mmu.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595
  1. /*
  2. * Copyright (c) 2006-2021, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2021-01-30 lizhirui first version
  9. * 2022-12-13 WangXiaoyao Port to new mm
  10. * 2023-10-12 Shell Add permission control API
  11. */
  12. #include <rtthread.h>
  13. #include <stddef.h>
  14. #include <stdint.h>
  15. #define DBG_TAG "hw.mmu"
  16. #define DBG_LVL DBG_INFO
  17. #include <rtdbg.h>
  18. #include <board.h>
  19. #include <cache.h>
  20. #include <mm_aspace.h>
  21. #include <mm_page.h>
  22. #include <mmu.h>
  23. #include <riscv_mmu.h>
  24. #include <tlb.h>
  25. #ifdef RT_USING_SMART
  26. #include <board.h>
  27. #include <ioremap.h>
  28. #include <lwp_user_mm.h>
  29. #endif
  30. #ifndef RT_USING_SMART
  31. #define USER_VADDR_START 0
  32. #endif
  33. static size_t _unmap_area(struct rt_aspace *aspace, void *v_addr, size_t size);
  34. static void *current_mmu_table = RT_NULL;
  35. volatile __attribute__((aligned(4 * 1024)))
  36. rt_ubase_t MMUTable[__SIZE(VPN2_BIT)];
  37. #ifdef ARCH_USING_ASID
  38. void rt_hw_aspace_switch(rt_aspace_t aspace)
  39. {
  40. uintptr_t page_table = (uintptr_t)rt_kmem_v2p(aspace->page_table);
  41. current_mmu_table = aspace->page_table;
  42. rt_hw_asid_switch_pgtbl(aspace, page_table);
  43. }
  44. #else /* !ARCH_USING_ASID */
  45. void rt_hw_aspace_switch(rt_aspace_t aspace)
  46. {
  47. uintptr_t page_table = (uintptr_t)rt_kmem_v2p(aspace->page_table);
  48. current_mmu_table = aspace->page_table;
  49. write_csr(satp, (((size_t)SATP_MODE) << SATP_MODE_OFFSET) |
  50. ((rt_ubase_t)page_table >> PAGE_OFFSET_BIT));
  51. rt_hw_tlb_invalidate_all_local();
  52. }
  53. void rt_hw_asid_init(void)
  54. {
  55. }
  56. #endif /* ARCH_USING_ASID */
  57. void *rt_hw_mmu_tbl_get()
  58. {
  59. return current_mmu_table;
  60. }
  61. static int _map_one_page(struct rt_aspace *aspace, void *va, void *pa,
  62. size_t attr)
  63. {
  64. rt_ubase_t l1_off, l2_off, l3_off;
  65. rt_ubase_t *mmu_l1, *mmu_l2, *mmu_l3;
  66. l1_off = GET_L1((size_t)va);
  67. l2_off = GET_L2((size_t)va);
  68. l3_off = GET_L3((size_t)va);
  69. mmu_l1 = ((rt_ubase_t *)aspace->page_table) + l1_off;
  70. if (PTE_USED(*mmu_l1))
  71. {
  72. mmu_l2 = (rt_ubase_t *)PPN_TO_VPN(GET_PADDR(*mmu_l1), PV_OFFSET);
  73. }
  74. else
  75. {
  76. mmu_l2 = (rt_ubase_t *)rt_pages_alloc(0);
  77. if (mmu_l2)
  78. {
  79. rt_memset(mmu_l2, 0, PAGE_SIZE);
  80. rt_hw_cpu_dcache_clean(mmu_l2, PAGE_SIZE);
  81. *mmu_l1 = COMBINEPTE((rt_ubase_t)VPN_TO_PPN(mmu_l2, PV_OFFSET),
  82. PAGE_DEFAULT_ATTR_NEXT);
  83. rt_hw_cpu_dcache_clean(mmu_l1, sizeof(*mmu_l1));
  84. }
  85. else
  86. {
  87. return -1;
  88. }
  89. }
  90. if (PTE_USED(*(mmu_l2 + l2_off)))
  91. {
  92. RT_ASSERT(!PAGE_IS_LEAF(*(mmu_l2 + l2_off)));
  93. mmu_l3 =
  94. (rt_ubase_t *)PPN_TO_VPN(GET_PADDR(*(mmu_l2 + l2_off)), PV_OFFSET);
  95. }
  96. else
  97. {
  98. mmu_l3 = (rt_ubase_t *)rt_pages_alloc(0);
  99. if (mmu_l3)
  100. {
  101. rt_memset(mmu_l3, 0, PAGE_SIZE);
  102. rt_hw_cpu_dcache_clean(mmu_l3, PAGE_SIZE);
  103. *(mmu_l2 + l2_off) =
  104. COMBINEPTE((rt_ubase_t)VPN_TO_PPN(mmu_l3, PV_OFFSET),
  105. PAGE_DEFAULT_ATTR_NEXT);
  106. rt_hw_cpu_dcache_clean(mmu_l2, sizeof(*mmu_l2));
  107. // declares a reference to parent page table
  108. rt_page_ref_inc((void *)mmu_l2, 0);
  109. }
  110. else
  111. {
  112. return -1;
  113. }
  114. }
  115. RT_ASSERT(!PTE_USED(*(mmu_l3 + l3_off)));
  116. // declares a reference to parent page table
  117. rt_page_ref_inc((void *)mmu_l3, 0);
  118. *(mmu_l3 + l3_off) = COMBINEPTE((rt_ubase_t)pa, attr);
  119. rt_hw_cpu_dcache_clean(mmu_l3 + l3_off, sizeof(*(mmu_l3 + l3_off)));
  120. return 0;
  121. }
  122. /** rt_hw_mmu_map will never override existed page table entry */
  123. void *rt_hw_mmu_map(struct rt_aspace *aspace, void *v_addr, void *p_addr,
  124. size_t size, size_t attr)
  125. {
  126. int ret = -1;
  127. void *unmap_va = v_addr;
  128. size_t npages = size >> ARCH_PAGE_SHIFT;
  129. // TODO trying with HUGEPAGE here
  130. while (npages--)
  131. {
  132. MM_PGTBL_LOCK(aspace);
  133. ret = _map_one_page(aspace, v_addr, p_addr, attr);
  134. MM_PGTBL_UNLOCK(aspace);
  135. if (ret != 0)
  136. {
  137. /* error, undo map */
  138. while (unmap_va != v_addr)
  139. {
  140. MM_PGTBL_LOCK(aspace);
  141. _unmap_area(aspace, unmap_va, ARCH_PAGE_SIZE);
  142. MM_PGTBL_UNLOCK(aspace);
  143. unmap_va += ARCH_PAGE_SIZE;
  144. }
  145. break;
  146. }
  147. v_addr += ARCH_PAGE_SIZE;
  148. p_addr += ARCH_PAGE_SIZE;
  149. }
  150. if (ret == 0)
  151. {
  152. return unmap_va;
  153. }
  154. return NULL;
  155. }
  156. static void _unmap_pte(rt_ubase_t *pentry, rt_ubase_t *lvl_entry[], int level)
  157. {
  158. int loop_flag = 1;
  159. while (loop_flag)
  160. {
  161. loop_flag = 0;
  162. *pentry = 0;
  163. rt_hw_cpu_dcache_clean(pentry, sizeof(*pentry));
  164. // we don't handle level 0, which is maintained by caller
  165. if (level > 0)
  166. {
  167. void *page = (void *)((rt_ubase_t)pentry & ~ARCH_PAGE_MASK);
  168. // decrease reference from child page to parent
  169. rt_pages_free(page, 0);
  170. int free = rt_page_ref_get(page, 0);
  171. if (free == 1)
  172. {
  173. rt_pages_free(page, 0);
  174. pentry = lvl_entry[--level];
  175. loop_flag = 1;
  176. }
  177. }
  178. }
  179. }
  180. static size_t _unmap_area(struct rt_aspace *aspace, void *v_addr, size_t size)
  181. {
  182. rt_ubase_t loop_va = __UMASKVALUE((rt_ubase_t)v_addr, PAGE_OFFSET_MASK);
  183. size_t unmapped = 0;
  184. int i = 0;
  185. rt_ubase_t lvl_off[3];
  186. rt_ubase_t *lvl_entry[3];
  187. lvl_off[0] = (rt_ubase_t)GET_L1(loop_va);
  188. lvl_off[1] = (rt_ubase_t)GET_L2(loop_va);
  189. lvl_off[2] = (rt_ubase_t)GET_L3(loop_va);
  190. unmapped = 1 << (ARCH_PAGE_SHIFT + ARCH_INDEX_WIDTH * 2ul);
  191. rt_ubase_t *pentry;
  192. lvl_entry[i] = ((rt_ubase_t *)aspace->page_table + lvl_off[i]);
  193. pentry = lvl_entry[i];
  194. // find leaf page table entry
  195. while (PTE_USED(*pentry) && !PAGE_IS_LEAF(*pentry))
  196. {
  197. i += 1;
  198. lvl_entry[i] = ((rt_ubase_t *)PPN_TO_VPN(GET_PADDR(*pentry), PV_OFFSET) +
  199. lvl_off[i]);
  200. pentry = lvl_entry[i];
  201. unmapped >>= ARCH_INDEX_WIDTH;
  202. }
  203. // clear PTE & setup its
  204. if (PTE_USED(*pentry))
  205. {
  206. _unmap_pte(pentry, lvl_entry, i);
  207. }
  208. return unmapped;
  209. }
  210. /** unmap is different from map that it can handle multiple pages */
  211. void rt_hw_mmu_unmap(struct rt_aspace *aspace, void *v_addr, size_t size)
  212. {
  213. // caller guarantee that v_addr & size are page aligned
  214. if (!aspace->page_table)
  215. {
  216. return;
  217. }
  218. size_t unmapped = 0;
  219. while (size > 0)
  220. {
  221. MM_PGTBL_LOCK(aspace);
  222. unmapped = _unmap_area(aspace, v_addr, size);
  223. MM_PGTBL_UNLOCK(aspace);
  224. // when unmapped == 0, region not exist in pgtbl
  225. if (!unmapped || unmapped > size) break;
  226. size -= unmapped;
  227. v_addr += unmapped;
  228. }
  229. }
  230. #ifdef RT_USING_SMART
  231. static inline void _init_region(void *vaddr, size_t size)
  232. {
  233. rt_ioremap_start = vaddr;
  234. rt_ioremap_size = size;
  235. rt_mpr_start = rt_ioremap_start - rt_mpr_size;
  236. LOG_D("rt_ioremap_start: %p, rt_mpr_start: %p", rt_ioremap_start,
  237. rt_mpr_start);
  238. }
  239. #else
  240. static inline void _init_region(void *vaddr, size_t size)
  241. {
  242. rt_mpr_start = vaddr - rt_mpr_size;
  243. }
  244. #endif
  245. #if defined(RT_USING_SMART) && defined(ARCH_REMAP_KERNEL)
  246. #define KERN_SPACE_START ((void *)KERNEL_VADDR_START)
  247. #define KERN_SPACE_SIZE (0xfffffffffffff000UL - KERNEL_VADDR_START + 0x1000)
  248. #else
  249. #define KERN_SPACE_START ((void *)0x1000)
  250. #define KERN_SPACE_SIZE ((size_t)USER_VADDR_START - 0x1000)
  251. #endif
  252. int rt_hw_mmu_map_init(rt_aspace_t aspace, void *v_address, rt_ubase_t size,
  253. rt_ubase_t *vtable, rt_ubase_t pv_off)
  254. {
  255. size_t l1_off, va_s, va_e;
  256. rt_base_t level;
  257. if ((!aspace) || (!vtable))
  258. {
  259. return -1;
  260. }
  261. va_s = (rt_ubase_t)v_address;
  262. va_e = ((rt_ubase_t)v_address) + size - 1;
  263. if (va_e < va_s)
  264. {
  265. return -1;
  266. }
  267. // convert address to PPN2 index
  268. va_s = GET_L1(va_s);
  269. va_e = GET_L1(va_e);
  270. if (va_s == 0)
  271. {
  272. return -1;
  273. }
  274. // vtable initialization check
  275. for (l1_off = va_s; l1_off <= va_e; l1_off++)
  276. {
  277. size_t v = vtable[l1_off];
  278. if (v)
  279. {
  280. return -1;
  281. }
  282. }
  283. rt_aspace_init(&rt_kernel_space, KERN_SPACE_START, KERN_SPACE_SIZE, vtable);
  284. _init_region(v_address, size);
  285. return 0;
  286. }
  287. const static int max_level =
  288. (ARCH_VADDR_WIDTH - ARCH_PAGE_SHIFT) / ARCH_INDEX_WIDTH;
  289. static inline uintptr_t _get_level_size(int level)
  290. {
  291. return 1ul << (ARCH_PAGE_SHIFT + (max_level - level) * ARCH_INDEX_WIDTH);
  292. }
  293. static rt_ubase_t *_query(struct rt_aspace *aspace, void *vaddr, int *level)
  294. {
  295. rt_ubase_t l1_off, l2_off, l3_off;
  296. rt_ubase_t *mmu_l1, *mmu_l2, *mmu_l3;
  297. rt_ubase_t pa;
  298. l1_off = GET_L1((rt_uintptr_t)vaddr);
  299. l2_off = GET_L2((rt_uintptr_t)vaddr);
  300. l3_off = GET_L3((rt_uintptr_t)vaddr);
  301. if (!aspace)
  302. {
  303. LOG_W("%s: no aspace", __func__);
  304. return RT_NULL;
  305. }
  306. mmu_l1 = ((rt_ubase_t *)aspace->page_table) + l1_off;
  307. if (PTE_USED(*mmu_l1))
  308. {
  309. if (*mmu_l1 & PTE_XWR_MASK)
  310. {
  311. *level = 1;
  312. return mmu_l1;
  313. }
  314. mmu_l2 = (rt_ubase_t *)PPN_TO_VPN(GET_PADDR(*mmu_l1), PV_OFFSET);
  315. if (PTE_USED(*(mmu_l2 + l2_off)))
  316. {
  317. if (*(mmu_l2 + l2_off) & PTE_XWR_MASK)
  318. {
  319. *level = 2;
  320. return mmu_l2 + l2_off;
  321. }
  322. mmu_l3 = (rt_ubase_t *)PPN_TO_VPN(GET_PADDR(*(mmu_l2 + l2_off)),
  323. PV_OFFSET);
  324. if (PTE_USED(*(mmu_l3 + l3_off)))
  325. {
  326. *level = 3;
  327. return mmu_l3 + l3_off;
  328. }
  329. }
  330. }
  331. return RT_NULL;
  332. }
  333. void *rt_hw_mmu_v2p(struct rt_aspace *aspace, void *vaddr)
  334. {
  335. int level;
  336. rt_ubase_t *pte = _query(aspace, vaddr, &level);
  337. uintptr_t paddr;
  338. if (pte)
  339. {
  340. paddr = GET_PADDR(*pte);
  341. paddr |= ((intptr_t)vaddr & (_get_level_size(level) - 1));
  342. }
  343. else
  344. {
  345. LOG_D("%s: failed at %p", __func__, vaddr);
  346. paddr = (uintptr_t)ARCH_MAP_FAILED;
  347. }
  348. return (void *)paddr;
  349. }
  350. static int _noncache(rt_base_t *pte)
  351. {
  352. return 0;
  353. }
  354. static int _cache(rt_base_t *pte)
  355. {
  356. return 0;
  357. }
  358. static int (*control_handler[MMU_CNTL_DUMMY_END])(rt_base_t *pte) = {
  359. [MMU_CNTL_CACHE] = _cache,
  360. [MMU_CNTL_NONCACHE] = _noncache,
  361. };
  362. int rt_hw_mmu_control(struct rt_aspace *aspace, void *vaddr, size_t size,
  363. enum rt_mmu_cntl cmd)
  364. {
  365. int level;
  366. int err = -RT_EINVAL;
  367. void *vend = vaddr + size;
  368. int (*handler)(rt_base_t *pte);
  369. if (cmd >= 0 && cmd < MMU_CNTL_DUMMY_END)
  370. {
  371. handler = control_handler[cmd];
  372. while (vaddr < vend)
  373. {
  374. rt_base_t *pte = _query(aspace, vaddr, &level);
  375. void *range_end = vaddr + _get_level_size(level);
  376. RT_ASSERT(range_end <= vend);
  377. if (pte)
  378. {
  379. err = handler(pte);
  380. RT_ASSERT(err == RT_EOK);
  381. }
  382. vaddr = range_end;
  383. }
  384. }
  385. else
  386. {
  387. err = -RT_ENOSYS;
  388. }
  389. return err;
  390. }
  391. /**
  392. * @brief setup Page Table for kernel space. It's a fixed map
  393. * and all mappings cannot be changed after initialization.
  394. *
  395. * Memory region in struct mem_desc must be page aligned,
  396. * otherwise is a failure and no report will be
  397. * returned.
  398. *
  399. * @param aspace
  400. * @param mdesc
  401. * @param desc_nr
  402. */
  403. void rt_hw_mmu_setup(rt_aspace_t aspace, struct mem_desc *mdesc, int desc_nr)
  404. {
  405. void *err;
  406. for (size_t i = 0; i < desc_nr; i++)
  407. {
  408. size_t attr;
  409. switch (mdesc->attr)
  410. {
  411. case NORMAL_MEM:
  412. attr = MMU_MAP_K_RWCB;
  413. break;
  414. case NORMAL_NOCACHE_MEM:
  415. attr = MMU_MAP_K_RWCB;
  416. break;
  417. case DEVICE_MEM:
  418. attr = MMU_MAP_K_DEVICE;
  419. break;
  420. default:
  421. attr = MMU_MAP_K_DEVICE;
  422. }
  423. struct rt_mm_va_hint hint = {
  424. .flags = MMF_MAP_FIXED,
  425. .limit_start = aspace->start,
  426. .limit_range_size = aspace->size,
  427. .map_size = mdesc->vaddr_end - mdesc->vaddr_start + 1,
  428. .prefer = (void *)mdesc->vaddr_start};
  429. if (mdesc->paddr_start == (rt_uintptr_t)ARCH_MAP_FAILED)
  430. mdesc->paddr_start = mdesc->vaddr_start + PV_OFFSET;
  431. rt_aspace_map_phy_static(aspace, &mdesc->varea, &hint, attr,
  432. mdesc->paddr_start >> MM_PAGE_SHIFT, &err);
  433. mdesc++;
  434. }
  435. rt_hw_asid_init();
  436. rt_hw_aspace_switch(&rt_kernel_space);
  437. rt_page_cleanup();
  438. }
  439. #define SATP_BASE ((rt_ubase_t)SATP_MODE << SATP_MODE_OFFSET)
  440. void rt_hw_mem_setup_early(void)
  441. {
  442. rt_ubase_t pv_off;
  443. rt_ubase_t ps = 0x0;
  444. rt_ubase_t vs = 0x0;
  445. rt_ubase_t *early_pgtbl = (rt_ubase_t *)(((size_t)&__bss_end + 4095) & ~0xfff);
  446. /* calculate pv_offset */
  447. void *symb_pc;
  448. void *symb_linker;
  449. __asm__ volatile("la %0, _start\n" : "=r"(symb_pc));
  450. __asm__ volatile("la %0, _start_link_addr\n" : "=r"(symb_linker));
  451. symb_linker = *(void **)symb_linker;
  452. pv_off = symb_pc - symb_linker;
  453. rt_kmem_pvoff_set(pv_off);
  454. if (pv_off)
  455. {
  456. if (pv_off & (1ul << (ARCH_INDEX_WIDTH * 2 + ARCH_PAGE_SHIFT)))
  457. {
  458. LOG_E("%s: not aligned virtual address. pv_offset %p", __func__,
  459. pv_off);
  460. RT_ASSERT(0);
  461. }
  462. /**
  463. * identical mapping,
  464. * PC are still at lower region before relocating to high memory
  465. */
  466. for (size_t i = 0; i < __SIZE(PPN0_BIT); i++)
  467. {
  468. early_pgtbl[i] = COMBINEPTE(ps, MMU_MAP_EARLY);
  469. ps += L1_PAGE_SIZE;
  470. }
  471. /* relocate text region */
  472. __asm__ volatile("la %0, _start\n" : "=r"(ps));
  473. ps &= ~(L1_PAGE_SIZE - 1);
  474. vs = ps - pv_off;
  475. /* relocate region */
  476. rt_ubase_t vs_idx = GET_L1(vs);
  477. rt_ubase_t ve_idx = GET_L1(vs + 0x80000000);
  478. for (size_t i = vs_idx; i < ve_idx; i++)
  479. {
  480. early_pgtbl[i] = COMBINEPTE(ps, MMU_MAP_EARLY);
  481. ps += L1_PAGE_SIZE;
  482. }
  483. /* apply new mapping */
  484. asm volatile("sfence.vma x0, x0");
  485. write_csr(satp, SATP_BASE | ((size_t)early_pgtbl >> PAGE_OFFSET_BIT));
  486. asm volatile("sfence.vma x0, x0");
  487. }
  488. /* return to lower text section */
  489. }
  490. void *rt_hw_mmu_pgtbl_create(void)
  491. {
  492. rt_ubase_t *mmu_table;
  493. mmu_table = (rt_ubase_t *)rt_pages_alloc_ext(0, PAGE_ANY_AVAILABLE);
  494. if (!mmu_table)
  495. {
  496. return RT_NULL;
  497. }
  498. rt_memcpy(mmu_table, rt_kernel_space.page_table, ARCH_PAGE_SIZE);
  499. rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, mmu_table, ARCH_PAGE_SIZE);
  500. return mmu_table;
  501. }
  502. void rt_hw_mmu_pgtbl_delete(void *pgtbl)
  503. {
  504. rt_pages_free(pgtbl, 0);
  505. }