dm9000a.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801
  1. /*
  2. * File : dm9000a.c
  3. * This file is part of RT-Thread RTOS
  4. * COPYRIGHT (C) 2009, RT-Thread Development Team
  5. *
  6. * The license and distribution terms for this file may be
  7. * found in the file LICENSE in this distribution or at
  8. * http://www.rt-thread.org/license/LICENSE
  9. *
  10. * Change Logs:
  11. * Date Author Notes
  12. * 2009-07-01 Bernard the first version
  13. */
  14. #include <rtthread.h>
  15. #include "dm9000a.h"
  16. #include <netif/ethernetif.h>
  17. #include "lwipopts.h"
  18. #include "stm32f10x.h"
  19. #include "stm32f10x_fsmc.h"
  20. // #define DM9000_DEBUG 1
  21. #if DM9000_DEBUG
  22. #define DM9000_TRACE rt_kprintf
  23. #else
  24. #define DM9000_TRACE(...)
  25. #endif
  26. /*
  27. * DM9000 interrupt line is connected to PE4
  28. */
  29. //--------------------------------------------------------
  30. #define DM9000_PHY 0x40 /* PHY address 0x01 */
  31. #define RST_1() GPIO_SetBits(GPIOE,GPIO_Pin_5)
  32. #define RST_0() GPIO_ResetBits(GPIOE,GPIO_Pin_5)
  33. #define MAX_ADDR_LEN 6
  34. enum DM9000_PHY_mode
  35. {
  36. DM9000_10MHD = 0, DM9000_100MHD = 1,
  37. DM9000_10MFD = 4, DM9000_100MFD = 5,
  38. DM9000_AUTO = 8, DM9000_1M_HPNA = 0x10
  39. };
  40. enum DM9000_TYPE
  41. {
  42. TYPE_DM9000E,
  43. TYPE_DM9000A,
  44. TYPE_DM9000B
  45. };
  46. struct rt_dm9000_eth
  47. {
  48. /* inherit from ethernet device */
  49. struct eth_device parent;
  50. enum DM9000_TYPE type;
  51. enum DM9000_PHY_mode mode;
  52. rt_uint8_t imr_all;
  53. rt_uint8_t packet_cnt; /* packet I or II */
  54. rt_uint16_t queue_packet_len; /* queued packet (packet II) */
  55. /* interface address info. */
  56. rt_uint8_t dev_addr[MAX_ADDR_LEN]; /* hw address */
  57. };
  58. static struct rt_dm9000_eth dm9000_device;
  59. static struct rt_semaphore sem_ack, sem_lock;
  60. void rt_dm9000_isr(void);
  61. static void delay_ms(rt_uint32_t ms)
  62. {
  63. rt_uint32_t len;
  64. for (;ms > 0; ms --)
  65. for (len = 0; len < 100; len++ );
  66. }
  67. /* Read a byte from I/O port */
  68. rt_inline rt_uint8_t dm9000_io_read(rt_uint16_t reg)
  69. {
  70. DM9000_IO = reg;
  71. return (rt_uint8_t) DM9000_DATA;
  72. }
  73. /* Write a byte to I/O port */
  74. rt_inline void dm9000_io_write(rt_uint16_t reg, rt_uint16_t value)
  75. {
  76. DM9000_IO = reg;
  77. DM9000_DATA = value;
  78. }
  79. /* Read a word from phyxcer */
  80. rt_inline rt_uint16_t phy_read(rt_uint16_t reg)
  81. {
  82. rt_uint16_t val;
  83. /* Fill the phyxcer register into REG_0C */
  84. dm9000_io_write(DM9000_EPAR, DM9000_PHY | reg);
  85. dm9000_io_write(DM9000_EPCR, 0xc); /* Issue phyxcer read command */
  86. delay_ms(100); /* Wait read complete */
  87. dm9000_io_write(DM9000_EPCR, 0x0); /* Clear phyxcer read command */
  88. val = (dm9000_io_read(DM9000_EPDRH) << 8) | dm9000_io_read(DM9000_EPDRL);
  89. return val;
  90. }
  91. /* Write a word to phyxcer */
  92. rt_inline void phy_write(rt_uint16_t reg, rt_uint16_t value)
  93. {
  94. /* Fill the phyxcer register into REG_0C */
  95. dm9000_io_write(DM9000_EPAR, DM9000_PHY | reg);
  96. /* Fill the written data into REG_0D & REG_0E */
  97. dm9000_io_write(DM9000_EPDRL, (value & 0xff));
  98. dm9000_io_write(DM9000_EPDRH, ((value >> 8) & 0xff));
  99. dm9000_io_write(DM9000_EPCR, 0xa); /* Issue phyxcer write command */
  100. delay_ms(500); /* Wait write complete */
  101. dm9000_io_write(DM9000_EPCR, 0x0); /* Clear phyxcer write command */
  102. }
  103. /* Set PHY operationg mode */
  104. rt_inline void phy_mode_set(rt_uint32_t media_mode)
  105. {
  106. rt_uint16_t phy_reg4 = 0x01e1, phy_reg0 = 0x1000;
  107. if (!(media_mode & DM9000_AUTO))
  108. {
  109. switch (media_mode)
  110. {
  111. case DM9000_10MHD:
  112. phy_reg4 = 0x21;
  113. phy_reg0 = 0x0000;
  114. break;
  115. case DM9000_10MFD:
  116. phy_reg4 = 0x41;
  117. phy_reg0 = 0x1100;
  118. break;
  119. case DM9000_100MHD:
  120. phy_reg4 = 0x81;
  121. phy_reg0 = 0x2000;
  122. break;
  123. case DM9000_100MFD:
  124. phy_reg4 = 0x101;
  125. phy_reg0 = 0x3100;
  126. break;
  127. }
  128. phy_write(4, phy_reg4); /* Set PHY media mode */
  129. phy_write(0, phy_reg0); /* Tmp */
  130. }
  131. dm9000_io_write(DM9000_GPCR, 0x01); /* Let GPIO0 output */
  132. dm9000_io_write(DM9000_GPR, 0x00); /* Enable PHY */
  133. }
  134. /* interrupt service routine */
  135. void rt_dm9000_isr()
  136. {
  137. rt_uint16_t int_status;
  138. rt_uint16_t last_io;
  139. last_io = DM9000_IO;
  140. /* Disable all interrupts */
  141. dm9000_io_write(DM9000_IMR, IMR_PAR);
  142. /* Got DM9000 interrupt status */
  143. int_status = dm9000_io_read(DM9000_ISR); /* Got ISR */
  144. dm9000_io_write(DM9000_ISR, int_status); /* Clear ISR status */
  145. DM9000_TRACE("dm9000 isr: int status %04x\n", int_status);
  146. /* receive overflow */
  147. if (int_status & ISR_ROS)
  148. {
  149. rt_kprintf("overflow\n");
  150. }
  151. if (int_status & ISR_ROOS)
  152. {
  153. rt_kprintf("overflow counter overflow\n");
  154. }
  155. /* Received the coming packet */
  156. if (int_status & ISR_PRS)
  157. {
  158. /* disable receive interrupt */
  159. dm9000_device.imr_all = IMR_PAR | IMR_PTM;
  160. /* a frame has been received */
  161. eth_device_ready(&(dm9000_device.parent));
  162. }
  163. /* Transmit Interrupt check */
  164. if (int_status & ISR_PTS)
  165. {
  166. /* transmit done */
  167. int tx_status = dm9000_io_read(DM9000_NSR); /* Got TX status */
  168. if (tx_status & (NSR_TX2END | NSR_TX1END))
  169. {
  170. dm9000_device.packet_cnt --;
  171. if (dm9000_device.packet_cnt > 0)
  172. {
  173. DM9000_TRACE("dm9000 isr: tx second packet\n");
  174. /* transmit packet II */
  175. /* Set TX length to DM9000 */
  176. dm9000_io_write(DM9000_TXPLL, dm9000_device.queue_packet_len & 0xff);
  177. dm9000_io_write(DM9000_TXPLH, (dm9000_device.queue_packet_len >> 8) & 0xff);
  178. /* Issue TX polling command */
  179. dm9000_io_write(DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */
  180. }
  181. /* One packet sent complete */
  182. rt_sem_release(&sem_ack);
  183. }
  184. }
  185. /* Re-enable interrupt mask */
  186. dm9000_io_write(DM9000_IMR, dm9000_device.imr_all);
  187. DM9000_IO = last_io;
  188. }
  189. /* RT-Thread Device Interface */
  190. /* initialize the interface */
  191. static rt_err_t rt_dm9000_init(rt_device_t dev)
  192. {
  193. int i, oft, lnk;
  194. rt_uint32_t value;
  195. /* RESET device */
  196. dm9000_io_write(DM9000_NCR, NCR_RST);
  197. delay_ms(1000); /* delay 1ms */
  198. /* identfy DM9000 */
  199. value = dm9000_io_read(DM9000_VIDL);
  200. value |= dm9000_io_read(DM9000_VIDH) << 8;
  201. value |= dm9000_io_read(DM9000_PIDL) << 16;
  202. value |= dm9000_io_read(DM9000_PIDH) << 24;
  203. if (value == DM9000_ID)
  204. {
  205. rt_kprintf("dm9000 id: 0x%x\n", value);
  206. }
  207. else
  208. {
  209. return -RT_ERROR;
  210. }
  211. /* GPIO0 on pre-activate PHY */
  212. dm9000_io_write(DM9000_GPR, 0x00); /* REG_1F bit0 activate phyxcer */
  213. dm9000_io_write(DM9000_GPCR, GPCR_GEP_CNTL); /* Let GPIO0 output */
  214. dm9000_io_write(DM9000_GPR, 0x00); /* Enable PHY */
  215. /* Set PHY */
  216. phy_mode_set(dm9000_device.mode);
  217. /* Program operating register */
  218. dm9000_io_write(DM9000_NCR, 0x0); /* only intern phy supported by now */
  219. dm9000_io_write(DM9000_TCR, 0); /* TX Polling clear */
  220. dm9000_io_write(DM9000_BPTR, 0x3f); /* Less 3Kb, 200us */
  221. dm9000_io_write(DM9000_FCTR, FCTR_HWOT(3) | FCTR_LWOT(8)); /* Flow Control : High/Low Water */
  222. dm9000_io_write(DM9000_FCR, 0x0); /* SH FIXME: This looks strange! Flow Control */
  223. dm9000_io_write(DM9000_SMCR, 0); /* Special Mode */
  224. dm9000_io_write(DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END); /* clear TX status */
  225. dm9000_io_write(DM9000_ISR, 0x0f); /* Clear interrupt status */
  226. dm9000_io_write(DM9000_TCR2, 0x80); /* Switch LED to mode 1 */
  227. /* set mac address */
  228. for (i = 0, oft = 0x10; i < 6; i++, oft++)
  229. dm9000_io_write(oft, dm9000_device.dev_addr[i]);
  230. /* set multicast address */
  231. for (i = 0, oft = 0x16; i < 8; i++, oft++)
  232. dm9000_io_write(oft, 0xff);
  233. /* Activate DM9000 */
  234. dm9000_io_write(DM9000_RCR, RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN); /* RX enable */
  235. dm9000_io_write(DM9000_IMR, IMR_PAR);
  236. if (dm9000_device.mode == DM9000_AUTO)
  237. {
  238. while (!(phy_read(1) & 0x20))
  239. {
  240. /* autonegation complete bit */
  241. rt_thread_delay(10);
  242. i++;
  243. if (i == 10000)
  244. {
  245. rt_kprintf("could not establish link\n");
  246. return 0;
  247. }
  248. }
  249. }
  250. /* see what we've got */
  251. lnk = phy_read(17) >> 12;
  252. rt_kprintf("operating at ");
  253. switch (lnk)
  254. {
  255. case 1:
  256. rt_kprintf("10M half duplex ");
  257. break;
  258. case 2:
  259. rt_kprintf("10M full duplex ");
  260. break;
  261. case 4:
  262. rt_kprintf("100M half duplex ");
  263. break;
  264. case 8:
  265. rt_kprintf("100M full duplex ");
  266. break;
  267. default:
  268. rt_kprintf("unknown: %d ", lnk);
  269. break;
  270. }
  271. rt_kprintf("mode\n");
  272. dm9000_io_write(DM9000_IMR, dm9000_device.imr_all); /* Enable TX/RX interrupt mask */
  273. return RT_EOK;
  274. }
  275. static rt_err_t rt_dm9000_open(rt_device_t dev, rt_uint16_t oflag)
  276. {
  277. return RT_EOK;
  278. }
  279. static rt_err_t rt_dm9000_close(rt_device_t dev)
  280. {
  281. /* RESET devie */
  282. phy_write(0, 0x8000); /* PHY RESET */
  283. dm9000_io_write(DM9000_GPR, 0x01); /* Power-Down PHY */
  284. dm9000_io_write(DM9000_IMR, 0x80); /* Disable all interrupt */
  285. dm9000_io_write(DM9000_RCR, 0x00); /* Disable RX */
  286. return RT_EOK;
  287. }
  288. static rt_size_t rt_dm9000_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size)
  289. {
  290. rt_set_errno(-RT_ENOSYS);
  291. return 0;
  292. }
  293. static rt_size_t rt_dm9000_write (rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size)
  294. {
  295. rt_set_errno(-RT_ENOSYS);
  296. return 0;
  297. }
  298. static rt_err_t rt_dm9000_control(rt_device_t dev, int cmd, void *args)
  299. {
  300. switch (cmd)
  301. {
  302. case NIOCTL_GADDR:
  303. /* get mac address */
  304. if (args) rt_memcpy(args, dm9000_device.dev_addr, 6);
  305. else return -RT_ERROR;
  306. break;
  307. default :
  308. break;
  309. }
  310. return RT_EOK;
  311. }
  312. /* ethernet device interface */
  313. /* transmit packet. */
  314. rt_err_t rt_dm9000_tx( rt_device_t dev, struct pbuf* p)
  315. {
  316. DM9000_TRACE("dm9000 tx: %d\n", p->tot_len);
  317. /* lock DM9000 device */
  318. rt_sem_take(&sem_lock, RT_WAITING_FOREVER);
  319. /* disable dm9000a interrupt */
  320. dm9000_io_write(DM9000_IMR, IMR_PAR);
  321. /* Move data to DM9000 TX RAM */
  322. DM9000_outb(DM9000_IO_BASE, DM9000_MWCMD);
  323. {
  324. /* q traverses through linked list of pbuf's
  325. * This list MUST consist of a single packet ONLY */
  326. struct pbuf *q;
  327. rt_uint16_t pbuf_index = 0;
  328. rt_uint8_t word[2], word_index = 0;
  329. q = p;
  330. /* Write data into dm9000a, two bytes at a time
  331. * Handling pbuf's with odd number of bytes correctly
  332. * No attempt to optimize for speed has been made */
  333. while (q)
  334. {
  335. if (pbuf_index < q->len)
  336. {
  337. word[word_index++] = ((u8_t*)q->payload)[pbuf_index++];
  338. if (word_index == 2)
  339. {
  340. DM9000_outw(DM9000_DATA_BASE, (word[1] << 8) | word[0]);
  341. word_index = 0;
  342. }
  343. }
  344. else
  345. {
  346. q = q->next;
  347. pbuf_index = 0;
  348. }
  349. }
  350. /* One byte could still be unsent */
  351. if (word_index == 1)
  352. {
  353. DM9000_outw(DM9000_DATA_BASE, word[0]);
  354. }
  355. }
  356. if (dm9000_device.packet_cnt == 0)
  357. {
  358. DM9000_TRACE("dm9000 tx: first packet\n");
  359. dm9000_device.packet_cnt ++;
  360. /* Set TX length to DM9000 */
  361. dm9000_io_write(DM9000_TXPLL, p->tot_len & 0xff);
  362. dm9000_io_write(DM9000_TXPLH, (p->tot_len >> 8) & 0xff);
  363. /* Issue TX polling command */
  364. dm9000_io_write(DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */
  365. }
  366. else
  367. {
  368. DM9000_TRACE("dm9000 tx: second packet\n");
  369. dm9000_device.packet_cnt ++;
  370. dm9000_device.queue_packet_len = p->tot_len;
  371. }
  372. /* enable dm9000a interrupt */
  373. dm9000_io_write(DM9000_IMR, dm9000_device.imr_all);
  374. /* unlock DM9000 device */
  375. rt_sem_release(&sem_lock);
  376. /* wait ack */
  377. rt_sem_take(&sem_ack, RT_WAITING_FOREVER);
  378. DM9000_TRACE("dm9000 tx done\n");
  379. return RT_EOK;
  380. }
  381. /* reception packet. */
  382. struct pbuf *rt_dm9000_rx(rt_device_t dev)
  383. {
  384. struct pbuf* p;
  385. rt_uint32_t rxbyte;
  386. /* init p pointer */
  387. p = RT_NULL;
  388. /* lock DM9000 device */
  389. rt_sem_take(&sem_lock, RT_WAITING_FOREVER);
  390. /* Check packet ready or not */
  391. dm9000_io_read(DM9000_MRCMDX); /* Dummy read */
  392. rxbyte = DM9000_inb(DM9000_DATA_BASE); /* Got most updated data */
  393. if (rxbyte)
  394. {
  395. rt_uint16_t rx_status, rx_len;
  396. rt_uint16_t* data;
  397. if (rxbyte > 1)
  398. {
  399. DM9000_TRACE("dm9000 rx: rx error, stop device\n");
  400. dm9000_io_write(DM9000_RCR, 0x00); /* Stop Device */
  401. dm9000_io_write(DM9000_ISR, 0x80); /* Stop INT request */
  402. }
  403. /* A packet ready now & Get status/length */
  404. DM9000_outb(DM9000_IO_BASE, DM9000_MRCMD);
  405. rx_status = DM9000_inw(DM9000_DATA_BASE);
  406. rx_len = DM9000_inw(DM9000_DATA_BASE);
  407. DM9000_TRACE("dm9000 rx: status %04x len %d\n", rx_status, rx_len);
  408. /* allocate buffer */
  409. p = pbuf_alloc(PBUF_LINK, rx_len, PBUF_RAM);
  410. if (p != RT_NULL)
  411. {
  412. struct pbuf* q;
  413. rt_int32_t len;
  414. for (q = p; q != RT_NULL; q= q->next)
  415. {
  416. data = (rt_uint16_t*)q->payload;
  417. len = q->len;
  418. while (len > 0)
  419. {
  420. *data = DM9000_inw(DM9000_DATA_BASE);
  421. data ++;
  422. len -= 2;
  423. }
  424. }
  425. DM9000_TRACE("\n");
  426. }
  427. else
  428. {
  429. rt_uint16_t dummy;
  430. rt_int32_t len;
  431. DM9000_TRACE("dm9000 rx: no pbuf\n");
  432. /* no pbuf, discard data from DM9000 */
  433. data = &dummy;
  434. len = rx_len;
  435. while (len > 0)
  436. {
  437. *data = DM9000_inw(DM9000_DATA_BASE);
  438. len -= 2;
  439. }
  440. }
  441. if ((rx_status & 0xbf00) || (rx_len < 0x40)
  442. || (rx_len > DM9000_PKT_MAX))
  443. {
  444. rt_kprintf("rx error: status %04x\n", rx_status);
  445. if (rx_status & 0x100)
  446. {
  447. rt_kprintf("rx fifo error\n");
  448. }
  449. if (rx_status & 0x200)
  450. {
  451. rt_kprintf("rx crc error\n");
  452. }
  453. if (rx_status & 0x8000)
  454. {
  455. rt_kprintf("rx length error\n");
  456. }
  457. if (rx_len > DM9000_PKT_MAX)
  458. {
  459. rt_kprintf("rx length too big\n");
  460. /* RESET device */
  461. dm9000_io_write(DM9000_NCR, NCR_RST);
  462. rt_thread_delay(1); /* delay 5ms */
  463. }
  464. /* it issues an error, release pbuf */
  465. pbuf_free(p);
  466. p = RT_NULL;
  467. }
  468. }
  469. else
  470. {
  471. /* restore receive interrupt */
  472. dm9000_device.imr_all = IMR_PAR | IMR_PTM | IMR_PRM;
  473. dm9000_io_write(DM9000_IMR, dm9000_device.imr_all);
  474. }
  475. /* unlock DM9000 device */
  476. rt_sem_release(&sem_lock);
  477. return p;
  478. }
  479. static void RCC_Configuration(void)
  480. {
  481. /* enable gpiob port clock */
  482. RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOF | RCC_APB2Periph_GPIOE | RCC_APB2Periph_AFIO, ENABLE);
  483. /* enable FSMC clock */
  484. RCC_AHBPeriphClockCmd(RCC_AHBPeriph_FSMC, ENABLE);
  485. }
  486. static void NVIC_Configuration(void)
  487. {
  488. NVIC_InitTypeDef NVIC_InitStructure;
  489. /* Enable the EXTI4 Interrupt */
  490. NVIC_InitStructure.NVIC_IRQChannel = EXTI4_IRQn;
  491. NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;
  492. NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
  493. NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
  494. NVIC_Init(&NVIC_InitStructure);
  495. }
  496. static void GPIO_Configuration()
  497. {
  498. GPIO_InitTypeDef GPIO_InitStructure;
  499. EXTI_InitTypeDef EXTI_InitStructure;
  500. /* configure PE5 as eth RST */
  501. GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5;
  502. GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
  503. GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
  504. GPIO_Init(GPIOE,&GPIO_InitStructure);
  505. GPIO_SetBits(GPIOE,GPIO_Pin_5);
  506. //RST_1();
  507. /* configure PE4 as external interrupt */
  508. GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4;
  509. GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
  510. GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPD;
  511. GPIO_Init(GPIOE, &GPIO_InitStructure);
  512. /* Connect DM9000 EXTI Line to GPIOE Pin 4 */
  513. GPIO_EXTILineConfig(GPIO_PortSourceGPIOE, GPIO_PinSource4);
  514. /* Configure DM9000 EXTI Line to generate an interrupt on falling edge */
  515. EXTI_InitStructure.EXTI_Line = EXTI_Line4;
  516. EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt;
  517. EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Rising;
  518. EXTI_InitStructure.EXTI_LineCmd = ENABLE;
  519. EXTI_Init(&EXTI_InitStructure);
  520. /* Clear DM9000A EXTI line pending bit */
  521. EXTI_ClearITPendingBit(EXTI_Line4);
  522. }
  523. static void FSMC_Configuration()
  524. {
  525. FSMC_NORSRAMInitTypeDef FSMC_NORSRAMInitStructure;
  526. FSMC_NORSRAMTimingInitTypeDef p;
  527. /* FSMC GPIO configure */
  528. {
  529. GPIO_InitTypeDef GPIO_InitStructure;
  530. RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOD | RCC_APB2Periph_GPIOE | RCC_APB2Periph_GPIOF
  531. | RCC_APB2Periph_GPIOG, ENABLE);
  532. RCC_AHBPeriphClockCmd(RCC_AHBPeriph_FSMC, ENABLE);
  533. GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
  534. GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
  535. /*
  536. FSMC_D0 ~ FSMC_D3
  537. PD14 FSMC_D0 PD15 FSMC_D1 PD0 FSMC_D2 PD1 FSMC_D3
  538. */
  539. GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_14 | GPIO_Pin_15;
  540. GPIO_Init(GPIOD,&GPIO_InitStructure);
  541. /*
  542. FSMC_D4 ~ FSMC_D12
  543. PE7 ~ PE15 FSMC_D4 ~ FSMC_D12
  544. */
  545. GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7 | GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10
  546. | GPIO_Pin_11 | GPIO_Pin_12 | GPIO_Pin_13 | GPIO_Pin_14 | GPIO_Pin_15;
  547. GPIO_Init(GPIOE,&GPIO_InitStructure);
  548. /* FSMC_D13 ~ FSMC_D15 PD8 ~ PD10 */
  549. GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10;
  550. GPIO_Init(GPIOD,&GPIO_InitStructure);
  551. /*
  552. FSMC_A0 ~ FSMC_A5 FSMC_A6 ~ FSMC_A9
  553. PF0 ~ PF5 PF12 ~ PF15
  554. */
  555. GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3
  556. | GPIO_Pin_4 | GPIO_Pin_5 | GPIO_Pin_12 | GPIO_Pin_13 | GPIO_Pin_14 | GPIO_Pin_15;
  557. GPIO_Init(GPIOF,&GPIO_InitStructure);
  558. /* FSMC_A10 ~ FSMC_A15 PG0 ~ PG5 */
  559. GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3 | GPIO_Pin_4 | GPIO_Pin_5;
  560. GPIO_Init(GPIOG,&GPIO_InitStructure);
  561. /* FSMC_A16 ~ FSMC_A18 PD11 ~ PD13 */
  562. GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11 | GPIO_Pin_12 | GPIO_Pin_13;
  563. GPIO_Init(GPIOD,&GPIO_InitStructure);
  564. /* RD-PD4 WR-PD5 */
  565. GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4 | GPIO_Pin_5;
  566. GPIO_Init(GPIOD,&GPIO_InitStructure);
  567. /* NBL0-PE0 NBL1-PE1 */
  568. GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1;
  569. GPIO_Init(GPIOE,&GPIO_InitStructure);
  570. /* NE1/NCE2 */
  571. GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7;
  572. GPIO_Init(GPIOD,&GPIO_InitStructure);
  573. /* NE2 */
  574. GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;
  575. GPIO_Init(GPIOG,&GPIO_InitStructure);
  576. /* NE3 */
  577. GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;
  578. GPIO_Init(GPIOG,&GPIO_InitStructure);
  579. /* NE4 */
  580. GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12;
  581. GPIO_Init(GPIOG,&GPIO_InitStructure);
  582. }
  583. /* FSMC GPIO configure */
  584. /*-- FSMC Configuration ------------------------------------------------------*/
  585. p.FSMC_AddressSetupTime = 0;
  586. p.FSMC_AddressHoldTime = 0;
  587. p.FSMC_DataSetupTime = 2;
  588. p.FSMC_BusTurnAroundDuration = 0;
  589. p.FSMC_CLKDivision = 0;
  590. p.FSMC_DataLatency = 0;
  591. p.FSMC_AccessMode = FSMC_AccessMode_A;
  592. FSMC_NORSRAMInitStructure.FSMC_Bank = FSMC_Bank1_NORSRAM4;
  593. FSMC_NORSRAMInitStructure.FSMC_DataAddressMux = FSMC_DataAddressMux_Disable;
  594. FSMC_NORSRAMInitStructure.FSMC_MemoryType = FSMC_MemoryType_SRAM;
  595. FSMC_NORSRAMInitStructure.FSMC_MemoryDataWidth = FSMC_MemoryDataWidth_16b;
  596. FSMC_NORSRAMInitStructure.FSMC_BurstAccessMode = FSMC_BurstAccessMode_Disable;
  597. FSMC_NORSRAMInitStructure.FSMC_AsynchronousWait = FSMC_AsynchronousWait_Disable;
  598. FSMC_NORSRAMInitStructure.FSMC_WaitSignalPolarity = FSMC_WaitSignalPolarity_Low;
  599. FSMC_NORSRAMInitStructure.FSMC_WrapMode = FSMC_WrapMode_Disable;
  600. FSMC_NORSRAMInitStructure.FSMC_WaitSignalActive = FSMC_WaitSignalActive_BeforeWaitState;
  601. FSMC_NORSRAMInitStructure.FSMC_WriteOperation = FSMC_WriteOperation_Enable;
  602. FSMC_NORSRAMInitStructure.FSMC_WaitSignal = FSMC_WaitSignal_Disable;
  603. FSMC_NORSRAMInitStructure.FSMC_ExtendedMode = FSMC_ExtendedMode_Disable;
  604. FSMC_NORSRAMInitStructure.FSMC_WriteBurst = FSMC_WriteBurst_Disable;
  605. FSMC_NORSRAMInitStructure.FSMC_ReadWriteTimingStruct = &p;
  606. FSMC_NORSRAMInitStructure.FSMC_WriteTimingStruct = &p;
  607. FSMC_NORSRAMInit(&FSMC_NORSRAMInitStructure);
  608. /* Enable FSMC Bank1_SRAM Bank4 */
  609. FSMC_NORSRAMCmd(FSMC_Bank1_NORSRAM4, ENABLE);
  610. }
  611. int rt_hw_dm9000_init(void)
  612. {
  613. RCC_Configuration();
  614. NVIC_Configuration();
  615. GPIO_Configuration();
  616. FSMC_Configuration();
  617. rt_sem_init(&sem_ack, "tx_ack", 1, RT_IPC_FLAG_FIFO);
  618. rt_sem_init(&sem_lock, "eth_lock", 1, RT_IPC_FLAG_FIFO);
  619. dm9000_device.type = TYPE_DM9000A;
  620. dm9000_device.mode = DM9000_AUTO;
  621. dm9000_device.packet_cnt = 0;
  622. dm9000_device.queue_packet_len = 0;
  623. /*
  624. * SRAM Tx/Rx pointer automatically return to start address,
  625. * Packet Transmitted, Packet Received
  626. */
  627. dm9000_device.imr_all = IMR_PAR | IMR_PTM | IMR_PRM;
  628. dm9000_device.dev_addr[0] = 0x00;
  629. dm9000_device.dev_addr[1] = 0x60;
  630. dm9000_device.dev_addr[2] = 0x6E;
  631. dm9000_device.dev_addr[3] = 0x11;
  632. dm9000_device.dev_addr[4] = 0x22;
  633. dm9000_device.dev_addr[5] = 0x33;
  634. dm9000_device.parent.parent.init = rt_dm9000_init;
  635. dm9000_device.parent.parent.open = rt_dm9000_open;
  636. dm9000_device.parent.parent.close = rt_dm9000_close;
  637. dm9000_device.parent.parent.read = rt_dm9000_read;
  638. dm9000_device.parent.parent.write = rt_dm9000_write;
  639. dm9000_device.parent.parent.control = rt_dm9000_control;
  640. dm9000_device.parent.parent.user_data = RT_NULL;
  641. dm9000_device.parent.eth_rx = rt_dm9000_rx;
  642. dm9000_device.parent.eth_tx = rt_dm9000_tx;
  643. eth_device_init(&(dm9000_device.parent), "e0");
  644. return 0;
  645. }
  646. INIT_DEVICE_EXPORT(rt_hw_dm9000_init);
  647. void dm9000(void)
  648. {
  649. rt_kprintf("\n");
  650. rt_kprintf("NCR (0x00): %02x\n", dm9000_io_read(DM9000_NCR));
  651. rt_kprintf("NSR (0x01): %02x\n", dm9000_io_read(DM9000_NSR));
  652. rt_kprintf("TCR (0x02): %02x\n", dm9000_io_read(DM9000_TCR));
  653. rt_kprintf("TSRI (0x03): %02x\n", dm9000_io_read(DM9000_TSR1));
  654. rt_kprintf("TSRII (0x04): %02x\n", dm9000_io_read(DM9000_TSR2));
  655. rt_kprintf("RCR (0x05): %02x\n", dm9000_io_read(DM9000_RCR));
  656. rt_kprintf("RSR (0x06): %02x\n", dm9000_io_read(DM9000_RSR));
  657. rt_kprintf("ORCR (0x07): %02x\n", dm9000_io_read(DM9000_ROCR));
  658. rt_kprintf("CRR (0x2C): %02x\n", dm9000_io_read(DM9000_CHIPR));
  659. rt_kprintf("CSCR (0x31): %02x\n", dm9000_io_read(DM9000_CSCR));
  660. rt_kprintf("RCSSR (0x32): %02x\n", dm9000_io_read(DM9000_RCSSR));
  661. rt_kprintf("ISR (0xFE): %02x\n", dm9000_io_read(DM9000_ISR));
  662. rt_kprintf("IMR (0xFF): %02x\n", dm9000_io_read(DM9000_IMR));
  663. rt_kprintf("\n");
  664. }
  665. #ifdef RT_USING_FINSH
  666. #include <finsh.h>
  667. FINSH_FUNCTION_EXPORT(dm9000, dm9000 register dump);
  668. #endif