bytes read */
  106. if (rt_i2c_transfer(i2c_bus_dev, &msgs[0], 2) != 2)
  107. {
  108. return -RT_ERROR;
  109. }
  110. return RT_EOK;
  111. }
  112. static int8_t bmx055_i2c_read_reg(uint8_t dev_id, uint8_t reg_addr, uint8_t *reg_data, uint8_t len)
  113. {
  114. struct rt_i2c_msg msgs[3];
  115. msgs[0].addr = dev_id; /* Slave address */
  116. msgs[0].flags = RT_I2C_WR; /* Write flag */
  117. msgs[0].buf = (rt_uint8_t *)&reg_addr; /* Slave register address */
  118. msgs[0].len = 1; /* Number of bytes sent */
  119. msgs[1].addr = dev_id; /* Slave address */
  120. msgs[1].flags = RT_I2C_RD ; /* Read flag */
  121. msgs[1].buf = (rt_uint8_t *)&reg_data[0]; /* Read data pointer */
  122. msgs[1].len = len;
  123. if (rt_i2c_transfer(i2c_bus_dev, &msgs[0], 2) != 2)
  124. {
  125. return -RT_ERROR;
  126. }
  127. return RT_EOK;
  128. }
  129. void bmx055_delay_ms(BMM050_MDELAY_DATA_TYPE ms)
  130. {
  131. rt_thread_mdelay(ms);
  132. }
  133. static int8_t bmx055_init_mag(struct bmm050_t *mag)
  134. {
  135. int8_t com_rslt = 0;
  136. u8 v_data_rate_u8 = BMM050_INIT_VALUE;
  137. mag->dev_addr = BMM050_I2C_ADDRESS;
  138. mag->bus_write = bmx055_i2c_write_reg;
  139. mag->bus_read = bmx055_i2c_read_reg;
  140. mag->delay_msec = bmx055_delay_ms;
  141. com_rslt = bmm050_init(mag);
  142. com_rslt += bmm050_set_functional_state(BMM050_NORMAL_MODE);
  143. com_rslt += bmm050_set_data_rate(BMM050_DATA_RATE_30HZ);
  144. com_rslt += bmm050_get_data_rate(&v_data_rate_u8);
  145. return com_rslt;
  146. }
  147. static int8_t bmx055_init_accel(struct bma2x2_t *accel)
  148. {
  149. int8_t com_rslt = 0;
  150. uint8_t bandwidth = 0x08; // bandwidth of 7.81Hz
  151. accel->dev_addr = BMA2x2_I2C_ADDR1;
  152. accel->bus_write = bmx055_i2c_write_reg;
  153. accel->bus_read = bmx055_i2c_read_reg;
  154. accel->delay_msec = bmx055_delay_ms;
  155. com_rslt = bma2x2_init(accel);
  156. com_rslt += bma2x2_set_power_mode(BMA2x2_MODE_NORMAL);
  157. com_rslt += bma2x2_set_bw(bandwidth);
  158. com_rslt += bma2x2_get_range(&g_u8Range_accel);
  159. return com_rslt;
  160. }
  161. static int8_t bmx055_init_gyro(struct bmg160_t *gyro)
  162. {
  163. int8_t com_rslt = 0;
  164. gyro->dev_addr = BMG160_I2C_ADDR1;
  165. gyro->bus_write = bmx055_i2c_write_reg;
  166. gyro->bus_read = bmx055_i2c_read_reg;
  167. gyro->delay_msec = bmx055_delay_ms;
  168. com_rslt = bmg160_init(gyro);
  169. com_rslt += bmg160_set_power_mode(BMG160_MODE_NORMAL);
  170. com_rslt += bmg160_set_bw(C_BMG160_BW_230HZ_U8X);
  171. com_rslt += bmg160_get_range_reg(&g_u8Range_gyro);
  172. return com_rslt;
  173. }
  174. static double get_mg_value(int32_t i32AccelVal)
  175. {
  176. switch (g_u8Range_accel)
  177. {
  178. case BMA2x2_RANGE_2G:
  179. return (double)i32AccelVal * 0.98; //res: 0.98,
  180. case BMA2x2_RANGE_4G:
  181. return (double)i32AccelVal * 1.95;
  182. case BMA2x2_RANGE_8G:
  183. return (double)i32AccelVal * 3.91;
  184. case BMA2x2_RANGE_16G:
  185. return (double)i32AccelVal * 7.81;
  186. }
  187. return 0.0f;
  188. }
  189. static double get_mdps_value(int32_t i32AccelVal)
  190. {
  191. switch (g_u8Range_gyro)
  192. {
  193. case BMG160_RANGE_125:
  194. return (double)i32AccelVal * 3.8;
  195. case BMG160_RANGE_250:
  196. return (double)i32AccelVal * 7.6;
  197. case BMG160_RANGE_500:
  198. return (double)i32AccelVal * 15.3;
  199. case BMG160_RANGE_1000:
  200. return (double)i32AccelVal * 30.5;
  201. case BMG160_RANGE_2000:
  202. return (double)i32AccelVal * 61;
  203. }
  204. return 0.0f;
  205. }
  206. static rt_size_t bmx055_fetch_data(rt_sensor_t sensor, void *buf, rt_size_t len)
  207. {
  208. struct rt_sensor_data *data = (struct rt_sensor_data *)buf;
  209. switch (sensor->info.type)
  210. {
  211. case RT_SENSOR_CLASS_ACCE:
  212. bma2x2_read_accel_xyzt(&g_sbmx055.accel_xyzt);
  213. data->type = RT_SENSOR_CLASS_ACCE;
  214. /* Report mg */
  215. data->data.acce.x = (int32_t)get_mg_value(g_sbmx055.accel_xyzt.x);
  216. data->data.acce.y = (int32_t)get_mg_value(g_sbmx055.accel_xyzt.y);
  217. data->data.acce.z = (int32_t)get_mg_value(g_sbmx055.accel_xyzt.z);
  218. break;
  219. case RT_SENSOR_CLASS_GYRO:
  220. bmg160_get_data_XYZI(&g_sbmx055.gyro_xyzi);
  221. data->type = RT_SENSOR_CLASS_GYRO;
  222. /* Report mdps */
  223. data->data.gyro.x = (int32_t)get_mdps_value(g_sbmx055.gyro_xyzi.datax);
  224. data->data.gyro.y = (int32_t)get_mdps_value(g_sbmx055.gyro_xyzi.datay);
  225. data->data.gyro.z = (int32_t)get_mdps_value(g_sbmx055.gyro_xyzi.dataz);
  226. break;
  227. case RT_SENSOR_CLASS_MAG:
  228. bmm050_read_mag_data_XYZ(&g_sbmx055.mag_data);
  229. data->type = RT_SENSOR_CLASS_MAG;
  230. /* Report mquass */
  231. data->data.mag.x = g_sbmx055.mag_data.datax;
  232. data->data.mag.y = g_sbmx055.mag_data.datay;
  233. data->data.mag.z = g_sbmx055.mag_data.dataz;
  234. break;
  235. default:
  236. return 0;
  237. }
  238. data->timestamp = rt_sensor_get_ts();
  239. return 1;
  240. }
  241. static int find_param_index(const int eng_val, const struct bmx055_param_pair *pairs, const int size)
  242. {
  243. int i = 0;
  244. while (i < size)
  245. {
  246. if (eng_val <= pairs[i].val)
  247. return i;
  248. i++;
  249. }
  250. return i - 1;
  251. }
  252. static rt_err_t bmx055_getid(rt_sensor_t sensor, rt_uint8_t *pu8)
  253. {
  254. switch (sensor->info.type)
  255. {
  256. case RT_SENSOR_CLASS_ACCE:
  257. *pu8 = g_sbmx055.accel.chip_id;
  258. break;
  259. case RT_SENSOR_CLASS_GYRO:
  260. *pu8 = g_sbmx055.gyro.chip_id;
  261. break;
  262. case RT_SENSOR_CLASS_MAG:
  263. *pu8 = g_sbmx055.mag.company_id;
  264. break;
  265. }
  266. return -RT_EINVAL;
  267. }
  268. static rt_err_t bmx055_set_power(rt_sensor_t sensor, rt_uint8_t power_mode)
  269. {
  270. uint8_t power_ctr;
  271. switch (sensor->info.type)
  272. {
  273. case RT_SENSOR_CLASS_ACCE:
  274. {
  275. switch (power_mode)
  276. {
  277. case RT_SENSOR_POWER_DOWN:
  278. power_ctr = BMA2x2_MODE_STANDBY;
  279. break;
  280. case RT_SENSOR_POWER_NORMAL:
  281. power_ctr = BMA2x2_MODE_NORMAL;
  282. break;
  283. case RT_SENSOR_POWER_LOW:
  284. power_ctr = BMA2x2_MODE_LOWPOWER1;
  285. break;
  286. default:
  287. return -RT_EINVAL;
  288. }
  289. if (bma2x2_set_power_mode(power_ctr) != 0)
  290. goto exit_bmx055_set_power;
  291. }
  292. break;
  293. case RT_SENSOR_CLASS_GYRO:
  294. {
  295. switch (power_mode)
  296. {
  297. case RT_SENSOR_POWER_DOWN:
  298. power_ctr = BMG160_MODE_DEEPSUSPEND;
  299. break;
  300. case RT_SENSOR_POWER_NORMAL:
  301. power_ctr = BMG160_MODE_NORMAL;
  302. break;
  303. default:
  304. return -RT_EINVAL;
  305. }
  306. if (bmg160_set_power_mode(power_ctr) != 0)
  307. goto exit_bmx055_set_power;
  308. }
  309. break;
  310. case RT_SENSOR_CLASS_MAG:
  311. {
  312. switch (power_mode)
  313. {
  314. case RT_SENSOR_POWER_DOWN:
  315. power_ctr = 0;
  316. break;
  317. case RT_SENSOR_POWER_NORMAL:
  318. power_ctr = 1;
  319. break;
  320. default:
  321. return -RT_EINVAL;
  322. }
  323. if (bmm050_set_power_mode(power_ctr) != 0)
  324. goto exit_bmx055_set_power;
  325. }
  326. break;
  327. default:
  328. return -RT_EINVAL;
  329. }
  330. exit_bmx055_set_power:
  331. return -RT_ERROR;
  332. }
  333. static rt_err_t bmx055_set_range(rt_sensor_t sensor, rt_uint16_t range)
  334. {
  335. int idx;
  336. switch (sensor->info.type)
  337. {
  338. case RT_SENSOR_CLASS_ACCE:
  339. {
  340. idx = find_param_index(range, accel_ranges, sizeof(accel_ranges));
  341. if (bma2x2_set_range(accel_ranges[idx].reg) != 0)
  342. goto exit_bmx055_set_range;
  343. else if (bma2x2_get_range(&g_u8Range_accel) != 0)
  344. goto exit_bmx055_set_range;
  345. }
  346. break;
  347. case RT_SENSOR_CLASS_GYRO:
  348. {
  349. idx = find_param_index(range, gyro_ranges, sizeof(gyro_ranges));
  350. if (bmg160_set_range_reg(gyro_ranges[idx].reg) != 0)
  351. goto exit_bmx055_set_range;
  352. else if (bmg160_get_range_reg(&g_u8Range_gyro) != 0)
  353. goto exit_bmx055_set_range;
  354. }
  355. break;
  356. default:
  357. return -RT_EINVAL;
  358. }
  359. exit_bmx055_set_range:
  360. return -RT_ERROR;
  361. }
  362. static rt_err_t bmx055_set_odr(rt_sensor_t sensor, rt_uint16_t odr_hz)
  363. {
  364. int idx;
  365. switch (sensor->info.type)
  366. {
  367. case RT_SENSOR_CLASS_ACCE:
  368. {
  369. idx = find_param_index(odr_hz, accel_odr, sizeof(accel_odr));
  370. if (bma2x2_set_bw(accel_odr[idx].reg) != 0)
  371. goto exit_bmx055_set_power;
  372. }
  373. break;
  374. case RT_SENSOR_CLASS_GYRO:
  375. {
  376. idx = find_param_index(odr_hz, gyro_odr, sizeof(gyro_odr));
  377. if (bmg160_set_bw(gyro_odr[idx].reg) != 0)
  378. goto exit_bmx055_set_power;
  379. }
  380. break;
  381. case RT_SENSOR_CLASS_MAG:
  382. {
  383. idx = find_param_index(odr_hz, mag_odr, sizeof(mag_odr));
  384. if (bmm050_set_data_rate(mag_odr[idx].reg) != 0)
  385. goto exit_bmx055_set_power;
  386. }
  387. break;
  388. default:
  389. return -RT_EINVAL;
  390. }
  391. return RT_EOK;
  392. exit_bmx055_set_power:
  393. return -RT_ERROR;
  394. }
  395. static rt_err_t bmx055_control(rt_sensor_t sensor, int cmd, void *args)
  396. {
  397. RT_ASSERT(sensor != RT_NULL);
  398. RT_ASSERT(args != RT_NULL);
  399. switch (cmd)
  400. {
  401. case RT_SENSOR_CTRL_GET_ID:
  402. {
  403. rt_uint8_t *pu8id = (rt_uint8_t *)args;
  404. return bmx055_getid(sensor, pu8id);
  405. }
  406. case RT_SENSOR_CTRL_SET_RANGE:
  407. return bmx055_set_range(sensor, (rt_uint32_t)args);
  408. case RT_SENSOR_CTRL_SET_POWER:
  409. return bmx055_set_power(sensor, ((rt_uint32_t)args & 0xff));
  410. case RT_SENSOR_CTRL_SET_ODR:
  411. return bmx055_set_odr(sensor, ((rt_uint32_t)args & 0xff));
  412. }
  413. return -RT_EINVAL;
  414. }
  415. static struct rt_sensor_ops sensor_ops =
  416. {
  417. bmx055_fetch_data,
  418. bmx055_control
  419. };
  420. static int rt_hw_bmx055_accel_init(const char *name, struct rt_sensor_config *cfg)
  421. {
  422. rt_int8_t result;
  423. rt_sensor_t sensor = RT_NULL;
  424. sensor = rt_calloc(1, sizeof(struct rt_sensor_device));
  425. if (sensor == RT_NULL)
  426. return -(RT_ENOMEM);
  427. sensor->info.type = RT_SENSOR_CLASS_ACCE;
  428. sensor->info.vendor = RT_SENSOR_VENDOR_BOSCH;
  429. sensor->info.model = "bmx055_acce";
  430. sensor->info.unit = RT_SENSOR_UNIT_MG;
  431. sensor->info.intf_type = RT_SENSOR_INTF_I2C;
  432. sensor->info.range_max = 16000;
  433. sensor->info.range_min = 2000;
  434. sensor->info.period_min = 100;
  435. rt_memcpy(&sensor->config, cfg, sizeof(struct rt_sensor_config));
  436. sensor->ops = &sensor_ops;
  437. result = rt_hw_sensor_register(sensor, name, RT_DEVICE_FLAG_RDWR, RT_NULL);
  438. if (result != RT_EOK)
  439. {
  440. LOG_E("device register: %d", result);
  441. rt_free(sensor);
  442. return -RT_ERROR;
  443. }
  444. return RT_EOK;
  445. }
  446. static int rt_hw_bmx055_gyro_init(const char *name, struct rt_sensor_config *cfg)
  447. {
  448. rt_int8_t result;
  449. rt_sensor_t sensor = RT_NULL;
  450. sensor = rt_calloc(1, sizeof(struct rt_sensor_device));
  451. if (sensor == RT_NULL)
  452. return -(RT_ENOMEM);
  453. sensor->info.type = RT_SENSOR_CLASS_GYRO;
  454. sensor->info.vendor = RT_SENSOR_VENDOR_BOSCH;
  455. sensor->info.model = "bmx055_gyro";
  456. sensor->info.unit = RT_SENSOR_UNIT_MDPS;
  457. sensor->info.intf_type = RT_SENSOR_INTF_I2C;
  458. sensor->info.range_max = 2000;
  459. sensor->info.range_min = 125;
  460. sensor->info.period_min = 100;
  461. rt_memcpy(&sensor->config, cfg, sizeof(struct rt_sensor_config));
  462. sensor->ops = &sensor_ops;
  463. result = rt_hw_sensor_register(sensor, name, RT_DEVICE_FLAG_RDWR, RT_NULL);
  464. if (result != RT_EOK)
  465. {
  466. LOG_E("device register: %d", result);
  467. rt_free(sensor);
  468. return -RT_ERROR;
  469. }
  470. return RT_EOK;
  471. }
  472. static int rt_hw_bmx055_mag_init(const char *name, struct rt_sensor_config *cfg)
  473. {
  474. rt_int8_t result;
  475. rt_sensor_t sensor = RT_NULL;
  476. sensor = rt_calloc(1, sizeof(struct rt_sensor_device));
  477. if (sensor == RT_NULL)
  478. return -(RT_ENOMEM);
  479. sensor->info.type = RT_SENSOR_CLASS_MAG;
  480. sensor->info.vendor = RT_SENSOR_VENDOR_BOSCH;
  481. sensor->info.model = "bmx055_mag";
  482. sensor->info.unit = RT_SENSOR_UNIT_MGAUSS;
  483. sensor->info.intf_type = RT_SENSOR_INTF_I2C;
  484. sensor->info.range_max = 25000; // 1uT = 10*mGauss, X/Y: 1300uT=13000mGauss, Z: 2500uT=25000mG
  485. sensor->info.range_min = 0;
  486. sensor->info.period_min = 100;
  487. rt_memcpy(&sensor->config, cfg, sizeof(struct rt_sensor_config));
  488. sensor->ops = &sensor_ops;
  489. result = rt_hw_sensor_register(sensor, name, RT_DEVICE_FLAG_RDWR, RT_NULL);
  490. if (result != RT_EOK)
  491. {
  492. LOG_E("device register: %d", result);
  493. rt_free(sensor);
  494. return -RT_ERROR;
  495. }
  496. return RT_EOK;
  497. }
  498. int rt_hw_bmx055_init(const char *name, struct rt_sensor_config *cfg)
  499. {
  500. struct rt_sensor_intf *intf;
  501. rt_err_t ret = -RT_ERROR;
  502. RT_ASSERT(name != NULL);
  503. RT_ASSERT(cfg != NULL);
  504. intf = &cfg->intf;
  505. /* Find I2C bus */
  506. i2c_bus_dev = (struct rt_i2c_bus_device *)rt_device_find(intf->dev_name);
  507. if (i2c_bus_dev == RT_NULL)
  508. {
  509. LOG_E("Can't found I2C bus..!\n");
  510. goto exit_rt_hw_bmx055_init;
  511. }
  512. if (bmx055_init_mag(&g_sbmx055.mag) != 0)
  513. {
  514. LOG_E("Init mag..!\n");
  515. }
  516. else if ((ret = rt_hw_bmx055_mag_init(name, cfg)) != RT_EOK)
  517. {
  518. LOG_E("Register mag..!\n");
  519. }
  520. if (bmx055_init_accel(&g_sbmx055.accel) != 0)
  521. {
  522. LOG_E("Init accel..!\n");
  523. }
  524. else if ((ret = rt_hw_bmx055_accel_init(name, cfg)) != RT_EOK)
  525. {
  526. LOG_E("Register accel..!\n");
  527. }
  528. if (bmx055_init_gyro(&g_sbmx055.gyro) != 0)
  529. {
  530. LOG_E("Init gyro..!\n");
  531. }
  532. else if ((ret = rt_hw_bmx055_gyro_init(name, cfg)) != RT_EOK)
  533. {
  534. LOG_E("Register gyro..!\n");
  535. }
  536. exit_rt_hw_bmx055_init:
  537. return ret;
  538. }
  539. #endif //#if defined(NU_PKG_USING_BMX055)