drv_fdcan.c 8.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290
  1. /*
  2. * Copyright (c) 2006-2021, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2020-07-06 thread-liu first version
  9. */
  10. #include "board.h"
  11. #if defined(BSP_USING_FDCAN1) || defined(BSP_USING_FDCAN2)
  12. #include "drv_fdcan.h"
  13. //#define DRV_DEBUG
  14. #define LOG_TAG "drv.fdcan"
  15. #include <drv_log.h>
  16. struct stm32_fdcan
  17. {
  18. struct rt_device dev;
  19. FDCAN_HandleTypeDef fdcan;
  20. FDCAN_FilterTypeDef filter;
  21. FDCAN_TxHeaderTypeDef tx_config;
  22. FDCAN_RxHeaderTypeDef rx_config;
  23. volatile rt_uint8_t fifo0;
  24. volatile rt_uint8_t fifo1;
  25. };
  26. static struct stm32_fdcan rt_fdcan = {0};
  27. static rt_err_t rt_fdcan_init(rt_device_t dev)
  28. {
  29. RT_ASSERT(dev != RT_NULL);
  30. struct stm32_fdcan *device = (struct stm32_fdcan *)dev;
  31. device->fdcan.Instance = FDCAN1;
  32. device->fdcan.Init.FrameFormat = FDCAN_FRAME_CLASSIC;
  33. device->fdcan.Init.Mode = FDCAN_MODE_INTERNAL_LOOPBACK;
  34. device->fdcan.Init.AutoRetransmission = ENABLE;
  35. device->fdcan.Init.TransmitPause = DISABLE;
  36. device->fdcan.Init.ProtocolException = ENABLE;
  37. device->fdcan.Init.NominalPrescaler = 0x01; /* tq = NominalPrescaler x (1/fdcan_ker_ck) */
  38. device->fdcan.Init.NominalSyncJumpWidth = 0x08;
  39. device->fdcan.Init.DataPrescaler = 0x01;
  40. device->fdcan.Init.DataSyncJumpWidth = 0x04;
  41. device->fdcan.Init.DataTimeSeg1 = 0x05; /* DataTimeSeg1 = Propagation_segment + Phase_segment_1 */
  42. device->fdcan.Init.DataTimeSeg2 = 0x04;
  43. device->fdcan.Init.NominalTimeSeg1 = 0x1F; /* NominalTimeSeg1 = Propagation_segment + Phase_segment_1 */
  44. device->fdcan.Init.NominalTimeSeg2 = 0x08;
  45. device->fdcan.Init.MessageRAMOffset = 0x00;
  46. device->fdcan.Init.StdFiltersNbr = 0x01;
  47. device->fdcan.Init.ExtFiltersNbr = 0x01;
  48. device->fdcan.Init.RxFifo0ElmtsNbr = 0x01;
  49. device->fdcan.Init.RxFifo0ElmtSize = FDCAN_DATA_BYTES_8;
  50. device->fdcan.Init.RxFifo1ElmtsNbr = 0x02;
  51. device->fdcan.Init.RxFifo1ElmtSize = FDCAN_DATA_BYTES_8;
  52. device->fdcan.Init.RxBuffersNbr = 0x00;
  53. device->fdcan.Init.TxEventsNbr = 0x00;
  54. device->fdcan.Init.TxBuffersNbr = 0x00;
  55. device->fdcan.Init.TxFifoQueueElmtsNbr = 0x01;
  56. device->fdcan.Init.TxFifoQueueMode = FDCAN_TX_FIFO_OPERATION;
  57. device->fdcan.Init.TxElmtSize = FDCAN_DATA_BYTES_8;
  58. if (HAL_FDCAN_Init(&device->fdcan) != HAL_OK)
  59. {
  60. return RT_ERROR;
  61. }
  62. device->filter.IdType = FDCAN_EXTENDED_ID;
  63. device->filter.FilterIndex = 0;
  64. device->filter.FilterType = FDCAN_FILTER_MASK;
  65. device->filter.FilterConfig = FDCAN_FILTER_TO_RXFIFO0;
  66. device->filter.FilterID1 = 0x1111111;
  67. device->filter.FilterID2 = 0x2222222;
  68. if (HAL_FDCAN_ConfigFilter(&device->fdcan, &device->filter)!=HAL_OK)
  69. {
  70. return RT_ERROR;
  71. }
  72. HAL_FDCAN_Start(&device->fdcan);
  73. HAL_FDCAN_ActivateNotification(&device->fdcan, FDCAN_IT_RX_FIFO0_NEW_MESSAGE, 0); /* open rx fifo0 new message it */
  74. device->fifo0 = RESET;
  75. device->fifo1 = RESET;
  76. return RT_EOK;
  77. }
  78. static rt_err_t rt_fdcan_open(rt_device_t dev, rt_uint16_t oflag)
  79. {
  80. RT_ASSERT(dev != RT_NULL);
  81. return RT_EOK;
  82. }
  83. static rt_err_t rt_fdcan_close(rt_device_t dev)
  84. {
  85. RT_ASSERT(dev != RT_NULL);
  86. return RT_EOK;
  87. }
  88. static rt_err_t rt_fdcan_control(rt_device_t dev, int cmd, void *args)
  89. {
  90. RT_ASSERT(dev != RT_NULL);
  91. struct stm32_fdcan *device = (struct stm32_fdcan *)dev;
  92. switch (cmd)
  93. {
  94. case FDCAN_MODE_NORMAL:
  95. device->fdcan.Init.Mode = FDCAN_MODE_NORMAL;
  96. break;
  97. case FDCAN_MODE_INTERNAL_LOOPBACK:
  98. device->fdcan.Init.Mode = FDCAN_MODE_INTERNAL_LOOPBACK;
  99. break;
  100. default:
  101. break;
  102. }
  103. HAL_FDCAN_Init(&device->fdcan);
  104. return RT_EOK;
  105. }
  106. static rt_size_t rt_fdcan_read(rt_device_t dev, rt_off_t pos, void *buffer, rt_size_t size)
  107. {
  108. RT_ASSERT(dev != RT_NULL);
  109. struct stm32_fdcan *device = (struct stm32_fdcan *)dev;
  110. if (rt_fdcan.fifo0 == SET)
  111. {
  112. rt_fdcan.fifo0 = RESET;
  113. if (HAL_FDCAN_GetRxMessage(&device->fdcan, FDCAN_RX_FIFO0, &device->rx_config, (uint8_t *)buffer) != HAL_OK)
  114. {
  115. LOG_E("get msg error from fdcan fifo0!");
  116. return 0;
  117. }
  118. return device->rx_config.DataLength >> 16;
  119. }
  120. if (rt_fdcan.fifo1 == SET)
  121. {
  122. rt_fdcan.fifo0 = RESET;
  123. if (HAL_FDCAN_GetRxMessage(&device->fdcan, FDCAN_RX_FIFO1, &device->rx_config, (uint8_t *)buffer) != HAL_OK)
  124. {
  125. LOG_E("get msg error from fdcan fifo1!");
  126. return 0;
  127. }
  128. return device->rx_config.DataLength >> 16;
  129. }
  130. return 0;
  131. }
  132. static rt_size_t rt_fdcan_write(rt_device_t dev, rt_off_t pos, const void *buffer, rt_size_t size)
  133. {
  134. RT_ASSERT(dev != RT_NULL);
  135. struct stm32_fdcan *device = (struct stm32_fdcan *)dev;
  136. device->tx_config.Identifier = 0x1111112;
  137. device->tx_config.IdType = FDCAN_EXTENDED_ID;
  138. device->tx_config.TxFrameType = FDCAN_DATA_FRAME;
  139. device->tx_config.DataLength = FDCAN_DLC_BYTES_8;
  140. device->tx_config.ErrorStateIndicator = FDCAN_ESI_ACTIVE;
  141. device->tx_config.BitRateSwitch = FDCAN_BRS_OFF;
  142. device->tx_config.FDFormat = FDCAN_CLASSIC_CAN;
  143. device->tx_config.TxEventFifoControl = FDCAN_NO_TX_EVENTS;
  144. device->tx_config.MessageMarker = 0xCC;
  145. if (HAL_FDCAN_AddMessageToTxFifoQ(&device->fdcan, &device->tx_config, (uint8_t *)buffer) != HAL_OK)
  146. {
  147. return RT_ERROR;
  148. }
  149. return RT_EOK;
  150. }
  151. void FDCAN1_IT0_IRQHandler(void)
  152. {
  153. /* enter interrupt */
  154. rt_interrupt_enter();
  155. HAL_FDCAN_IRQHandler(&rt_fdcan.fdcan);
  156. /* leave interrupt */
  157. rt_interrupt_leave();
  158. }
  159. void FDCAN1_IT1_IRQHandler(void)
  160. {
  161. /* enter interrupt */
  162. rt_interrupt_enter();
  163. HAL_FDCAN_IRQHandler(&rt_fdcan.fdcan);
  164. /* leave interrupt */
  165. rt_interrupt_leave();
  166. }
  167. void HAL_FDCAN_RxFifo0Callback(FDCAN_HandleTypeDef *hfdcan, uint32_t RxFifo0ITs)
  168. {
  169. if (hfdcan->Instance == FDCAN1)
  170. {
  171. if ((RxFifo0ITs & FDCAN_IT_RX_FIFO0_NEW_MESSAGE) != RESET)
  172. {
  173. rt_fdcan.fifo0 = SET;
  174. HAL_FDCAN_ActivateNotification(hfdcan, FDCAN_IT_RX_FIFO0_NEW_MESSAGE, 0);
  175. }
  176. }
  177. }
  178. void HAL_FDCAN_RxFifo1Callback(FDCAN_HandleTypeDef *hfdcan, uint32_t RxFifo1ITs)
  179. {
  180. if ((RxFifo1ITs & FDCAN_IT_RX_FIFO1_NEW_MESSAGE) != RESET)
  181. {
  182. rt_fdcan.fifo1 = SET;
  183. HAL_FDCAN_ActivateNotification(hfdcan, FDCAN_IT_RX_FIFO1_NEW_MESSAGE, 0);
  184. }
  185. }
  186. int fdcan_init(void)
  187. {
  188. rt_fdcan.dev.type = RT_Device_Class_CAN;
  189. rt_fdcan.dev.init = rt_fdcan_init;
  190. rt_fdcan.dev.open = rt_fdcan_open;
  191. rt_fdcan.dev.close = rt_fdcan_close;
  192. rt_fdcan.dev.read = rt_fdcan_read;
  193. rt_fdcan.dev.write = rt_fdcan_write;
  194. rt_fdcan.dev.control = rt_fdcan_control;
  195. rt_fdcan.dev.user_data = RT_NULL;
  196. rt_device_register(&rt_fdcan.dev, "fdcan1", RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_REMOVABLE | RT_DEVICE_FLAG_STANDALONE);
  197. LOG_I("fdcan1 init success!");
  198. return RT_EOK;
  199. }
  200. INIT_DEVICE_EXPORT(fdcan_init);
  201. #ifdef FINSH_USING_MSH
  202. #include <finsh.h>
  203. int fdcan_sample(int argc, char **argv)
  204. {
  205. rt_err_t result = RT_EOK;
  206. rt_uint8_t i, rx_buf[8], tx_buf[8];
  207. struct rt_device *dev = RT_NULL;
  208. if (argc != 9)
  209. {
  210. rt_kprintf("Usage:\n");
  211. rt_kprintf("fdcan_sample 1 2 3 4 5 6 7 8\n");
  212. return -1;
  213. }
  214. for (i = 0; i < 8; i++)
  215. {
  216. tx_buf[i] = atoi(argv[i+1]);
  217. }
  218. dev = rt_device_find("fdcan1");
  219. if (dev == RT_NULL)
  220. {
  221. rt_kprintf("can't find fdcan1 device!\n");
  222. return RT_ERROR;
  223. }
  224. rt_device_open(dev, RT_DEVICE_OFLAG_RDWR);
  225. rt_device_write(dev, 0, tx_buf, 8);
  226. rt_thread_delay(1);
  227. rt_device_read(dev, 0, rx_buf, 8);
  228. rt_kprintf("fdcan1 loopback test over, rbuf = ");
  229. for (i = 0; i < 8; i++)
  230. {
  231. rt_kprintf(" %x ", rx_buf[i]);
  232. }
  233. rt_kprintf("\n");
  234. return result;
  235. }
  236. MSH_CMD_EXPORT(fdcan_sample, fdcan loopback mode test);
  237. #endif
  238. #endif