dm9000a.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797
  1. /*
  2. * Copyright (c) 2006-2018, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2009-07-01 Bernard the first version
  9. */
  10. #include <rtthread.h>
  11. #include "dm9000a.h"
  12. #include <netif/ethernetif.h>
  13. #include "lwipopts.h"
  14. #include "stm32f10x.h"
  15. #include "stm32f10x_fsmc.h"
  16. // #define DM9000_DEBUG 1
  17. #if DM9000_DEBUG
  18. #define DM9000_TRACE rt_kprintf
  19. #else
  20. #define DM9000_TRACE(...)
  21. #endif
  22. /*
  23. * DM9000 interrupt line is connected to PE4
  24. */
  25. //--------------------------------------------------------
  26. #define DM9000_PHY 0x40 /* PHY address 0x01 */
  27. #define RST_1() GPIO_SetBits(GPIOE,GPIO_Pin_5)
  28. #define RST_0() GPIO_ResetBits(GPIOE,GPIO_Pin_5)
  29. #define MAX_ADDR_LEN 6
  30. enum DM9000_PHY_mode
  31. {
  32. DM9000_10MHD = 0, DM9000_100MHD = 1,
  33. DM9000_10MFD = 4, DM9000_100MFD = 5,
  34. DM9000_AUTO = 8, DM9000_1M_HPNA = 0x10
  35. };
  36. enum DM9000_TYPE
  37. {
  38. TYPE_DM9000E,
  39. TYPE_DM9000A,
  40. TYPE_DM9000B
  41. };
  42. struct rt_dm9000_eth
  43. {
  44. /* inherit from ethernet device */
  45. struct eth_device parent;
  46. enum DM9000_TYPE type;
  47. enum DM9000_PHY_mode mode;
  48. rt_uint8_t imr_all;
  49. rt_uint8_t packet_cnt; /* packet I or II */
  50. rt_uint16_t queue_packet_len; /* queued packet (packet II) */
  51. /* interface address info. */
  52. rt_uint8_t dev_addr[MAX_ADDR_LEN]; /* hw address */
  53. };
  54. static struct rt_dm9000_eth dm9000_device;
  55. static struct rt_semaphore sem_ack, sem_lock;
  56. void rt_dm9000_isr(void);
  57. static void delay_ms(rt_uint32_t ms)
  58. {
  59. rt_uint32_t len;
  60. for (;ms > 0; ms --)
  61. for (len = 0; len < 100; len++ );
  62. }
  63. /* Read a byte from I/O port */
  64. rt_inline rt_uint8_t dm9000_io_read(rt_uint16_t reg)
  65. {
  66. DM9000_IO = reg;
  67. return (rt_uint8_t) DM9000_DATA;
  68. }
  69. /* Write a byte to I/O port */
  70. rt_inline void dm9000_io_write(rt_uint16_t reg, rt_uint16_t value)
  71. {
  72. DM9000_IO = reg;
  73. DM9000_DATA = value;
  74. }
  75. /* Read a word from phyxcer */
  76. rt_inline rt_uint16_t phy_read(rt_uint16_t reg)
  77. {
  78. rt_uint16_t val;
  79. /* Fill the phyxcer register into REG_0C */
  80. dm9000_io_write(DM9000_EPAR, DM9000_PHY | reg);
  81. dm9000_io_write(DM9000_EPCR, 0xc); /* Issue phyxcer read command */
  82. delay_ms(100); /* Wait read complete */
  83. dm9000_io_write(DM9000_EPCR, 0x0); /* Clear phyxcer read command */
  84. val = (dm9000_io_read(DM9000_EPDRH) << 8) | dm9000_io_read(DM9000_EPDRL);
  85. return val;
  86. }
  87. /* Write a word to phyxcer */
  88. rt_inline void phy_write(rt_uint16_t reg, rt_uint16_t value)
  89. {
  90. /* Fill the phyxcer register into REG_0C */
  91. dm9000_io_write(DM9000_EPAR, DM9000_PHY | reg);
  92. /* Fill the written data into REG_0D & REG_0E */
  93. dm9000_io_write(DM9000_EPDRL, (value & 0xff));
  94. dm9000_io_write(DM9000_EPDRH, ((value >> 8) & 0xff));
  95. dm9000_io_write(DM9000_EPCR, 0xa); /* Issue phyxcer write command */
  96. delay_ms(500); /* Wait write complete */
  97. dm9000_io_write(DM9000_EPCR, 0x0); /* Clear phyxcer write command */
  98. }
  99. /* Set PHY operationg mode */
  100. rt_inline void phy_mode_set(rt_uint32_t media_mode)
  101. {
  102. rt_uint16_t phy_reg4 = 0x01e1, phy_reg0 = 0x1000;
  103. if (!(media_mode & DM9000_AUTO))
  104. {
  105. switch (media_mode)
  106. {
  107. case DM9000_10MHD:
  108. phy_reg4 = 0x21;
  109. phy_reg0 = 0x0000;
  110. break;
  111. case DM9000_10MFD:
  112. phy_reg4 = 0x41;
  113. phy_reg0 = 0x1100;
  114. break;
  115. case DM9000_100MHD:
  116. phy_reg4 = 0x81;
  117. phy_reg0 = 0x2000;
  118. break;
  119. case DM9000_100MFD:
  120. phy_reg4 = 0x101;
  121. phy_reg0 = 0x3100;
  122. break;
  123. }
  124. phy_write(4, phy_reg4); /* Set PHY media mode */
  125. phy_write(0, phy_reg0); /* Tmp */
  126. }
  127. dm9000_io_write(DM9000_GPCR, 0x01); /* Let GPIO0 output */
  128. dm9000_io_write(DM9000_GPR, 0x00); /* Enable PHY */
  129. }
  130. /* interrupt service routine */
  131. void rt_dm9000_isr()
  132. {
  133. rt_uint16_t int_status;
  134. rt_uint16_t last_io;
  135. last_io = DM9000_IO;
  136. /* Disable all interrupts */
  137. dm9000_io_write(DM9000_IMR, IMR_PAR);
  138. /* Got DM9000 interrupt status */
  139. int_status = dm9000_io_read(DM9000_ISR); /* Got ISR */
  140. dm9000_io_write(DM9000_ISR, int_status); /* Clear ISR status */
  141. DM9000_TRACE("dm9000 isr: int status %04x\n", int_status);
  142. /* receive overflow */
  143. if (int_status & ISR_ROS)
  144. {
  145. rt_kprintf("overflow\n");
  146. }
  147. if (int_status & ISR_ROOS)
  148. {
  149. rt_kprintf("overflow counter overflow\n");
  150. }
  151. /* Received the coming packet */
  152. if (int_status & ISR_PRS)
  153. {
  154. /* disable receive interrupt */
  155. dm9000_device.imr_all = IMR_PAR | IMR_PTM;
  156. /* a frame has been received */
  157. eth_device_ready(&(dm9000_device.parent));
  158. }
  159. /* Transmit Interrupt check */
  160. if (int_status & ISR_PTS)
  161. {
  162. /* transmit done */
  163. int tx_status = dm9000_io_read(DM9000_NSR); /* Got TX status */
  164. if (tx_status & (NSR_TX2END | NSR_TX1END))
  165. {
  166. dm9000_device.packet_cnt --;
  167. if (dm9000_device.packet_cnt > 0)
  168. {
  169. DM9000_TRACE("dm9000 isr: tx second packet\n");
  170. /* transmit packet II */
  171. /* Set TX length to DM9000 */
  172. dm9000_io_write(DM9000_TXPLL, dm9000_device.queue_packet_len & 0xff);
  173. dm9000_io_write(DM9000_TXPLH, (dm9000_device.queue_packet_len >> 8) & 0xff);
  174. /* Issue TX polling command */
  175. dm9000_io_write(DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */
  176. }
  177. /* One packet sent complete */
  178. rt_sem_release(&sem_ack);
  179. }
  180. }
  181. /* Re-enable interrupt mask */
  182. dm9000_io_write(DM9000_IMR, dm9000_device.imr_all);
  183. DM9000_IO = last_io;
  184. }
  185. /* RT-Thread Device Interface */
  186. /* initialize the interface */
  187. static rt_err_t rt_dm9000_init(rt_device_t dev)
  188. {
  189. int i, oft, lnk;
  190. rt_uint32_t value;
  191. /* RESET device */
  192. dm9000_io_write(DM9000_NCR, NCR_RST);
  193. delay_ms(1000); /* delay 1ms */
  194. /* identfy DM9000 */
  195. value = dm9000_io_read(DM9000_VIDL);
  196. value |= dm9000_io_read(DM9000_VIDH) << 8;
  197. value |= dm9000_io_read(DM9000_PIDL) << 16;
  198. value |= dm9000_io_read(DM9000_PIDH) << 24;
  199. if (value == DM9000_ID)
  200. {
  201. rt_kprintf("dm9000 id: 0x%x\n", value);
  202. }
  203. else
  204. {
  205. return -RT_ERROR;
  206. }
  207. /* GPIO0 on pre-activate PHY */
  208. dm9000_io_write(DM9000_GPR, 0x00); /* REG_1F bit0 activate phyxcer */
  209. dm9000_io_write(DM9000_GPCR, GPCR_GEP_CNTL); /* Let GPIO0 output */
  210. dm9000_io_write(DM9000_GPR, 0x00); /* Enable PHY */
  211. /* Set PHY */
  212. phy_mode_set(dm9000_device.mode);
  213. /* Program operating register */
  214. dm9000_io_write(DM9000_NCR, 0x0); /* only intern phy supported by now */
  215. dm9000_io_write(DM9000_TCR, 0); /* TX Polling clear */
  216. dm9000_io_write(DM9000_BPTR, 0x3f); /* Less 3Kb, 200us */
  217. dm9000_io_write(DM9000_FCTR, FCTR_HWOT(3) | FCTR_LWOT(8)); /* Flow Control : High/Low Water */
  218. dm9000_io_write(DM9000_FCR, 0x0); /* SH FIXME: This looks strange! Flow Control */
  219. dm9000_io_write(DM9000_SMCR, 0); /* Special Mode */
  220. dm9000_io_write(DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END); /* clear TX status */
  221. dm9000_io_write(DM9000_ISR, 0x0f); /* Clear interrupt status */
  222. dm9000_io_write(DM9000_TCR2, 0x80); /* Switch LED to mode 1 */
  223. /* set mac address */
  224. for (i = 0, oft = 0x10; i < 6; i++, oft++)
  225. dm9000_io_write(oft, dm9000_device.dev_addr[i]);
  226. /* set multicast address */
  227. for (i = 0, oft = 0x16; i < 8; i++, oft++)
  228. dm9000_io_write(oft, 0xff);
  229. /* Activate DM9000 */
  230. dm9000_io_write(DM9000_RCR, RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN); /* RX enable */
  231. dm9000_io_write(DM9000_IMR, IMR_PAR);
  232. if (dm9000_device.mode == DM9000_AUTO)
  233. {
  234. while (!(phy_read(1) & 0x20))
  235. {
  236. /* autonegation complete bit */
  237. rt_thread_delay(10);
  238. i++;
  239. if (i == 10000)
  240. {
  241. rt_kprintf("could not establish link\n");
  242. return 0;
  243. }
  244. }
  245. }
  246. /* see what we've got */
  247. lnk = phy_read(17) >> 12;
  248. rt_kprintf("operating at ");
  249. switch (lnk)
  250. {
  251. case 1:
  252. rt_kprintf("10M half duplex ");
  253. break;
  254. case 2:
  255. rt_kprintf("10M full duplex ");
  256. break;
  257. case 4:
  258. rt_kprintf("100M half duplex ");
  259. break;
  260. case 8:
  261. rt_kprintf("100M full duplex ");
  262. break;
  263. default:
  264. rt_kprintf("unknown: %d ", lnk);
  265. break;
  266. }
  267. rt_kprintf("mode\n");
  268. dm9000_io_write(DM9000_IMR, dm9000_device.imr_all); /* Enable TX/RX interrupt mask */
  269. return RT_EOK;
  270. }
  271. static rt_err_t rt_dm9000_open(rt_device_t dev, rt_uint16_t oflag)
  272. {
  273. return RT_EOK;
  274. }
  275. static rt_err_t rt_dm9000_close(rt_device_t dev)
  276. {
  277. /* RESET devie */
  278. phy_write(0, 0x8000); /* PHY RESET */
  279. dm9000_io_write(DM9000_GPR, 0x01); /* Power-Down PHY */
  280. dm9000_io_write(DM9000_IMR, 0x80); /* Disable all interrupt */
  281. dm9000_io_write(DM9000_RCR, 0x00); /* Disable RX */
  282. return RT_EOK;
  283. }
  284. static rt_size_t rt_dm9000_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size)
  285. {
  286. rt_set_errno(-RT_ENOSYS);
  287. return 0;
  288. }
  289. static rt_size_t rt_dm9000_write (rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size)
  290. {
  291. rt_set_errno(-RT_ENOSYS);
  292. return 0;
  293. }
  294. static rt_err_t rt_dm9000_control(rt_device_t dev, int cmd, void *args)
  295. {
  296. switch (cmd)
  297. {
  298. case NIOCTL_GADDR:
  299. /* get mac address */
  300. if (args) rt_memcpy(args, dm9000_device.dev_addr, 6);
  301. else return -RT_ERROR;
  302. break;
  303. default :
  304. break;
  305. }
  306. return RT_EOK;
  307. }
  308. /* ethernet device interface */
  309. /* transmit packet. */
  310. rt_err_t rt_dm9000_tx( rt_device_t dev, struct pbuf* p)
  311. {
  312. DM9000_TRACE("dm9000 tx: %d\n", p->tot_len);
  313. /* lock DM9000 device */
  314. rt_sem_take(&sem_lock, RT_WAITING_FOREVER);
  315. /* disable dm9000a interrupt */
  316. dm9000_io_write(DM9000_IMR, IMR_PAR);
  317. /* Move data to DM9000 TX RAM */
  318. DM9000_outb(DM9000_IO_BASE, DM9000_MWCMD);
  319. {
  320. /* q traverses through linked list of pbuf's
  321. * This list MUST consist of a single packet ONLY */
  322. struct pbuf *q;
  323. rt_uint16_t pbuf_index = 0;
  324. rt_uint8_t word[2], word_index = 0;
  325. q = p;
  326. /* Write data into dm9000a, two bytes at a time
  327. * Handling pbuf's with odd number of bytes correctly
  328. * No attempt to optimize for speed has been made */
  329. while (q)
  330. {
  331. if (pbuf_index < q->len)
  332. {
  333. word[word_index++] = ((u8_t*)q->payload)[pbuf_index++];
  334. if (word_index == 2)
  335. {
  336. DM9000_outw(DM9000_DATA_BASE, (word[1] << 8) | word[0]);
  337. word_index = 0;
  338. }
  339. }
  340. else
  341. {
  342. q = q->next;
  343. pbuf_index = 0;
  344. }
  345. }
  346. /* One byte could still be unsent */
  347. if (word_index == 1)
  348. {
  349. DM9000_outw(DM9000_DATA_BASE, word[0]);
  350. }
  351. }
  352. if (dm9000_device.packet_cnt == 0)
  353. {
  354. DM9000_TRACE("dm9000 tx: first packet\n");
  355. dm9000_device.packet_cnt ++;
  356. /* Set TX length to DM9000 */
  357. dm9000_io_write(DM9000_TXPLL, p->tot_len & 0xff);
  358. dm9000_io_write(DM9000_TXPLH, (p->tot_len >> 8) & 0xff);
  359. /* Issue TX polling command */
  360. dm9000_io_write(DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */
  361. }
  362. else
  363. {
  364. DM9000_TRACE("dm9000 tx: second packet\n");
  365. dm9000_device.packet_cnt ++;
  366. dm9000_device.queue_packet_len = p->tot_len;
  367. }
  368. /* enable dm9000a interrupt */
  369. dm9000_io_write(DM9000_IMR, dm9000_device.imr_all);
  370. /* unlock DM9000 device */
  371. rt_sem_release(&sem_lock);
  372. /* wait ack */
  373. rt_sem_take(&sem_ack, RT_WAITING_FOREVER);
  374. DM9000_TRACE("dm9000 tx done\n");
  375. return RT_EOK;
  376. }
  377. /* reception packet. */
  378. struct pbuf *rt_dm9000_rx(rt_device_t dev)
  379. {
  380. struct pbuf* p;
  381. rt_uint32_t rxbyte;
  382. /* init p pointer */
  383. p = RT_NULL;
  384. /* lock DM9000 device */
  385. rt_sem_take(&sem_lock, RT_WAITING_FOREVER);
  386. /* Check packet ready or not */
  387. dm9000_io_read(DM9000_MRCMDX); /* Dummy read */
  388. rxbyte = DM9000_inb(DM9000_DATA_BASE); /* Got most updated data */
  389. if (rxbyte)
  390. {
  391. rt_uint16_t rx_status, rx_len;
  392. rt_uint16_t* data;
  393. if (rxbyte > 1)
  394. {
  395. DM9000_TRACE("dm9000 rx: rx error, stop device\n");
  396. dm9000_io_write(DM9000_RCR, 0x00); /* Stop Device */
  397. dm9000_io_write(DM9000_ISR, 0x80); /* Stop INT request */
  398. }
  399. /* A packet ready now & Get status/length */
  400. DM9000_outb(DM9000_IO_BASE, DM9000_MRCMD);
  401. rx_status = DM9000_inw(DM9000_DATA_BASE);
  402. rx_len = DM9000_inw(DM9000_DATA_BASE);
  403. DM9000_TRACE("dm9000 rx: status %04x len %d\n", rx_status, rx_len);
  404. /* allocate buffer */
  405. p = pbuf_alloc(PBUF_LINK, rx_len, PBUF_RAM);
  406. if (p != RT_NULL)
  407. {
  408. struct pbuf* q;
  409. rt_int32_t len;
  410. for (q = p; q != RT_NULL; q= q->next)
  411. {
  412. data = (rt_uint16_t*)q->payload;
  413. len = q->len;
  414. while (len > 0)
  415. {
  416. *data = DM9000_inw(DM9000_DATA_BASE);
  417. data ++;
  418. len -= 2;
  419. }
  420. }
  421. DM9000_TRACE("\n");
  422. }
  423. else
  424. {
  425. rt_uint16_t dummy;
  426. rt_int32_t len;
  427. DM9000_TRACE("dm9000 rx: no pbuf\n");
  428. /* no pbuf, discard data from DM9000 */
  429. data = &dummy;
  430. len = rx_len;
  431. while (len > 0)
  432. {
  433. *data = DM9000_inw(DM9000_DATA_BASE);
  434. len -= 2;
  435. }
  436. }
  437. if ((rx_status & 0xbf00) || (rx_len < 0x40)
  438. || (rx_len > DM9000_PKT_MAX))
  439. {
  440. rt_kprintf("rx error: status %04x\n", rx_status);
  441. if (rx_status & 0x100)
  442. {
  443. rt_kprintf("rx fifo error\n");
  444. }
  445. if (rx_status & 0x200)
  446. {
  447. rt_kprintf("rx crc error\n");
  448. }
  449. if (rx_status & 0x8000)
  450. {
  451. rt_kprintf("rx length error\n");
  452. }
  453. if (rx_len > DM9000_PKT_MAX)
  454. {
  455. rt_kprintf("rx length too big\n");
  456. /* RESET device */
  457. dm9000_io_write(DM9000_NCR, NCR_RST);
  458. rt_thread_delay(1); /* delay 5ms */
  459. }
  460. /* it issues an error, release pbuf */
  461. pbuf_free(p);
  462. p = RT_NULL;
  463. }
  464. }
  465. else
  466. {
  467. /* restore receive interrupt */
  468. dm9000_device.imr_all = IMR_PAR | IMR_PTM | IMR_PRM;
  469. dm9000_io_write(DM9000_IMR, dm9000_device.imr_all);
  470. }
  471. /* unlock DM9000 device */
  472. rt_sem_release(&sem_lock);
  473. return p;
  474. }
  475. static void RCC_Configuration(void)
  476. {
  477. /* enable gpiob port clock */
  478. RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOF | RCC_APB2Periph_GPIOE | RCC_APB2Periph_AFIO, ENABLE);
  479. /* enable FSMC clock */
  480. RCC_AHBPeriphClockCmd(RCC_AHBPeriph_FSMC, ENABLE);
  481. }
  482. static void NVIC_Configuration(void)
  483. {
  484. NVIC_InitTypeDef NVIC_InitStructure;
  485. /* Enable the EXTI4 Interrupt */
  486. NVIC_InitStructure.NVIC_IRQChannel = EXTI4_IRQn;
  487. NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;
  488. NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
  489. NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
  490. NVIC_Init(&NVIC_InitStructure);
  491. }
  492. static void GPIO_Configuration()
  493. {
  494. GPIO_InitTypeDef GPIO_InitStructure;
  495. EXTI_InitTypeDef EXTI_InitStructure;
  496. /* configure PE5 as eth RST */
  497. GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5;
  498. GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
  499. GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
  500. GPIO_Init(GPIOE,&GPIO_InitStructure);
  501. GPIO_SetBits(GPIOE,GPIO_Pin_5);
  502. //RST_1();
  503. /* configure PE4 as external interrupt */
  504. GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4;
  505. GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
  506. GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPD;
  507. GPIO_Init(GPIOE, &GPIO_InitStructure);
  508. /* Connect DM9000 EXTI Line to GPIOE Pin 4 */
  509. GPIO_EXTILineConfig(GPIO_PortSourceGPIOE, GPIO_PinSource4);
  510. /* Configure DM9000 EXTI Line to generate an interrupt on falling edge */
  511. EXTI_InitStructure.EXTI_Line = EXTI_Line4;
  512. EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt;
  513. EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Rising;
  514. EXTI_InitStructure.EXTI_LineCmd = ENABLE;
  515. EXTI_Init(&EXTI_InitStructure);
  516. /* Clear DM9000A EXTI line pending bit */
  517. EXTI_ClearITPendingBit(EXTI_Line4);
  518. }
  519. static void FSMC_Configuration()
  520. {
  521. FSMC_NORSRAMInitTypeDef FSMC_NORSRAMInitStructure;
  522. FSMC_NORSRAMTimingInitTypeDef p;
  523. /* FSMC GPIO configure */
  524. {
  525. GPIO_InitTypeDef GPIO_InitStructure;
  526. RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOD | RCC_APB2Periph_GPIOE | RCC_APB2Periph_GPIOF
  527. | RCC_APB2Periph_GPIOG, ENABLE);
  528. RCC_AHBPeriphClockCmd(RCC_AHBPeriph_FSMC, ENABLE);
  529. GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
  530. GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
  531. /*
  532. FSMC_D0 ~ FSMC_D3
  533. PD14 FSMC_D0 PD15 FSMC_D1 PD0 FSMC_D2 PD1 FSMC_D3
  534. */
  535. GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_14 | GPIO_Pin_15;
  536. GPIO_Init(GPIOD,&GPIO_InitStructure);
  537. /*
  538. FSMC_D4 ~ FSMC_D12
  539. PE7 ~ PE15 FSMC_D4 ~ FSMC_D12
  540. */
  541. GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7 | GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10
  542. | GPIO_Pin_11 | GPIO_Pin_12 | GPIO_Pin_13 | GPIO_Pin_14 | GPIO_Pin_15;
  543. GPIO_Init(GPIOE,&GPIO_InitStructure);
  544. /* FSMC_D13 ~ FSMC_D15 PD8 ~ PD10 */
  545. GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10;
  546. GPIO_Init(GPIOD,&GPIO_InitStructure);
  547. /*
  548. FSMC_A0 ~ FSMC_A5 FSMC_A6 ~ FSMC_A9
  549. PF0 ~ PF5 PF12 ~ PF15
  550. */
  551. GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3
  552. | GPIO_Pin_4 | GPIO_Pin_5 | GPIO_Pin_12 | GPIO_Pin_13 | GPIO_Pin_14 | GPIO_Pin_15;
  553. GPIO_Init(GPIOF,&GPIO_InitStructure);
  554. /* FSMC_A10 ~ FSMC_A15 PG0 ~ PG5 */
  555. GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3 | GPIO_Pin_4 | GPIO_Pin_5;
  556. GPIO_Init(GPIOG,&GPIO_InitStructure);
  557. /* FSMC_A16 ~ FSMC_A18 PD11 ~ PD13 */
  558. GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11 | GPIO_Pin_12 | GPIO_Pin_13;
  559. GPIO_Init(GPIOD,&GPIO_InitStructure);
  560. /* RD-PD4 WR-PD5 */
  561. GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4 | GPIO_Pin_5;
  562. GPIO_Init(GPIOD,&GPIO_InitStructure);
  563. /* NBL0-PE0 NBL1-PE1 */
  564. GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1;
  565. GPIO_Init(GPIOE,&GPIO_InitStructure);
  566. /* NE1/NCE2 */
  567. GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7;
  568. GPIO_Init(GPIOD,&GPIO_InitStructure);
  569. /* NE2 */
  570. GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;
  571. GPIO_Init(GPIOG,&GPIO_InitStructure);
  572. /* NE3 */
  573. GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;
  574. GPIO_Init(GPIOG,&GPIO_InitStructure);
  575. /* NE4 */
  576. GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12;
  577. GPIO_Init(GPIOG,&GPIO_InitStructure);
  578. }
  579. /* FSMC GPIO configure */
  580. /*-- FSMC Configuration ------------------------------------------------------*/
  581. p.FSMC_AddressSetupTime = 0;
  582. p.FSMC_AddressHoldTime = 0;
  583. p.FSMC_DataSetupTime = 2;
  584. p.FSMC_BusTurnAroundDuration = 0;
  585. p.FSMC_CLKDivision = 0;
  586. p.FSMC_DataLatency = 0;
  587. p.FSMC_AccessMode = FSMC_AccessMode_A;
  588. FSMC_NORSRAMInitStructure.FSMC_Bank = FSMC_Bank1_NORSRAM4;
  589. FSMC_NORSRAMInitStructure.FSMC_DataAddressMux = FSMC_DataAddressMux_Disable;
  590. FSMC_NORSRAMInitStructure.FSMC_MemoryType = FSMC_MemoryType_SRAM;
  591. FSMC_NORSRAMInitStructure.FSMC_MemoryDataWidth = FSMC_MemoryDataWidth_16b;
  592. FSMC_NORSRAMInitStructure.FSMC_BurstAccessMode = FSMC_BurstAccessMode_Disable;
  593. FSMC_NORSRAMInitStructure.FSMC_AsynchronousWait = FSMC_AsynchronousWait_Disable;
  594. FSMC_NORSRAMInitStructure.FSMC_WaitSignalPolarity = FSMC_WaitSignalPolarity_Low;
  595. FSMC_NORSRAMInitStructure.FSMC_WrapMode = FSMC_WrapMode_Disable;
  596. FSMC_NORSRAMInitStructure.FSMC_WaitSignalActive = FSMC_WaitSignalActive_BeforeWaitState;
  597. FSMC_NORSRAMInitStructure.FSMC_WriteOperation = FSMC_WriteOperation_Enable;
  598. FSMC_NORSRAMInitStructure.FSMC_WaitSignal = FSMC_WaitSignal_Disable;
  599. FSMC_NORSRAMInitStructure.FSMC_ExtendedMode = FSMC_ExtendedMode_Disable;
  600. FSMC_NORSRAMInitStructure.FSMC_WriteBurst = FSMC_WriteBurst_Disable;
  601. FSMC_NORSRAMInitStructure.FSMC_ReadWriteTimingStruct = &p;
  602. FSMC_NORSRAMInitStructure.FSMC_WriteTimingStruct = &p;
  603. FSMC_NORSRAMInit(&FSMC_NORSRAMInitStructure);
  604. /* Enable FSMC Bank1_SRAM Bank4 */
  605. FSMC_NORSRAMCmd(FSMC_Bank1_NORSRAM4, ENABLE);
  606. }
  607. int rt_hw_dm9000_init(void)
  608. {
  609. RCC_Configuration();
  610. NVIC_Configuration();
  611. GPIO_Configuration();
  612. FSMC_Configuration();
  613. rt_sem_init(&sem_ack, "tx_ack", 1, RT_IPC_FLAG_FIFO);
  614. rt_sem_init(&sem_lock, "eth_lock", 1, RT_IPC_FLAG_FIFO);
  615. dm9000_device.type = TYPE_DM9000A;
  616. dm9000_device.mode = DM9000_AUTO;
  617. dm9000_device.packet_cnt = 0;
  618. dm9000_device.queue_packet_len = 0;
  619. /*
  620. * SRAM Tx/Rx pointer automatically return to start address,
  621. * Packet Transmitted, Packet Received
  622. */
  623. dm9000_device.imr_all = IMR_PAR | IMR_PTM | IMR_PRM;
  624. dm9000_device.dev_addr[0] = 0x00;
  625. dm9000_device.dev_addr[1] = 0x60;
  626. dm9000_device.dev_addr[2] = 0x6E;
  627. dm9000_device.dev_addr[3] = 0x11;
  628. dm9000_device.dev_addr[4] = 0x22;
  629. dm9000_device.dev_addr[5] = 0x33;
  630. dm9000_device.parent.parent.init = rt_dm9000_init;
  631. dm9000_device.parent.parent.open = rt_dm9000_open;
  632. dm9000_device.parent.parent.close = rt_dm9000_close;
  633. dm9000_device.parent.parent.read = rt_dm9000_read;
  634. dm9000_device.parent.parent.write = rt_dm9000_write;
  635. dm9000_device.parent.parent.control = rt_dm9000_control;
  636. dm9000_device.parent.parent.user_data = RT_NULL;
  637. dm9000_device.parent.eth_rx = rt_dm9000_rx;
  638. dm9000_device.parent.eth_tx = rt_dm9000_tx;
  639. eth_device_init(&(dm9000_device.parent), "e0");
  640. return 0;
  641. }
  642. INIT_DEVICE_EXPORT(rt_hw_dm9000_init);
  643. void dm9000(void)
  644. {
  645. rt_kprintf("\n");
  646. rt_kprintf("NCR (0x00): %02x\n", dm9000_io_read(DM9000_NCR));
  647. rt_kprintf("NSR (0x01): %02x\n", dm9000_io_read(DM9000_NSR));
  648. rt_kprintf("TCR (0x02): %02x\n", dm9000_io_read(DM9000_TCR));
  649. rt_kprintf("TSRI (0x03): %02x\n", dm9000_io_read(DM9000_TSR1));
  650. rt_kprintf("TSRII (0x04): %02x\n", dm9000_io_read(DM9000_TSR2));
  651. rt_kprintf("RCR (0x05): %02x\n", dm9000_io_read(DM9000_RCR));
  652. rt_kprintf("RSR (0x06): %02x\n", dm9000_io_read(DM9000_RSR));
  653. rt_kprintf("ORCR (0x07): %02x\n", dm9000_io_read(DM9000_ROCR));
  654. rt_kprintf("CRR (0x2C): %02x\n", dm9000_io_read(DM9000_CHIPR));
  655. rt_kprintf("CSCR (0x31): %02x\n", dm9000_io_read(DM9000_CSCR));
  656. rt_kprintf("RCSSR (0x32): %02x\n", dm9000_io_read(DM9000_RCSSR));
  657. rt_kprintf("ISR (0xFE): %02x\n", dm9000_io_read(DM9000_ISR));
  658. rt_kprintf("IMR (0xFF): %02x\n", dm9000_io_read(DM9000_IMR));
  659. rt_kprintf("\n");
  660. }
  661. #ifdef RT_USING_FINSH
  662. #include <finsh.h>
  663. FINSH_FUNCTION_EXPORT(dm9000, dm9000 register dump);
  664. #endif