board_dev.c 7.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328
  1. /**************************************************************************//**
  2. *
  3. * @copyright (C) 2019 Nuvoton Technology Corp. All rights reserved.
  4. *
  5. * SPDX-License-Identifier: Apache-2.0
  6. *
  7. * Change Logs:
  8. * Date Author Notes
  9. * 2020-12-12 Wayne First version
  10. *
  11. ******************************************************************************/
  12. #include <rtconfig.h>
  13. #include <rtdevice.h>
  14. #if defined(BOARD_USING_STORAGE_SPIFLASH)
  15. #include <drv_qspi.h>
  16. #if defined(RT_USING_SFUD)
  17. #include "spi_flash.h"
  18. #include "spi_flash_sfud.h"
  19. #endif
  20. #define W25X_REG_READSTATUS (0x05)
  21. #define W25X_REG_READSTATUS2 (0x35)
  22. #define W25X_REG_WRITEENABLE (0x06)
  23. #define W25X_REG_WRITESTATUS (0x01)
  24. #define W25X_REG_QUADENABLE (0x02)
  25. static rt_uint8_t SpiFlash_ReadStatusReg(struct rt_qspi_device *qspi_device)
  26. {
  27. rt_uint8_t u8Val;
  28. rt_err_t result = RT_EOK;
  29. rt_uint8_t w25x_txCMD1 = W25X_REG_READSTATUS;
  30. result = rt_qspi_send_then_recv(qspi_device, &w25x_txCMD1, 1, &u8Val, 1);
  31. RT_ASSERT(result > 0);
  32. return u8Val;
  33. }
  34. static rt_uint8_t SpiFlash_ReadStatusReg2(struct rt_qspi_device *qspi_device)
  35. {
  36. rt_uint8_t u8Val;
  37. rt_err_t result = RT_EOK;
  38. rt_uint8_t w25x_txCMD1 = W25X_REG_READSTATUS2;
  39. result = rt_qspi_send_then_recv(qspi_device, &w25x_txCMD1, 1, &u8Val, 1);
  40. RT_ASSERT(result > 0);
  41. return u8Val;
  42. }
  43. static rt_err_t SpiFlash_WriteStatusReg(struct rt_qspi_device *qspi_device, uint8_t u8Value1, uint8_t u8Value2)
  44. {
  45. rt_uint8_t w25x_txCMD1;
  46. rt_uint8_t au8Val[2];
  47. rt_err_t result;
  48. struct rt_qspi_message qspi_message = {0};
  49. /* Enable WE */
  50. w25x_txCMD1 = W25X_REG_WRITEENABLE;
  51. result = rt_qspi_send(qspi_device, &w25x_txCMD1, sizeof(w25x_txCMD1));
  52. if (result != sizeof(w25x_txCMD1))
  53. goto exit_SpiFlash_WriteStatusReg;
  54. /* Prepare status-1, 2 data */
  55. au8Val[0] = u8Value1;
  56. au8Val[1] = u8Value2;
  57. /* 1-bit mode: Instruction+payload */
  58. qspi_message.instruction.content = W25X_REG_WRITESTATUS;
  59. qspi_message.instruction.qspi_lines = 1;
  60. qspi_message.qspi_data_lines = 1;
  61. qspi_message.parent.cs_take = 1;
  62. qspi_message.parent.cs_release = 1;
  63. qspi_message.parent.send_buf = &au8Val[0];
  64. qspi_message.parent.length = sizeof(au8Val);
  65. qspi_message.parent.next = RT_NULL;
  66. if (rt_qspi_transfer_message(qspi_device, &qspi_message) != sizeof(au8Val))
  67. {
  68. result = -RT_ERROR;
  69. }
  70. result = RT_EOK;
  71. exit_SpiFlash_WriteStatusReg:
  72. return result;
  73. }
  74. static void SpiFlash_WaitReady(struct rt_qspi_device *qspi_device)
  75. {
  76. volatile uint8_t u8ReturnValue;
  77. do
  78. {
  79. u8ReturnValue = SpiFlash_ReadStatusReg(qspi_device);
  80. u8ReturnValue = u8ReturnValue & 1;
  81. }
  82. while (u8ReturnValue != 0); // check the BUSY bit
  83. }
  84. static void SpiFlash_EnterQspiMode(struct rt_qspi_device *qspi_device)
  85. {
  86. rt_err_t result = RT_EOK;
  87. uint8_t u8Status1 = SpiFlash_ReadStatusReg(qspi_device);
  88. uint8_t u8Status2 = SpiFlash_ReadStatusReg2(qspi_device);
  89. u8Status2 |= W25X_REG_QUADENABLE;
  90. result = SpiFlash_WriteStatusReg(qspi_device, u8Status1, u8Status2);
  91. RT_ASSERT(result == RT_EOK);
  92. SpiFlash_WaitReady(qspi_device);
  93. }
  94. static void SpiFlash_ExitQspiMode(struct rt_qspi_device *qspi_device)
  95. {
  96. rt_err_t result = RT_EOK;
  97. uint8_t u8Status1 = SpiFlash_ReadStatusReg(qspi_device);
  98. uint8_t u8Status2 = SpiFlash_ReadStatusReg2(qspi_device);
  99. u8Status2 &= ~W25X_REG_QUADENABLE;
  100. result = SpiFlash_WriteStatusReg(qspi_device, u8Status1, u8Status2);
  101. RT_ASSERT(result == RT_EOK);
  102. SpiFlash_WaitReady(qspi_device);
  103. }
  104. static int rt_hw_spiflash_init(void)
  105. {
  106. if (nu_qspi_bus_attach_device("qspi0", "qspi01", 4, SpiFlash_EnterQspiMode, SpiFlash_ExitQspiMode) != RT_EOK)
  107. return -1;
  108. #if defined(RT_USING_SFUD)
  109. if (rt_sfud_flash_probe(FAL_USING_NOR_FLASH_DEV_NAME, "qspi01") == RT_NULL)
  110. {
  111. return -(RT_ERROR);
  112. }
  113. #endif
  114. return 0;
  115. }
  116. INIT_COMPONENT_EXPORT(rt_hw_spiflash_init);
  117. #endif /* BOARD_USING_STORAGE_SPIFLASH */
  118. #if defined(BOARD_USING_NAU8822) && defined(NU_PKG_USING_NAU8822)
  119. #include <acodec_nau8822.h>
  120. S_NU_NAU8822_CONFIG sCodecConfig =
  121. {
  122. .i2c_bus_name = "i2c0",
  123. .i2s_bus_name = "sound0",
  124. .pin_phonejack_en = 0,
  125. .pin_phonejack_det = 0,
  126. };
  127. int rt_hw_nau8822_port(void)
  128. {
  129. if (nu_hw_nau8822_init(&sCodecConfig) != RT_EOK)
  130. return -1;
  131. return 0;
  132. }
  133. INIT_COMPONENT_EXPORT(rt_hw_nau8822_port);
  134. #endif /* BOARD_USING_NAU8822 */
  135. #if defined(BOARD_USING_BUZZER)
  136. #define PWM_DEV_NAME "pwm0"
  137. #define PWM_DEV_CHANNEL (1)
  138. static void PlayRingTone(void)
  139. {
  140. struct rt_device_pwm *pwm_dev;
  141. rt_uint32_t period;
  142. int i, j;
  143. period = 1000;
  144. if ((pwm_dev = (struct rt_device_pwm *)rt_device_find(PWM_DEV_NAME)) != RT_NULL)
  145. {
  146. rt_pwm_set(pwm_dev, PWM_DEV_CHANNEL, period, period);
  147. rt_pwm_enable(pwm_dev, PWM_DEV_CHANNEL);
  148. for (j = 0; j < 3; j++)
  149. {
  150. for (i = 0; i < 10; i++)
  151. {
  152. rt_pwm_set(pwm_dev, PWM_DEV_CHANNEL, period, period);
  153. rt_thread_mdelay(50);
  154. rt_pwm_set(pwm_dev, PWM_DEV_CHANNEL, period, period / 2);
  155. rt_thread_mdelay(50);
  156. }
  157. /* Mute 2 seconds */
  158. rt_pwm_set(pwm_dev, PWM_DEV_CHANNEL, period, period);
  159. rt_thread_mdelay(2000);
  160. }
  161. rt_pwm_disable(pwm_dev, PWM_DEV_CHANNEL);
  162. }
  163. else
  164. {
  165. rt_kprintf("Can't find %s\n", PWM_DEV_NAME);
  166. }
  167. }
  168. #if defined(BOARD_USING_LCM)
  169. #if defined(PKG_USING_GUIENGINE)
  170. #include <rtgui/driver.h>
  171. #endif
  172. #if defined(RT_USING_PIN)
  173. #include <drv_gpio.h>
  174. /* defined the LCM_BLEN pin: PH3 */
  175. #define LCM_BLEN NU_GET_PININDEX(NU_PH, 3)
  176. #endif
  177. #define PWM_DEV_NAME "pwm0"
  178. #define LCM_PWM_CHANNEL (0)
  179. static void LCMLightOn(void)
  180. {
  181. struct rt_device_pwm *pwm_dev;
  182. if ((pwm_dev = (struct rt_device_pwm *)rt_device_find(PWM_DEV_NAME)) != RT_NULL)
  183. {
  184. rt_pwm_enable(pwm_dev, LCM_PWM_CHANNEL);
  185. rt_pwm_set(pwm_dev, LCM_PWM_CHANNEL, 100000, 100);
  186. }
  187. else
  188. {
  189. rt_kprintf("Can't find %s\n", PWM_DEV_NAME);
  190. }
  191. }
  192. #ifdef FINSH_USING_MSH
  193. MSH_CMD_EXPORT(LCMLightOn, LCM - light on panel);
  194. #endif
  195. int rt_hw_lcm_port(void)
  196. {
  197. #if defined(PKG_USING_GUIENGINE)
  198. rt_device_t lcm_vpost;
  199. lcm_vpost = rt_device_find("lcd");
  200. if (lcm_vpost)
  201. {
  202. rtgui_graphic_set_device(lcm_vpost);
  203. }
  204. #endif
  205. /* Use PWM to control backlight. */
  206. LCMLightOn();
  207. return 0;
  208. }
  209. INIT_COMPONENT_EXPORT(rt_hw_lcm_port);
  210. #endif /* BOARD_USING_LCM */
  211. int buzzer_test(void)
  212. {
  213. PlayRingTone();
  214. return 0;
  215. }
  216. #ifdef FINSH_USING_MSH
  217. MSH_CMD_EXPORT(buzzer_test, Buzzer - Play ring tone);
  218. #endif
  219. #endif /* BOARD_USING_BUZZER */
  220. #if defined(BOARD_USING_RS485)
  221. #include <drv_uart.h>
  222. int test_rs485(int argc, char **argv)
  223. {
  224. rt_device_t serial;
  225. char txbuf[16];
  226. rt_err_t ret;
  227. int str_len;
  228. if (argc < 2)
  229. goto exit_test_rs485;
  230. serial = rt_device_find(argv[1]);
  231. if (!serial)
  232. {
  233. rt_kprintf("Can't find %s. EXIT.\n", argv[1]);
  234. goto exit_test_rs485;
  235. }
  236. /* Interrupt RX */
  237. ret = rt_device_open(serial, RT_DEVICE_FLAG_INT_RX);
  238. RT_ASSERT(ret == RT_EOK);
  239. /* Nuvoton private command */
  240. nu_uart_set_rs485aud((struct rt_serial_device *)serial, RT_FALSE);
  241. rt_snprintf(&txbuf[0], sizeof(txbuf), "Hello World!\r\n");
  242. str_len = rt_strlen(txbuf);
  243. /* Say Hello */
  244. ret = rt_device_write(serial, 0, &txbuf[0], str_len);
  245. RT_ASSERT(ret == str_len);
  246. ret = rt_device_close(serial);
  247. RT_ASSERT(ret == RT_EOK);
  248. return 0;
  249. exit_test_rs485:
  250. return -1;
  251. }
  252. MSH_CMD_EXPORT(test_rs485, test rs485 communication);
  253. #endif //defined(BOARD_USING_RS485)