drv_emac.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532
  1. /*
  2. * Copyright (c) 2006-2021, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2013-05-19 Bernard porting from LPC17xx drivers.
  9. */
  10. #include <rtthread.h>
  11. #include "lwipopts.h"
  12. #include <netif/ethernetif.h>
  13. #include "lpc_iap.h"
  14. #include "drv_emac.h"
  15. #define EMAC_PHY_AUTO 0
  16. #define EMAC_PHY_10MBIT 1
  17. #define EMAC_PHY_100MBIT 2
  18. #define MAX_ADDR_LEN 6
  19. static rt_uint32_t ETH_RAM_BASE[4 * 1024] rt_section("ETH_RAM");
  20. /* EMAC variables located in 16K Ethernet SRAM */
  21. #define RX_DESC_BASE (uint32_t)&ETH_RAM_BASE[0]
  22. #define RX_STAT_BASE (RX_DESC_BASE + NUM_RX_FRAG*8)
  23. #define TX_DESC_BASE (RX_STAT_BASE + NUM_RX_FRAG*8)
  24. #define TX_STAT_BASE (TX_DESC_BASE + NUM_TX_FRAG*8)
  25. #define RX_BUF_BASE (TX_STAT_BASE + NUM_TX_FRAG*4)
  26. #define TX_BUF_BASE (RX_BUF_BASE + NUM_RX_FRAG*ETH_FRAG_SIZE)
  27. /* RX and TX descriptor and status definitions. */
  28. #define RX_DESC_PACKET(i) (*(unsigned int *)(RX_DESC_BASE + 8*i))
  29. #define RX_DESC_CTRL(i) (*(unsigned int *)(RX_DESC_BASE+4 + 8*i))
  30. #define RX_STAT_INFO(i) (*(unsigned int *)(RX_STAT_BASE + 8*i))
  31. #define RX_STAT_HASHCRC(i) (*(unsigned int *)(RX_STAT_BASE+4 + 8*i))
  32. #define TX_DESC_PACKET(i) (*(unsigned int *)(TX_DESC_BASE + 8*i))
  33. #define TX_DESC_CTRL(i) (*(unsigned int *)(TX_DESC_BASE+4 + 8*i))
  34. #define TX_STAT_INFO(i) (*(unsigned int *)(TX_STAT_BASE + 4*i))
  35. #define RX_BUF(i) (RX_BUF_BASE + ETH_FRAG_SIZE*i)
  36. #define TX_BUF(i) (TX_BUF_BASE + ETH_FRAG_SIZE*i)
  37. struct lpc_emac
  38. {
  39. /* inherit from ethernet device */
  40. struct eth_device parent;
  41. rt_uint8_t phy_mode;
  42. /* interface address info. */
  43. rt_uint8_t dev_addr[MAX_ADDR_LEN]; /* hw address */
  44. };
  45. static struct lpc_emac lpc_emac_device;
  46. static struct rt_semaphore sem_lock;
  47. static struct rt_event tx_event;
  48. /* Local Function Prototypes */
  49. static void write_PHY(rt_uint32_t PhyReg, rt_uint32_t Value);
  50. static rt_uint16_t read_PHY(rt_uint8_t PhyReg) ;
  51. void ENET_IRQHandler(void)
  52. {
  53. rt_uint32_t status;
  54. /* enter interrupt */
  55. rt_interrupt_enter();
  56. status = LPC_EMAC->IntStatus;
  57. if (status & INT_RX_DONE)
  58. {
  59. /* Disable EMAC RxDone interrupts. */
  60. LPC_EMAC->IntEnable = INT_TX_DONE;
  61. /* a frame has been received */
  62. eth_device_ready(&(lpc_emac_device.parent));
  63. }
  64. else if (status & INT_TX_DONE)
  65. {
  66. /* set event */
  67. rt_event_send(&tx_event, 0x01);
  68. }
  69. if (status & INT_RX_OVERRUN)
  70. {
  71. rt_kprintf("rx overrun\n");
  72. }
  73. if (status & INT_TX_UNDERRUN)
  74. {
  75. rt_kprintf("tx underrun\n");
  76. }
  77. /* Clear the interrupt. */
  78. LPC_EMAC->IntClear = status;
  79. /* leave interrupt */
  80. rt_interrupt_leave();
  81. }
  82. /* phy write */
  83. static void write_PHY(rt_uint32_t PhyReg, rt_uint32_t Value)
  84. {
  85. unsigned int tout;
  86. LPC_EMAC->MADR = DP83848C_DEF_ADR | PhyReg;
  87. LPC_EMAC->MWTD = Value;
  88. /* Wait utill operation completed */
  89. tout = 0;
  90. for (tout = 0; tout < MII_WR_TOUT; tout++)
  91. {
  92. if ((LPC_EMAC->MIND & MIND_BUSY) == 0)
  93. {
  94. break;
  95. }
  96. }
  97. }
  98. /* phy read */
  99. static rt_uint16_t read_PHY(rt_uint8_t PhyReg)
  100. {
  101. rt_uint32_t tout;
  102. LPC_EMAC->MADR = DP83848C_DEF_ADR | PhyReg;
  103. LPC_EMAC->MCMD = MCMD_READ;
  104. /* Wait until operation completed */
  105. tout = 0;
  106. for (tout = 0; tout < MII_RD_TOUT; tout++)
  107. {
  108. if ((LPC_EMAC->MIND & MIND_BUSY) == 0)
  109. {
  110. break;
  111. }
  112. }
  113. LPC_EMAC->MCMD = 0;
  114. return (LPC_EMAC->MRDD);
  115. }
  116. /* init rx descriptor */
  117. rt_inline void rx_descr_init(void)
  118. {
  119. rt_uint32_t i;
  120. for (i = 0; i < NUM_RX_FRAG; i++)
  121. {
  122. RX_DESC_PACKET(i) = RX_BUF(i);
  123. RX_DESC_CTRL(i) = RCTRL_INT | (ETH_FRAG_SIZE - 1);
  124. RX_STAT_INFO(i) = 0;
  125. RX_STAT_HASHCRC(i) = 0;
  126. }
  127. /* Set EMAC Receive Descriptor Registers. */
  128. LPC_EMAC->RxDescriptor = RX_DESC_BASE;
  129. LPC_EMAC->RxStatus = RX_STAT_BASE;
  130. LPC_EMAC->RxDescriptorNumber = NUM_RX_FRAG - 1;
  131. /* Rx Descriptors Point to 0 */
  132. LPC_EMAC->RxConsumeIndex = 0;
  133. }
  134. /* init tx descriptor */
  135. rt_inline void tx_descr_init(void)
  136. {
  137. rt_uint32_t i;
  138. for (i = 0; i < NUM_TX_FRAG; i++)
  139. {
  140. TX_DESC_PACKET(i) = TX_BUF(i);
  141. TX_DESC_CTRL(i) = (1ul << 31) | (1ul << 30) | (1ul << 29) | (1ul << 28) | (1ul << 26) | (ETH_FRAG_SIZE - 1);
  142. TX_STAT_INFO(i) = 0;
  143. }
  144. /* Set EMAC Transmit Descriptor Registers. */
  145. LPC_EMAC->TxDescriptor = TX_DESC_BASE;
  146. LPC_EMAC->TxStatus = TX_STAT_BASE;
  147. LPC_EMAC->TxDescriptorNumber = NUM_TX_FRAG - 1;
  148. /* Tx Descriptors Point to 0 */
  149. LPC_EMAC->TxProduceIndex = 0;
  150. }
  151. /*
  152. TX_EN P1_4
  153. TXD0 P1_0
  154. TXD1 P1_1
  155. RXD0 P1_9
  156. RXD1 P1_10
  157. RX_ER P1_14
  158. CRS_DV P1_8
  159. MDC P1_16
  160. MDIO P1_17
  161. REF_CLK P1_15
  162. */
  163. static rt_err_t lpc_emac_init(rt_device_t dev)
  164. {
  165. /* Initialize the EMAC ethernet controller. */
  166. rt_uint32_t regv, tout;
  167. /* Power Up the EMAC controller. */
  168. LPC_SC->PCONP |= (1UL << 30);
  169. /* Enable P1 Ethernet Pins. */
  170. /**< P1_0 ENET_TXD0 */
  171. LPC_IOCON->P1_0 &= ~(0x07);
  172. LPC_IOCON->P1_0 |= 0x01;
  173. /**< P1_1 ENET_TXD1 */
  174. LPC_IOCON->P1_1 &= ~(0x07);
  175. LPC_IOCON->P1_1 |= 0x01;
  176. /**< P1_4 ENET_TX_EN */
  177. LPC_IOCON->P1_4 &= ~(0x07);
  178. LPC_IOCON->P1_4 |= 0x01;
  179. /**< P1_8 ENET_CRS_DV */
  180. LPC_IOCON->P1_8 &= ~(0x07);
  181. LPC_IOCON->P1_8 |= 0x01;
  182. /**< P1_9 ENET_RXD0 */
  183. LPC_IOCON->P1_9 &= ~(0x07);
  184. LPC_IOCON->P1_9 |= 0x01;
  185. /**< P1_10 ENET_RXD1 */
  186. LPC_IOCON->P1_10 &= ~(0x07);
  187. LPC_IOCON->P1_10 |= 0x01;
  188. /**< P1_14 ENET_RX_ER */
  189. LPC_IOCON->P1_14 &= ~(0x07);
  190. LPC_IOCON->P1_14 |= 0x01;
  191. /**< P1_15 ENET_REF_CLK */
  192. LPC_IOCON->P1_15 &= ~(0x07);
  193. LPC_IOCON->P1_15 |= 0x01;
  194. /**< P1_16 ENET_MDC */
  195. LPC_IOCON->P1_16 &= ~(0x07);
  196. LPC_IOCON->P1_16 |= 0x01;
  197. /**< P1_17 ENET_MDIO */
  198. LPC_IOCON->P1_17 &= ~(0x07);
  199. LPC_IOCON->P1_17 |= 0x01;
  200. /* Reset all EMAC internal modules. */
  201. LPC_EMAC->MAC1 = MAC1_RES_TX | MAC1_RES_MCS_TX | MAC1_RES_RX | MAC1_RES_MCS_RX |
  202. MAC1_SIM_RES | MAC1_SOFT_RES;
  203. LPC_EMAC->Command = CR_REG_RES | CR_TX_RES | CR_RX_RES;
  204. /* A short delay after reset. */
  205. for (tout = 100; tout; tout--);
  206. /* Initialize MAC control registers. */
  207. LPC_EMAC->MAC1 = MAC1_PASS_ALL;
  208. LPC_EMAC->MAC2 = MAC2_CRC_EN | MAC2_PAD_EN;
  209. LPC_EMAC->MAXF = ETH_MAX_FLEN;
  210. LPC_EMAC->CLRT = CLRT_DEF;
  211. LPC_EMAC->IPGR = IPGR_DEF;
  212. /* PCLK=18MHz, clock select=6, MDC=18/6=3MHz */
  213. /* Enable Reduced MII interface. */
  214. LPC_EMAC->MCFG = MCFG_CLK_DIV20 | MCFG_RES_MII;
  215. for (tout = 100; tout; tout--);
  216. LPC_EMAC->MCFG = MCFG_CLK_DIV20;
  217. /* Enable Reduced MII interface. */
  218. LPC_EMAC->Command = CR_RMII | CR_PASS_RUNT_FRM | CR_PASS_RX_FILT;
  219. /* Reset Reduced MII Logic. */
  220. LPC_EMAC->SUPP = SUPP_RES_RMII | SUPP_SPEED;
  221. for (tout = 100; tout; tout--);
  222. LPC_EMAC->SUPP = SUPP_SPEED;
  223. /* Put the PHY in reset mode */
  224. write_PHY(PHY_REG_BMCR, 0x8000);
  225. for (tout = 1000; tout; tout--);
  226. /* Configure the PHY device */
  227. /* Configure the PHY device */
  228. switch (lpc_emac_device.phy_mode)
  229. {
  230. case EMAC_PHY_AUTO:
  231. /* Use autonegotiation about the link speed. */
  232. write_PHY(PHY_REG_BMCR, PHY_AUTO_NEG);
  233. break;
  234. case EMAC_PHY_10MBIT:
  235. /* Connect at 10MBit */
  236. write_PHY(PHY_REG_BMCR, PHY_FULLD_10M);
  237. break;
  238. case EMAC_PHY_100MBIT:
  239. /* Connect at 100MBit */
  240. write_PHY(PHY_REG_BMCR, PHY_FULLD_100M);
  241. break;
  242. }
  243. if (tout >= 0x100000) return -RT_ERROR; // auto_neg failed
  244. regv = 0x0004;
  245. /* Configure Full/Half Duplex mode. */
  246. if (regv & 0x0004)
  247. {
  248. /* Full duplex is enabled. */
  249. LPC_EMAC->MAC2 |= MAC2_FULL_DUP;
  250. LPC_EMAC->Command |= CR_FULL_DUP;
  251. LPC_EMAC->IPGT = IPGT_FULL_DUP;
  252. }
  253. else
  254. {
  255. /* Half duplex mode. */
  256. LPC_EMAC->IPGT = IPGT_HALF_DUP;
  257. }
  258. /* Configure 100MBit/10MBit mode. */
  259. if (regv & 0x0002)
  260. {
  261. /* 10MBit mode. */
  262. LPC_EMAC->SUPP = 0;
  263. }
  264. else
  265. {
  266. /* 100MBit mode. */
  267. LPC_EMAC->SUPP = SUPP_SPEED;
  268. }
  269. /* Set the Ethernet MAC Address registers */
  270. LPC_EMAC->SA0 = (lpc_emac_device.dev_addr[1] << 8) | lpc_emac_device.dev_addr[0];
  271. LPC_EMAC->SA1 = (lpc_emac_device.dev_addr[3] << 8) | lpc_emac_device.dev_addr[2];
  272. LPC_EMAC->SA2 = (lpc_emac_device.dev_addr[5] << 8) | lpc_emac_device.dev_addr[4];
  273. /* Initialize Tx and Rx DMA Descriptors */
  274. rx_descr_init();
  275. tx_descr_init();
  276. /* Receive Broadcast and Perfect Match Packets */
  277. LPC_EMAC->RxFilterCtrl = RFC_BCAST_EN | RFC_PERFECT_EN;
  278. /* Reset all interrupts */
  279. LPC_EMAC->IntClear = 0xFFFF;
  280. /* Enable EMAC interrupts. */
  281. LPC_EMAC->IntEnable = INT_RX_DONE | INT_TX_DONE;
  282. /* Enable receive and transmit mode of MAC Ethernet core */
  283. LPC_EMAC->Command |= (CR_RX_EN | CR_TX_EN);
  284. LPC_EMAC->MAC1 |= MAC1_REC_EN;
  285. /* Enable the ENET Interrupt */
  286. NVIC_EnableIRQ(ENET_IRQn);
  287. return RT_EOK;
  288. }
  289. static rt_err_t lpc_emac_open(rt_device_t dev, rt_uint16_t oflag)
  290. {
  291. return RT_EOK;
  292. }
  293. static rt_err_t lpc_emac_close(rt_device_t dev)
  294. {
  295. return RT_EOK;
  296. }
  297. static rt_size_t lpc_emac_read(rt_device_t dev, rt_off_t pos, void *buffer, rt_size_t size)
  298. {
  299. rt_set_errno(-RT_ENOSYS);
  300. return 0;
  301. }
  302. static rt_size_t lpc_emac_write(rt_device_t dev, rt_off_t pos, const void *buffer, rt_size_t size)
  303. {
  304. rt_set_errno(-RT_ENOSYS);
  305. return 0;
  306. }
  307. static rt_err_t lpc_emac_control(rt_device_t dev, int cmd, void *args)
  308. {
  309. switch (cmd)
  310. {
  311. case NIOCTL_GADDR:
  312. /* get mac address */
  313. if (args) rt_memcpy(args, lpc_emac_device.dev_addr, 6);
  314. else return -RT_ERROR;
  315. break;
  316. default :
  317. break;
  318. }
  319. return RT_EOK;
  320. }
  321. /* EtherNet Device Interface */
  322. /* transmit packet. */
  323. rt_err_t lpc_emac_tx(rt_device_t dev, struct pbuf *p)
  324. {
  325. rt_uint32_t Index, IndexNext;
  326. rt_uint8_t *ptr;
  327. /* calculate next index */
  328. IndexNext = LPC_EMAC->TxProduceIndex + 1;
  329. if (IndexNext > LPC_EMAC->TxDescriptorNumber) IndexNext = 0;
  330. /* check whether block is full */
  331. while (IndexNext == LPC_EMAC->TxConsumeIndex)
  332. {
  333. rt_err_t result;
  334. rt_uint32_t recved;
  335. /* there is no block yet, wait a flag */
  336. result = rt_event_recv(&tx_event, 0x01,
  337. RT_EVENT_FLAG_AND | RT_EVENT_FLAG_CLEAR, RT_WAITING_FOREVER, &recved);
  338. RT_ASSERT(result == RT_EOK);
  339. }
  340. /* lock EMAC device */
  341. rt_sem_take(&sem_lock, RT_WAITING_FOREVER);
  342. /* get produce index */
  343. Index = LPC_EMAC->TxProduceIndex;
  344. /* calculate next index */
  345. IndexNext = LPC_EMAC->TxProduceIndex + 1;
  346. if (IndexNext > LPC_EMAC->TxDescriptorNumber)
  347. IndexNext = 0;
  348. /* copy data to tx buffer */
  349. ptr = (rt_uint8_t *)TX_BUF(Index);
  350. pbuf_copy_partial(p, ptr, p->tot_len, 0);
  351. TX_DESC_CTRL(Index) &= ~0x7ff;
  352. TX_DESC_CTRL(Index) |= (p->tot_len - 1) & 0x7ff;
  353. /* change index to the next */
  354. LPC_EMAC->TxProduceIndex = IndexNext;
  355. /* unlock EMAC device */
  356. rt_sem_release(&sem_lock);
  357. return RT_EOK;
  358. }
  359. /* reception packet. */
  360. struct pbuf *lpc_emac_rx(rt_device_t dev)
  361. {
  362. struct pbuf *p;
  363. rt_uint32_t size;
  364. rt_uint32_t Index;
  365. /* init p pointer */
  366. p = RT_NULL;
  367. /* lock EMAC device */
  368. rt_sem_take(&sem_lock, RT_WAITING_FOREVER);
  369. Index = LPC_EMAC->RxConsumeIndex;
  370. if (Index != LPC_EMAC->RxProduceIndex)
  371. {
  372. size = (RX_STAT_INFO(Index) & 0x7ff) + 1;
  373. if (size > ETH_FRAG_SIZE) size = ETH_FRAG_SIZE;
  374. /* allocate buffer */
  375. p = pbuf_alloc(PBUF_LINK, size, PBUF_RAM);
  376. if (p != RT_NULL)
  377. {
  378. pbuf_take(p, (rt_uint8_t *)RX_BUF(Index), size);
  379. }
  380. /* move Index to the next */
  381. if (++Index > LPC_EMAC->RxDescriptorNumber)
  382. Index = 0;
  383. /* set consume index */
  384. LPC_EMAC->RxConsumeIndex = Index;
  385. }
  386. else
  387. {
  388. /* Enable RxDone interrupt */
  389. LPC_EMAC->IntEnable = INT_RX_DONE | INT_TX_DONE;
  390. }
  391. /* unlock EMAC device */
  392. rt_sem_release(&sem_lock);
  393. return p;
  394. }
  395. int lpc_emac_hw_init(void)
  396. {
  397. uint32_t result[4];
  398. rt_event_init(&tx_event, "tx_event", RT_IPC_FLAG_FIFO);
  399. rt_sem_init(&sem_lock, "eth_lock", 1, RT_IPC_FLAG_FIFO);
  400. /* set autonegotiation mode */
  401. lpc_emac_device.phy_mode = EMAC_PHY_AUTO;
  402. // OUI 00-60-37 NXP Semiconductors
  403. lpc_emac_device.dev_addr[0] = 0x00;
  404. lpc_emac_device.dev_addr[1] = 0x60;
  405. lpc_emac_device.dev_addr[2] = 0x37;
  406. /* set mac address: (only for test) */
  407. ReadDeviceSerialNum(result);
  408. lpc_emac_device.dev_addr[3] = result[0] ^ result[1];
  409. lpc_emac_device.dev_addr[4] = result[1] ^ result[2];
  410. lpc_emac_device.dev_addr[5] = result[2] ^ result[3];
  411. lpc_emac_device.parent.parent.init = lpc_emac_init;
  412. lpc_emac_device.parent.parent.open = lpc_emac_open;
  413. lpc_emac_device.parent.parent.close = lpc_emac_close;
  414. lpc_emac_device.parent.parent.read = lpc_emac_read;
  415. lpc_emac_device.parent.parent.write = lpc_emac_write;
  416. lpc_emac_device.parent.parent.control = lpc_emac_control;
  417. lpc_emac_device.parent.parent.user_data = RT_NULL;
  418. lpc_emac_device.parent.eth_rx = lpc_emac_rx;
  419. lpc_emac_device.parent.eth_tx = lpc_emac_tx;
  420. eth_device_init(&(lpc_emac_device.parent), "e0");
  421. return 0;
  422. }
  423. INIT_DEVICE_EXPORT(lpc_emac_hw_init);
  424. #ifdef RT_USING_FINSH
  425. #include <finsh.h>
  426. void emac_dump()
  427. {
  428. rt_kprintf("Command : %08x\n", LPC_EMAC->Command);
  429. rt_kprintf("Status : %08x\n", LPC_EMAC->Status);
  430. rt_kprintf("RxStatus : %08x\n", LPC_EMAC->RxStatus);
  431. rt_kprintf("TxStatus : %08x\n", LPC_EMAC->TxStatus);
  432. rt_kprintf("IntEnable: %08x\n", LPC_EMAC->IntEnable);
  433. rt_kprintf("IntStatus: %08x\n", LPC_EMAC->IntStatus);
  434. }
  435. FINSH_FUNCTION_EXPORT(emac_dump, dump emac register);
  436. #endif