drv_eth.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588
  1. /*
  2. * Copyright (c) 2006-2018, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2017-06-08 tanek first implementation
  9. */
  10. #include <rtthread.h>
  11. #include <netif/ethernetif.h>
  12. #include "lwipopts.h"
  13. #include "board.h"
  14. #include "drv_pcf8574.h"
  15. #include <rtdevice.h>
  16. #include <finsh.h>
  17. /* debug option */
  18. //#define DEBUG
  19. //#define ETH_RX_DUMP
  20. //#define ETH_TX_DUMP
  21. #ifdef DEBUG
  22. #define STM32_ETH_PRINTF rt_kprintf
  23. #else
  24. #define STM32_ETH_PRINTF(...)
  25. #endif
  26. /*ÍøÂçÒý½ÅÉèÖà RMII½Ó¿Ú
  27. ETH_MDIO -------------------------> PA2
  28. ETH_MDC --------------------------> PC1
  29. ETH_RMII_REF_CLK------------------> PA1
  30. ETH_RMII_CRS_DV ------------------> PA7
  31. ETH_RMII_RXD0 --------------------> PC4
  32. ETH_RMII_RXD1 --------------------> PC5
  33. ETH_RMII_TX_EN -------------------> PB11
  34. ETH_RMII_TXD0 --------------------> PG13
  35. ETH_RMII_TXD1 --------------------> PG14
  36. ETH_RESET-------------------------> PCF8574À©Õ¹IO
  37. */
  38. #define ETH_MDIO_PORN GPIOA
  39. #define ETH_MDIO_PIN GPIO_PIN_2
  40. #define ETH_MDC_PORN GPIOC
  41. #define ETH_MDC_PIN GPIO_PIN_1
  42. #define ETH_RMII_REF_CLK_PORN GPIOA
  43. #define ETH_RMII_REF_CLK_PIN GPIO_PIN_1
  44. #define ETH_RMII_CRS_DV_PORN GPIOA
  45. #define ETH_RMII_CRS_DV_PIN GPIO_PIN_7
  46. #define ETH_RMII_RXD0_PORN GPIOC
  47. #define ETH_RMII_RXD0_PIN GPIO_PIN_4
  48. #define ETH_RMII_RXD1_PORN GPIOC
  49. #define ETH_RMII_RXD1_PIN GPIO_PIN_5
  50. #define ETH_RMII_TX_EN_PORN GPIOB
  51. #define ETH_RMII_TX_EN_PIN GPIO_PIN_11
  52. #define ETH_RMII_TXD0_PORN GPIOG
  53. #define ETH_RMII_TXD0_PIN GPIO_PIN_13
  54. #define ETH_RMII_TXD1_PORN GPIOG
  55. #define ETH_RMII_TXD1_PIN GPIO_PIN_14
  56. #define LAN8742A_PHY_ADDRESS 0x00
  57. #define MAX_ADDR_LEN 6
  58. struct rt_stm32_eth
  59. {
  60. /* inherit from ethernet device */
  61. struct eth_device parent;
  62. /* interface address info. */
  63. rt_uint8_t dev_addr[MAX_ADDR_LEN]; /* hw address */
  64. uint32_t ETH_Speed; /*!< @ref ETH_Speed */
  65. uint32_t ETH_Mode; /*!< @ref ETH_Duplex_Mode */
  66. };
  67. static ETH_DMADescTypeDef DMARxDscrTab[ETH_RXBUFNB], DMATxDscrTab[ETH_TXBUFNB];
  68. static rt_uint8_t Rx_Buff[ETH_RXBUFNB][ETH_MAX_PACKET_SIZE], Tx_Buff[ETH_TXBUFNB][ETH_MAX_PACKET_SIZE];
  69. static rt_bool_t tx_is_waiting = RT_FALSE;
  70. static ETH_HandleTypeDef EthHandle;
  71. static struct rt_stm32_eth stm32_eth_device;
  72. static struct rt_semaphore tx_wait;
  73. /* interrupt service routine */
  74. void ETH_IRQHandler(void)
  75. {
  76. /* enter interrupt */
  77. rt_interrupt_enter();
  78. HAL_ETH_IRQHandler(&EthHandle);
  79. /* leave interrupt */
  80. rt_interrupt_leave();
  81. }
  82. void HAL_ETH_TxCpltCallback(ETH_HandleTypeDef *heth)
  83. {
  84. if (tx_is_waiting == RT_TRUE)
  85. {
  86. tx_is_waiting = RT_FALSE;
  87. rt_sem_release(&tx_wait);
  88. }
  89. }
  90. void HAL_ETH_RxCpltCallback(ETH_HandleTypeDef *heth)
  91. {
  92. rt_err_t result;
  93. result = eth_device_ready(&(stm32_eth_device.parent));
  94. if( result != RT_EOK )
  95. rt_kprintf("RX err =%d\n", result );
  96. }
  97. void HAL_ETH_ErrorCallback(ETH_HandleTypeDef *heth)
  98. {
  99. rt_kprintf("eth err\n");
  100. }
  101. static void phy_pin_reset(void)
  102. {
  103. rt_pcf8574_write_bit(ETH_RESET_IO, 1);
  104. rt_thread_delay(RT_TICK_PER_SECOND / 10);
  105. rt_pcf8574_write_bit(ETH_RESET_IO, 0);
  106. rt_thread_delay(RT_TICK_PER_SECOND / 10);
  107. }
  108. #ifdef DEBUG
  109. FINSH_FUNCTION_EXPORT(phy_pin_reset, phy hardware reset);
  110. #endif
  111. /* initialize the interface */
  112. static rt_err_t rt_stm32_eth_init(rt_device_t dev)
  113. {
  114. STM32_ETH_PRINTF("rt_stm32_eth_init...\n");
  115. __HAL_RCC_ETH_CLK_ENABLE();
  116. rt_pcf8574_init();
  117. phy_pin_reset();
  118. /* ETHERNET Configuration --------------------------------------------------*/
  119. EthHandle.Instance = ETH;
  120. EthHandle.Init.MACAddr = (rt_uint8_t*)&stm32_eth_device.dev_addr[0];
  121. EthHandle.Init.AutoNegotiation = ETH_AUTONEGOTIATION_ENABLE;
  122. EthHandle.Init.Speed = ETH_SPEED_100M;
  123. EthHandle.Init.DuplexMode = ETH_MODE_FULLDUPLEX;
  124. EthHandle.Init.MediaInterface = ETH_MEDIA_INTERFACE_RMII;
  125. EthHandle.Init.RxMode = ETH_RXINTERRUPT_MODE;
  126. EthHandle.Init.ChecksumMode = ETH_CHECKSUM_BY_SOFTWARE;
  127. //EthHandle.Init.ChecksumMode = ETH_CHECKSUM_BY_HARDWARE;
  128. EthHandle.Init.PhyAddress = LAN8742A_PHY_ADDRESS;
  129. HAL_ETH_DeInit(&EthHandle);
  130. /* configure ethernet peripheral (GPIOs, clocks, MAC, DMA) */
  131. if (HAL_ETH_Init(&EthHandle) == HAL_OK)
  132. {
  133. STM32_ETH_PRINTF("eth hardware init sucess...\n");
  134. }
  135. else
  136. {
  137. STM32_ETH_PRINTF("eth hardware init faild...\n");
  138. }
  139. /* Initialize Tx Descriptors list: Chain Mode */
  140. HAL_ETH_DMATxDescListInit(&EthHandle, DMATxDscrTab, &Tx_Buff[0][0], ETH_TXBUFNB);
  141. /* Initialize Rx Descriptors list: Chain Mode */
  142. HAL_ETH_DMARxDescListInit(&EthHandle, DMARxDscrTab, &Rx_Buff[0][0], ETH_RXBUFNB);
  143. /* Enable MAC and DMA transmission and reception */
  144. if (HAL_ETH_Start(&EthHandle) == HAL_OK)
  145. {
  146. STM32_ETH_PRINTF("eth hardware start success...\n");
  147. }
  148. else
  149. {
  150. STM32_ETH_PRINTF("eth hardware start faild...\n");
  151. }
  152. //phy_monitor_thread_entry(NULL);
  153. return RT_EOK;
  154. }
  155. static rt_err_t rt_stm32_eth_open(rt_device_t dev, rt_uint16_t oflag)
  156. {
  157. STM32_ETH_PRINTF("rt_stm32_eth_open...\n");
  158. return RT_EOK;
  159. }
  160. static rt_err_t rt_stm32_eth_close(rt_device_t dev)
  161. {
  162. STM32_ETH_PRINTF("rt_stm32_eth_close...\n");
  163. return RT_EOK;
  164. }
  165. static rt_size_t rt_stm32_eth_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size)
  166. {
  167. STM32_ETH_PRINTF("rt_stm32_eth_read...\n");
  168. rt_set_errno(-RT_ENOSYS);
  169. return 0;
  170. }
  171. static rt_size_t rt_stm32_eth_write (rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size)
  172. {
  173. STM32_ETH_PRINTF("rt_stm32_eth_write...\n");
  174. rt_set_errno(-RT_ENOSYS);
  175. return 0;
  176. }
  177. static rt_err_t rt_stm32_eth_control(rt_device_t dev, int cmd, void *args)
  178. {
  179. STM32_ETH_PRINTF("rt_stm32_eth_control...\n");
  180. switch(cmd)
  181. {
  182. case NIOCTL_GADDR:
  183. /* get mac address */
  184. if(args) rt_memcpy(args, stm32_eth_device.dev_addr, 6);
  185. else return -RT_ERROR;
  186. break;
  187. default :
  188. break;
  189. }
  190. return RT_EOK;
  191. }
  192. /* ethernet device interface */
  193. /* transmit packet. */
  194. rt_err_t rt_stm32_eth_tx( rt_device_t dev, struct pbuf* p)
  195. {
  196. rt_err_t ret = RT_ERROR;
  197. HAL_StatusTypeDef state;
  198. struct pbuf *q;
  199. uint8_t *buffer = (uint8_t *)(EthHandle.TxDesc->Buffer1Addr);
  200. __IO ETH_DMADescTypeDef *DmaTxDesc;
  201. uint32_t framelength = 0;
  202. uint32_t bufferoffset = 0;
  203. uint32_t byteslefttocopy = 0;
  204. uint32_t payloadoffset = 0;
  205. DmaTxDesc = EthHandle.TxDesc;
  206. bufferoffset = 0;
  207. STM32_ETH_PRINTF("rt_stm32_eth_tx...\n");
  208. /* Check if the descriptor is owned by the ETHERNET DMA (when set) or CPU (when reset) */
  209. while ((DmaTxDesc->Status & ETH_DMATXDESC_OWN) != (uint32_t)RESET)
  210. {
  211. rt_err_t result;
  212. rt_uint32_t level;
  213. level = rt_hw_interrupt_disable();
  214. tx_is_waiting = RT_TRUE;
  215. rt_hw_interrupt_enable(level);
  216. /* it's own bit set, wait it */
  217. result = rt_sem_take(&tx_wait, RT_WAITING_FOREVER);
  218. if (result == RT_EOK) break;
  219. if (result == -RT_ERROR) return -RT_ERROR;
  220. }
  221. /* copy frame from pbufs to driver buffers */
  222. for(q = p; q != NULL; q = q->next)
  223. {
  224. /* Is this buffer available? If not, goto error */
  225. if((DmaTxDesc->Status & ETH_DMATXDESC_OWN) != (uint32_t)RESET)
  226. {
  227. STM32_ETH_PRINTF("buffer not valid ...\n");
  228. ret = ERR_USE;
  229. goto error;
  230. }
  231. STM32_ETH_PRINTF("copy one frame\n");
  232. /* Get bytes in current lwIP buffer */
  233. byteslefttocopy = q->len;
  234. payloadoffset = 0;
  235. /* Check if the length of data to copy is bigger than Tx buffer size*/
  236. while( (byteslefttocopy + bufferoffset) > ETH_TX_BUF_SIZE )
  237. {
  238. /* Copy data to Tx buffer*/
  239. memcpy( (uint8_t*)((uint8_t*)buffer + bufferoffset), (uint8_t*)((uint8_t*)q->payload + payloadoffset), (ETH_TX_BUF_SIZE - bufferoffset) );
  240. /* Point to next descriptor */
  241. DmaTxDesc = (ETH_DMADescTypeDef *)(DmaTxDesc->Buffer2NextDescAddr);
  242. /* Check if the buffer is available */
  243. if((DmaTxDesc->Status & ETH_DMATXDESC_OWN) != (uint32_t)RESET)
  244. {
  245. STM32_ETH_PRINTF("dmatxdesc buffer not valid ...\n");
  246. ret = ERR_USE;
  247. goto error;
  248. }
  249. buffer = (uint8_t *)(DmaTxDesc->Buffer1Addr);
  250. byteslefttocopy = byteslefttocopy - (ETH_TX_BUF_SIZE - bufferoffset);
  251. payloadoffset = payloadoffset + (ETH_TX_BUF_SIZE - bufferoffset);
  252. framelength = framelength + (ETH_TX_BUF_SIZE - bufferoffset);
  253. bufferoffset = 0;
  254. }
  255. /* Copy the remaining bytes */
  256. memcpy( (uint8_t*)((uint8_t*)buffer + bufferoffset), (uint8_t*)((uint8_t*)q->payload + payloadoffset), byteslefttocopy );
  257. bufferoffset = bufferoffset + byteslefttocopy;
  258. framelength = framelength + byteslefttocopy;
  259. }
  260. #ifdef ETH_TX_DUMP
  261. {
  262. rt_uint32_t i;
  263. rt_uint8_t *ptr = buffer;
  264. STM32_ETH_PRINTF("tx_dump, len:%d\r\n", p->tot_len);
  265. for(i=0; i<p->tot_len; i++)
  266. {
  267. STM32_ETH_PRINTF("%02x ",*ptr);
  268. ptr++;
  269. if(((i+1)%8) == 0)
  270. {
  271. STM32_ETH_PRINTF(" ");
  272. }
  273. if(((i+1)%16) == 0)
  274. {
  275. STM32_ETH_PRINTF("\r\n");
  276. }
  277. }
  278. STM32_ETH_PRINTF("\r\ndump done!\r\n");
  279. }
  280. #endif
  281. /* Prepare transmit descriptors to give to DMA */
  282. STM32_ETH_PRINTF("transmit frame, length: %d\n", framelength);
  283. state = HAL_ETH_TransmitFrame(&EthHandle, framelength);
  284. if (state != HAL_OK)
  285. {
  286. STM32_ETH_PRINTF("eth transmit frame faild: %d\n", state);
  287. }
  288. ret = ERR_OK;
  289. error:
  290. /* When Transmit Underflow flag is set, clear it and issue a Transmit Poll Demand to resume transmission */
  291. if ((EthHandle.Instance->DMASR & ETH_DMASR_TUS) != (uint32_t)RESET)
  292. {
  293. /* Clear TUS ETHERNET DMA flag */
  294. EthHandle.Instance->DMASR = ETH_DMASR_TUS;
  295. /* Resume DMA transmission*/
  296. EthHandle.Instance->DMATPDR = 0;
  297. }
  298. return ret;
  299. }
  300. /* reception packet. */
  301. struct pbuf *rt_stm32_eth_rx(rt_device_t dev)
  302. {
  303. struct pbuf *p = NULL;
  304. struct pbuf *q = NULL;
  305. HAL_StatusTypeDef state;
  306. uint16_t len = 0;
  307. uint8_t *buffer;
  308. __IO ETH_DMADescTypeDef *dmarxdesc;
  309. uint32_t bufferoffset = 0;
  310. uint32_t payloadoffset = 0;
  311. uint32_t byteslefttocopy = 0;
  312. uint32_t i=0;
  313. STM32_ETH_PRINTF("rt_stm32_eth_rx\n");
  314. /* Get received frame */
  315. state = HAL_ETH_GetReceivedFrame_IT(&EthHandle);
  316. if (state != HAL_OK)
  317. {
  318. STM32_ETH_PRINTF("receive frame faild\n");
  319. return NULL;
  320. }
  321. /* Obtain the size of the packet and put it into the "len" variable. */
  322. len = EthHandle.RxFrameInfos.length;
  323. buffer = (uint8_t *)EthHandle.RxFrameInfos.buffer;
  324. STM32_ETH_PRINTF("receive frame len : %d\n", len);
  325. if (len > 0)
  326. {
  327. /* We allocate a pbuf chain of pbufs from the Lwip buffer pool */
  328. p = pbuf_alloc(PBUF_RAW, len, PBUF_POOL);
  329. }
  330. #ifdef ETH_RX_DUMP
  331. {
  332. rt_uint32_t i;
  333. rt_uint8_t *ptr = buffer;
  334. STM32_ETH_PRINTF("rx_dump, len:%d\r\n", p->tot_len);
  335. for (i = 0; i < len; i++)
  336. {
  337. STM32_ETH_PRINTF("%02x ", *ptr);
  338. ptr++;
  339. if (((i + 1) % 8) == 0)
  340. {
  341. STM32_ETH_PRINTF(" ");
  342. }
  343. if (((i + 1) % 16) == 0)
  344. {
  345. STM32_ETH_PRINTF("\r\n");
  346. }
  347. }
  348. STM32_ETH_PRINTF("\r\ndump done!\r\n");
  349. }
  350. #endif
  351. if (p != NULL)
  352. {
  353. dmarxdesc = EthHandle.RxFrameInfos.FSRxDesc;
  354. bufferoffset = 0;
  355. for(q = p; q != NULL; q = q->next)
  356. {
  357. byteslefttocopy = q->len;
  358. payloadoffset = 0;
  359. /* Check if the length of bytes to copy in current pbuf is bigger than Rx buffer size*/
  360. while( (byteslefttocopy + bufferoffset) > ETH_RX_BUF_SIZE )
  361. {
  362. /* Copy data to pbuf */
  363. memcpy( (uint8_t*)((uint8_t*)q->payload + payloadoffset), (uint8_t*)((uint8_t*)buffer + bufferoffset), (ETH_RX_BUF_SIZE - bufferoffset));
  364. /* Point to next descriptor */
  365. dmarxdesc = (ETH_DMADescTypeDef *)(dmarxdesc->Buffer2NextDescAddr);
  366. buffer = (uint8_t *)(dmarxdesc->Buffer1Addr);
  367. byteslefttocopy = byteslefttocopy - (ETH_RX_BUF_SIZE - bufferoffset);
  368. payloadoffset = payloadoffset + (ETH_RX_BUF_SIZE - bufferoffset);
  369. bufferoffset = 0;
  370. }
  371. /* Copy remaining data in pbuf */
  372. memcpy( (uint8_t*)((uint8_t*)q->payload + payloadoffset), (uint8_t*)((uint8_t*)buffer + bufferoffset), byteslefttocopy);
  373. bufferoffset = bufferoffset + byteslefttocopy;
  374. }
  375. }
  376. /* Release descriptors to DMA */
  377. /* Point to first descriptor */
  378. dmarxdesc = EthHandle.RxFrameInfos.FSRxDesc;
  379. /* Set Own bit in Rx descriptors: gives the buffers back to DMA */
  380. for (i=0; i< EthHandle.RxFrameInfos.SegCount; i++)
  381. {
  382. dmarxdesc->Status |= ETH_DMARXDESC_OWN;
  383. dmarxdesc = (ETH_DMADescTypeDef *)(dmarxdesc->Buffer2NextDescAddr);
  384. }
  385. /* Clear Segment_Count */
  386. EthHandle.RxFrameInfos.SegCount =0;
  387. /* When Rx Buffer unavailable flag is set: clear it and resume reception */
  388. if ((EthHandle.Instance->DMASR & ETH_DMASR_RBUS) != (uint32_t)RESET)
  389. {
  390. /* Clear RBUS ETHERNET DMA flag */
  391. EthHandle.Instance->DMASR = ETH_DMASR_RBUS;
  392. /* Resume DMA reception */
  393. EthHandle.Instance->DMARPDR = 0;
  394. }
  395. return p;
  396. }
  397. static void NVIC_Configuration(void)
  398. {
  399. /* Enable the Ethernet global Interrupt */
  400. HAL_NVIC_SetPriority(ETH_IRQn, 0x7, 0);
  401. HAL_NVIC_EnableIRQ(ETH_IRQn);
  402. }
  403. /*
  404. * GPIO Configuration for ETH
  405. */
  406. static void GPIO_Configuration(void)
  407. {
  408. GPIO_InitTypeDef GPIO_InitStructure;
  409. STM32_ETH_PRINTF("GPIO_Configuration...\n");
  410. /* Enable SYSCFG clock */
  411. __HAL_RCC_ETH_CLK_ENABLE();
  412. __HAL_RCC_GPIOA_CLK_ENABLE();
  413. __HAL_RCC_GPIOB_CLK_ENABLE();
  414. __HAL_RCC_GPIOC_CLK_ENABLE();
  415. __HAL_RCC_GPIOG_CLK_ENABLE();
  416. GPIO_InitStructure.Speed = GPIO_SPEED_HIGH;
  417. GPIO_InitStructure.Mode = GPIO_MODE_AF_PP;
  418. GPIO_InitStructure.Alternate = GPIO_AF11_ETH;
  419. GPIO_InitStructure.Pull = GPIO_NOPULL;
  420. GPIO_InitStructure.Pin = ETH_MDIO_PIN;
  421. HAL_GPIO_Init(ETH_MDIO_PORN,&GPIO_InitStructure);
  422. GPIO_InitStructure.Pin = ETH_MDC_PIN;
  423. HAL_GPIO_Init(ETH_MDC_PORN,&GPIO_InitStructure);
  424. GPIO_InitStructure.Pin = ETH_RMII_REF_CLK_PIN;
  425. HAL_GPIO_Init(ETH_RMII_REF_CLK_PORN,&GPIO_InitStructure);
  426. GPIO_InitStructure.Pin = ETH_RMII_CRS_DV_PIN;
  427. HAL_GPIO_Init(ETH_RMII_CRS_DV_PORN,&GPIO_InitStructure);
  428. GPIO_InitStructure.Pin = ETH_RMII_REF_CLK_PIN;
  429. HAL_GPIO_Init(ETH_RMII_REF_CLK_PORN,&GPIO_InitStructure);
  430. GPIO_InitStructure.Pin = ETH_RMII_CRS_DV_PIN;
  431. HAL_GPIO_Init(ETH_RMII_CRS_DV_PORN,&GPIO_InitStructure);
  432. GPIO_InitStructure.Pin = ETH_RMII_RXD0_PIN;
  433. HAL_GPIO_Init(ETH_RMII_RXD0_PORN,&GPIO_InitStructure);
  434. GPIO_InitStructure.Pin = ETH_RMII_RXD1_PIN;
  435. HAL_GPIO_Init(ETH_RMII_RXD1_PORN,&GPIO_InitStructure);
  436. GPIO_InitStructure.Pin = ETH_RMII_TX_EN_PIN;
  437. HAL_GPIO_Init(ETH_RMII_TX_EN_PORN,&GPIO_InitStructure);
  438. GPIO_InitStructure.Pin = ETH_RMII_TXD0_PIN;
  439. HAL_GPIO_Init(ETH_RMII_TXD0_PORN,&GPIO_InitStructure);
  440. GPIO_InitStructure.Pin = ETH_RMII_TXD1_PIN;
  441. HAL_GPIO_Init(ETH_RMII_TXD1_PORN,&GPIO_InitStructure);
  442. HAL_NVIC_SetPriority(ETH_IRQn,1,0);
  443. HAL_NVIC_EnableIRQ(ETH_IRQn);
  444. }
  445. void HAL_ETH_MspInit(ETH_HandleTypeDef *heth)
  446. {
  447. GPIO_Configuration();
  448. NVIC_Configuration();
  449. }
  450. static int rt_hw_stm32_eth_init(void)
  451. {
  452. rt_err_t state;
  453. stm32_eth_device.ETH_Speed = ETH_SPEED_100M;
  454. stm32_eth_device.ETH_Mode = ETH_MODE_FULLDUPLEX;
  455. /* OUI 00-80-E1 STMICROELECTRONICS. */
  456. stm32_eth_device.dev_addr[0] = 0x00;
  457. stm32_eth_device.dev_addr[1] = 0x80;
  458. stm32_eth_device.dev_addr[2] = 0xE1;
  459. /* generate MAC addr from 96bit unique ID (only for test). */
  460. stm32_eth_device.dev_addr[3] = *(rt_uint8_t*)(UID_BASE+4);
  461. stm32_eth_device.dev_addr[4] = *(rt_uint8_t*)(UID_BASE+2);
  462. stm32_eth_device.dev_addr[5] = *(rt_uint8_t*)(UID_BASE+0);
  463. stm32_eth_device.parent.parent.init = rt_stm32_eth_init;
  464. stm32_eth_device.parent.parent.open = rt_stm32_eth_open;
  465. stm32_eth_device.parent.parent.close = rt_stm32_eth_close;
  466. stm32_eth_device.parent.parent.read = rt_stm32_eth_read;
  467. stm32_eth_device.parent.parent.write = rt_stm32_eth_write;
  468. stm32_eth_device.parent.parent.control = rt_stm32_eth_control;
  469. stm32_eth_device.parent.parent.user_data = RT_NULL;
  470. stm32_eth_device.parent.eth_rx = rt_stm32_eth_rx;
  471. stm32_eth_device.parent.eth_tx = rt_stm32_eth_tx;
  472. STM32_ETH_PRINTF("sem init: tx_wait\r\n");
  473. /* init tx semaphore */
  474. rt_sem_init(&tx_wait, "tx_wait", 0, RT_IPC_FLAG_FIFO);
  475. /* register eth device */
  476. STM32_ETH_PRINTF("eth_device_init start\r\n");
  477. state = eth_device_init(&(stm32_eth_device.parent), "e0");
  478. if (RT_EOK == state)
  479. {
  480. STM32_ETH_PRINTF("eth_device_init success\r\n");
  481. }
  482. else
  483. {
  484. STM32_ETH_PRINTF("eth_device_init faild: %d\r\n", state);
  485. }
  486. eth_device_linkchange(&stm32_eth_device.parent, RT_TRUE); //linkup the e0 for lwip to check
  487. return state;
  488. }
  489. INIT_APP_EXPORT(rt_hw_stm32_eth_init);