1
0

sensor_cmd.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499
  1. /*
  2. * Copyright (c) 2006-2018, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2019-01-31 flybreak first version
  9. * 2019-07-16 WillianChan Increase the output of sensor information
  10. * 2020-02-22 luhuadong Add vendor info and sensor types for cmd
  11. */
  12. #include "sensor.h"
  13. #define DBG_TAG "sensor.cmd"
  14. #define DBG_LVL DBG_INFO
  15. #include <rtdbg.h>
  16. #include <stdlib.h>
  17. #include <string.h>
  18. static rt_sem_t sensor_rx_sem = RT_NULL;
  19. static void sensor_show_data(rt_size_t num, rt_sensor_t sensor, struct rt_sensor_data *sensor_data)
  20. {
  21. switch (sensor->info.type)
  22. {
  23. case RT_SENSOR_CLASS_ACCE:
  24. LOG_I("num:%3d, x:%5d, y:%5d, z:%5d mg, timestamp:%5d", num, sensor_data->data.acce.x, sensor_data->data.acce.y, sensor_data->data.acce.z, sensor_data->timestamp);
  25. break;
  26. case RT_SENSOR_CLASS_GYRO:
  27. LOG_I("num:%3d, x:%8d, y:%8d, z:%8d dps, timestamp:%5d", num, sensor_data->data.gyro.x / 1000, sensor_data->data.gyro.y / 1000, sensor_data->data.gyro.z / 1000, sensor_data->timestamp);
  28. break;
  29. case RT_SENSOR_CLASS_MAG:
  30. LOG_I("num:%3d, x:%5d, y:%5d, z:%5d mGauss, timestamp:%5d", num, sensor_data->data.mag.x, sensor_data->data.mag.y, sensor_data->data.mag.z, sensor_data->timestamp);
  31. break;
  32. case RT_SENSOR_CLASS_GNSS:
  33. LOG_I("num:%3d, lon:%5d, lat:%5d, timestamp:%5d", num, sensor_data->data.coord.longitude, sensor_data->data.coord.latitude, sensor_data->timestamp);
  34. break;
  35. case RT_SENSOR_CLASS_TEMP:
  36. LOG_I("num:%3d, temp:%3d.%d C, timestamp:%5d", num, sensor_data->data.temp / 10, (rt_uint32_t)sensor_data->data.temp % 10, sensor_data->timestamp);
  37. break;
  38. case RT_SENSOR_CLASS_HUMI:
  39. LOG_I("num:%3d, humi:%3d.%d%%, timestamp:%5d", num, sensor_data->data.humi / 10, sensor_data->data.humi % 10, sensor_data->timestamp);
  40. break;
  41. case RT_SENSOR_CLASS_BARO:
  42. LOG_I("num:%3d, press:%5d pa, timestamp:%5d", num, sensor_data->data.baro, sensor_data->timestamp);
  43. break;
  44. case RT_SENSOR_CLASS_LIGHT:
  45. LOG_I("num:%3d, light:%5d lux, timestamp:%5d", num, sensor_data->data.light, sensor_data->timestamp);
  46. break;
  47. case RT_SENSOR_CLASS_PROXIMITY:
  48. case RT_SENSOR_CLASS_TOF:
  49. LOG_I("num:%3d, distance:%5d, timestamp:%5d", num, sensor_data->data.proximity, sensor_data->timestamp);
  50. break;
  51. case RT_SENSOR_CLASS_HR:
  52. LOG_I("num:%3d, heart rate:%5d bpm, timestamp:%5d", num, sensor_data->data.hr, sensor_data->timestamp);
  53. break;
  54. case RT_SENSOR_CLASS_TVOC:
  55. LOG_I("num:%3d, tvoc:%5d ppb, timestamp:%5d", num, sensor_data->data.tvoc, sensor_data->timestamp);
  56. break;
  57. case RT_SENSOR_CLASS_NOISE:
  58. LOG_I("num:%3d, noise:%5d, timestamp:%5d", num, sensor_data->data.noise, sensor_data->timestamp);
  59. break;
  60. case RT_SENSOR_CLASS_STEP:
  61. LOG_I("num:%3d, step:%5d, timestamp:%5d", num, sensor_data->data.step, sensor_data->timestamp);
  62. break;
  63. case RT_SENSOR_CLASS_FORCE:
  64. LOG_I("num:%3d, force:%5d, timestamp:%5d", num, sensor_data->data.force, sensor_data->timestamp);
  65. break;
  66. case RT_SENSOR_CLASS_DUST:
  67. LOG_I("num:%3d, dust:%5d ug/m3, timestamp:%5d", num, sensor_data->data.dust, sensor_data->timestamp);
  68. break;
  69. case RT_SENSOR_CLASS_ECO2:
  70. LOG_I("num:%3d, eco2:%5d ppm, timestamp:%5d", num, sensor_data->data.eco2, sensor_data->timestamp);
  71. break;
  72. default:
  73. break;
  74. }
  75. }
  76. static rt_err_t rx_callback(rt_device_t dev, rt_size_t size)
  77. {
  78. rt_sem_release(sensor_rx_sem);
  79. return 0;
  80. }
  81. static void sensor_fifo_rx_entry(void *parameter)
  82. {
  83. rt_device_t dev = (rt_device_t)parameter;
  84. rt_sensor_t sensor = (rt_sensor_t)parameter;
  85. struct rt_sensor_data *data = RT_NULL;
  86. struct rt_sensor_info info;
  87. rt_size_t res, i;
  88. rt_device_control(dev, RT_SENSOR_CTRL_GET_INFO, &info);
  89. data = (struct rt_sensor_data *)rt_malloc(sizeof(struct rt_sensor_data) * info.fifo_max);
  90. if (data == RT_NULL)
  91. {
  92. LOG_E("Memory allocation failed!");
  93. }
  94. while (1)
  95. {
  96. rt_sem_take(sensor_rx_sem, RT_WAITING_FOREVER);
  97. res = rt_device_read(dev, 0, data, info.fifo_max);
  98. for (i = 0; i < res; i++)
  99. {
  100. sensor_show_data(i, sensor, &data[i]);
  101. }
  102. }
  103. }
  104. static void sensor_fifo(int argc, char **argv)
  105. {
  106. static rt_thread_t tid1 = RT_NULL;
  107. rt_device_t dev = RT_NULL;
  108. rt_sensor_t sensor;
  109. dev = rt_device_find(argv[1]);
  110. if (dev == RT_NULL)
  111. {
  112. LOG_E("Can't find device:%s", argv[1]);
  113. return;
  114. }
  115. sensor = (rt_sensor_t)dev;
  116. if (rt_device_open(dev, RT_DEVICE_FLAG_FIFO_RX) != RT_EOK)
  117. {
  118. LOG_E("open device failed!");
  119. return;
  120. }
  121. if (sensor_rx_sem == RT_NULL)
  122. {
  123. sensor_rx_sem = rt_sem_create("sen_rx_sem", 0, RT_IPC_FLAG_FIFO);
  124. }
  125. else
  126. {
  127. LOG_E("The thread is running, please reboot and try again");
  128. return;
  129. }
  130. tid1 = rt_thread_create("sen_rx_thread",
  131. sensor_fifo_rx_entry, sensor,
  132. 1024,
  133. 15, 5);
  134. if (tid1 != RT_NULL)
  135. rt_thread_startup(tid1);
  136. rt_device_set_rx_indicate(dev, rx_callback);
  137. rt_device_control(dev, RT_SENSOR_CTRL_SET_ODR, (void *)20);
  138. }
  139. #ifdef FINSH_USING_MSH
  140. MSH_CMD_EXPORT(sensor_fifo, Sensor fifo mode test function);
  141. #endif
  142. static void sensor_irq_rx_entry(void *parameter)
  143. {
  144. rt_device_t dev = (rt_device_t)parameter;
  145. rt_sensor_t sensor = (rt_sensor_t)parameter;
  146. struct rt_sensor_data data;
  147. rt_size_t res, i = 0;
  148. while (1)
  149. {
  150. rt_sem_take(sensor_rx_sem, RT_WAITING_FOREVER);
  151. res = rt_device_read(dev, 0, &data, 1);
  152. if (res == 1)
  153. {
  154. sensor_show_data(i++, sensor, &data);
  155. }
  156. }
  157. }
  158. static void sensor_int(int argc, char **argv)
  159. {
  160. static rt_thread_t tid1 = RT_NULL;
  161. rt_device_t dev = RT_NULL;
  162. rt_sensor_t sensor;
  163. dev = rt_device_find(argv[1]);
  164. if (dev == RT_NULL)
  165. {
  166. LOG_E("Can't find device:%s", argv[1]);
  167. return;
  168. }
  169. sensor = (rt_sensor_t)dev;
  170. if (sensor_rx_sem == RT_NULL)
  171. {
  172. sensor_rx_sem = rt_sem_create("sen_rx_sem", 0, RT_IPC_FLAG_FIFO);
  173. }
  174. else
  175. {
  176. LOG_E("The thread is running, please reboot and try again");
  177. return;
  178. }
  179. tid1 = rt_thread_create("sen_rx_thread",
  180. sensor_irq_rx_entry, sensor,
  181. 1024,
  182. 15, 5);
  183. if (tid1 != RT_NULL)
  184. rt_thread_startup(tid1);
  185. rt_device_set_rx_indicate(dev, rx_callback);
  186. if (rt_device_open(dev, RT_DEVICE_FLAG_INT_RX) != RT_EOK)
  187. {
  188. LOG_E("open device failed!");
  189. return;
  190. }
  191. rt_device_control(dev, RT_SENSOR_CTRL_SET_ODR, (void *)20);
  192. }
  193. #ifdef FINSH_USING_MSH
  194. MSH_CMD_EXPORT(sensor_int, Sensor interrupt mode test function);
  195. #endif
  196. static void sensor_polling(int argc, char **argv)
  197. {
  198. uint16_t num = 10;
  199. rt_device_t dev = RT_NULL;
  200. rt_sensor_t sensor;
  201. struct rt_sensor_data data;
  202. rt_size_t res, i;
  203. rt_int32_t delay;
  204. dev = rt_device_find(argv[1]);
  205. if (dev == RT_NULL)
  206. {
  207. LOG_E("Can't find device:%s", argv[1]);
  208. return;
  209. }
  210. if (argc > 2)
  211. num = atoi(argv[2]);
  212. sensor = (rt_sensor_t)dev;
  213. delay = sensor->info.period_min > 100 ? sensor->info.period_min : 100;
  214. if (rt_device_open(dev, RT_DEVICE_FLAG_RDWR) != RT_EOK)
  215. {
  216. LOG_E("open device failed!");
  217. return;
  218. }
  219. rt_device_control(dev, RT_SENSOR_CTRL_SET_ODR, (void *)100);
  220. for (i = 0; i < num; i++)
  221. {
  222. res = rt_device_read(dev, 0, &data, 1);
  223. if (res != 1)
  224. {
  225. LOG_E("read data failed!size is %d", res);
  226. }
  227. else
  228. {
  229. sensor_show_data(i, sensor, &data);
  230. }
  231. rt_thread_mdelay(delay);
  232. }
  233. rt_device_close(dev);
  234. }
  235. #ifdef FINSH_USING_MSH
  236. MSH_CMD_EXPORT(sensor_polling, Sensor polling mode test function);
  237. #endif
  238. static void sensor(int argc, char **argv)
  239. {
  240. static rt_device_t dev = RT_NULL;
  241. struct rt_sensor_data data;
  242. rt_sensor_t sensor;
  243. rt_size_t res, i;
  244. rt_int32_t delay;
  245. /* If the number of arguments less than 2 */
  246. if (argc < 2)
  247. {
  248. rt_kprintf("\n");
  249. rt_kprintf("sensor [OPTION] [PARAM]\n");
  250. rt_kprintf(" probe <dev_name> Probe sensor by given name\n");
  251. rt_kprintf(" info Get sensor info\n");
  252. rt_kprintf(" sr <var> Set range to var\n");
  253. rt_kprintf(" sm <var> Set work mode to var\n");
  254. rt_kprintf(" sp <var> Set power mode to var\n");
  255. rt_kprintf(" sodr <var> Set output date rate to var\n");
  256. rt_kprintf(" read [num] Read [num] times sensor\n");
  257. rt_kprintf(" num default 5\n");
  258. return ;
  259. }
  260. else if (!strcmp(argv[1], "info"))
  261. {
  262. struct rt_sensor_info info;
  263. if (dev == RT_NULL)
  264. {
  265. LOG_W("Please probe sensor device first!");
  266. return ;
  267. }
  268. rt_device_control(dev, RT_SENSOR_CTRL_GET_INFO, &info);
  269. switch (info.vendor)
  270. {
  271. case RT_SENSOR_VENDOR_UNKNOWN:
  272. rt_kprintf("vendor :unknown vendor\n");
  273. break;
  274. case RT_SENSOR_VENDOR_STM:
  275. rt_kprintf("vendor :STMicroelectronics\n");
  276. break;
  277. case RT_SENSOR_VENDOR_BOSCH:
  278. rt_kprintf("vendor :Bosch\n");
  279. break;
  280. case RT_SENSOR_VENDOR_INVENSENSE:
  281. rt_kprintf("vendor :Invensense\n");
  282. break;
  283. case RT_SENSOR_VENDOR_SEMTECH:
  284. rt_kprintf("vendor :Semtech\n");
  285. break;
  286. case RT_SENSOR_VENDOR_GOERTEK:
  287. rt_kprintf("vendor :Goertek\n");
  288. break;
  289. case RT_SENSOR_VENDOR_MIRAMEMS:
  290. rt_kprintf("vendor :MiraMEMS\n");
  291. break;
  292. case RT_SENSOR_VENDOR_DALLAS:
  293. rt_kprintf("vendor :Dallas\n");
  294. break;
  295. case RT_SENSOR_VENDOR_ASAIR:
  296. rt_kprintf("vendor :Asair\n");
  297. break;
  298. case RT_SENSOR_VENDOR_SHARP:
  299. rt_kprintf("vendor :Sharp\n");
  300. break;
  301. case RT_SENSOR_VENDOR_SENSIRION:
  302. rt_kprintf("vendor :Sensirion\n");
  303. break;
  304. case RT_SENSOR_VENDOR_TI:
  305. rt_kprintf("vendor :Texas Instruments\n");
  306. break;
  307. case RT_SENSOR_VENDOR_PLANTOWER:
  308. rt_kprintf("vendor :Plantower\n");
  309. break;
  310. case RT_SENSOR_VENDOR_AMS:
  311. rt_kprintf("vendor :AMS\n");
  312. break;
  313. case RT_SENSOR_VENDOR_MAXIM:
  314. rt_kprintf("vendor :Maxim Integrated\n");
  315. break;
  316. }
  317. rt_kprintf("model :%s\n", info.model);
  318. switch (info.unit)
  319. {
  320. case RT_SENSOR_UNIT_NONE:
  321. rt_kprintf("unit :none\n");
  322. break;
  323. case RT_SENSOR_UNIT_MG:
  324. rt_kprintf("unit :mG\n");
  325. break;
  326. case RT_SENSOR_UNIT_MDPS:
  327. rt_kprintf("unit :mdps\n");
  328. break;
  329. case RT_SENSOR_UNIT_MGAUSS:
  330. rt_kprintf("unit :mGauss\n");
  331. break;
  332. case RT_SENSOR_UNIT_LUX:
  333. rt_kprintf("unit :lux\n");
  334. break;
  335. case RT_SENSOR_UNIT_CM:
  336. rt_kprintf("unit :cm\n");
  337. break;
  338. case RT_SENSOR_UNIT_PA:
  339. rt_kprintf("unit :pa\n");
  340. break;
  341. case RT_SENSOR_UNIT_PERMILLAGE:
  342. rt_kprintf("unit :permillage\n");
  343. break;
  344. case RT_SENSOR_UNIT_DCELSIUS:
  345. rt_kprintf("unit :Celsius\n");
  346. break;
  347. case RT_SENSOR_UNIT_HZ:
  348. rt_kprintf("unit :HZ\n");
  349. break;
  350. case RT_SENSOR_UNIT_ONE:
  351. rt_kprintf("unit :1\n");
  352. break;
  353. case RT_SENSOR_UNIT_BPM:
  354. rt_kprintf("unit :bpm\n");
  355. break;
  356. case RT_SENSOR_UNIT_MM:
  357. rt_kprintf("unit :mm\n");
  358. break;
  359. case RT_SENSOR_UNIT_MN:
  360. rt_kprintf("unit :mN\n");
  361. break;
  362. case RT_SENSOR_UNIT_PPM:
  363. rt_kprintf("unit :ppm\n");
  364. break;
  365. case RT_SENSOR_UNIT_PPB:
  366. rt_kprintf("unit :ppb\n");
  367. break;
  368. }
  369. rt_kprintf("range_max :%d\n", info.range_max);
  370. rt_kprintf("range_min :%d\n", info.range_min);
  371. rt_kprintf("period_min:%dms\n", info.period_min);
  372. rt_kprintf("fifo_max :%d\n", info.fifo_max);
  373. }
  374. else if (!strcmp(argv[1], "read"))
  375. {
  376. uint16_t num = 5;
  377. if (dev == RT_NULL)
  378. {
  379. LOG_W("Please probe sensor device first!");
  380. return ;
  381. }
  382. if (argc == 3)
  383. {
  384. num = atoi(argv[2]);
  385. }
  386. sensor = (rt_sensor_t)dev;
  387. delay = sensor->info.period_min > 100 ? sensor->info.period_min : 100;
  388. for (i = 0; i < num; i++)
  389. {
  390. res = rt_device_read(dev, 0, &data, 1);
  391. if (res != 1)
  392. {
  393. LOG_E("read data failed!size is %d", res);
  394. }
  395. else
  396. {
  397. sensor_show_data(i, sensor, &data);
  398. }
  399. rt_thread_mdelay(delay);
  400. }
  401. }
  402. else if (argc == 3)
  403. {
  404. if (!strcmp(argv[1], "probe"))
  405. {
  406. rt_uint8_t reg = 0xFF;
  407. if (dev)
  408. {
  409. rt_device_close(dev);
  410. }
  411. dev = rt_device_find(argv[2]);
  412. if (dev == RT_NULL)
  413. {
  414. LOG_E("Can't find device:%s", argv[1]);
  415. return;
  416. }
  417. if (rt_device_open(dev, RT_DEVICE_FLAG_RDWR) != RT_EOK)
  418. {
  419. LOG_E("open device failed!");
  420. return;
  421. }
  422. rt_device_control(dev, RT_SENSOR_CTRL_GET_ID, &reg);
  423. LOG_I("device id: 0x%x!", reg);
  424. }
  425. else if (dev == RT_NULL)
  426. {
  427. LOG_W("Please probe sensor first!");
  428. return ;
  429. }
  430. else if (!strcmp(argv[1], "sr"))
  431. {
  432. rt_device_control(dev, RT_SENSOR_CTRL_SET_RANGE, (void *)atoi(argv[2]));
  433. }
  434. else if (!strcmp(argv[1], "sm"))
  435. {
  436. rt_device_control(dev, RT_SENSOR_CTRL_SET_MODE, (void *)atoi(argv[2]));
  437. }
  438. else if (!strcmp(argv[1], "sp"))
  439. {
  440. rt_device_control(dev, RT_SENSOR_CTRL_SET_POWER, (void *)atoi(argv[2]));
  441. }
  442. else if (!strcmp(argv[1], "sodr"))
  443. {
  444. rt_device_control(dev, RT_SENSOR_CTRL_SET_ODR, (void *)atoi(argv[2]));
  445. }
  446. else
  447. {
  448. LOG_W("Unknown command, please enter 'sensor' get help information!");
  449. }
  450. }
  451. else
  452. {
  453. LOG_W("Unknown command, please enter 'sensor' get help information!");
  454. }
  455. }
  456. #ifdef FINSH_USING_MSH
  457. MSH_CMD_EXPORT(sensor, sensor test function);
  458. #endif