sensor.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491
  1. /*
  2. * Copyright (c) 2006-2021, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2019-01-31 flybreak first version
  9. * 2020-02-22 luhuadong support custom commands
  10. */
  11. #include "sensor.h"
  12. #define DBG_TAG "sensor"
  13. #define DBG_LVL DBG_INFO
  14. #include <rtdbg.h>
  15. #include <string.h>
  16. static char *const sensor_name_str[] =
  17. {
  18. "none",
  19. "acce_", /* Accelerometer */
  20. "gyro_", /* Gyroscope */
  21. "mag_", /* Magnetometer */
  22. "temp_", /* Temperature */
  23. "humi_", /* Relative Humidity */
  24. "baro_", /* Barometer */
  25. "li_", /* Ambient light */
  26. "pr_", /* Proximity */
  27. "hr_", /* Heart Rate */
  28. "tvoc_", /* TVOC Level */
  29. "noi_", /* Noise Loudness */
  30. "step_", /* Step sensor */
  31. "forc_", /* Force sensor */
  32. "dust_", /* Dust sensor */
  33. "eco2_", /* eCO2 sensor */
  34. "gnss_", /* GPS/GNSS sensor */
  35. "tof_", /* TOF sensor */
  36. "spo2_" /* SpO2 sensor */
  37. };
  38. /* Sensor interrupt correlation function */
  39. /*
  40. * Sensor interrupt handler function
  41. */
  42. void rt_sensor_cb(rt_sensor_t sen)
  43. {
  44. if (sen->parent.rx_indicate == RT_NULL)
  45. {
  46. return;
  47. }
  48. if (sen->irq_handle != RT_NULL)
  49. {
  50. sen->irq_handle(sen);
  51. }
  52. /* The buffer is not empty. Read the data in the buffer first */
  53. if (sen->data_len > 0)
  54. {
  55. sen->parent.rx_indicate(&sen->parent, sen->data_len / sizeof(struct rt_sensor_data));
  56. }
  57. else if (sen->config.mode == RT_SENSOR_MODE_INT)
  58. {
  59. /* The interrupt mode only produces one data at a time */
  60. sen->parent.rx_indicate(&sen->parent, 1);
  61. }
  62. else if (sen->config.mode == RT_SENSOR_MODE_FIFO)
  63. {
  64. sen->parent.rx_indicate(&sen->parent, sen->info.fifo_max);
  65. }
  66. }
  67. /* ISR for sensor interrupt */
  68. static void irq_callback(void *args)
  69. {
  70. rt_sensor_t sensor = (rt_sensor_t)args;
  71. rt_uint8_t i;
  72. if (sensor->module)
  73. {
  74. /* Invoke a callback for all sensors in the module */
  75. for (i = 0; i < sensor->module->sen_num; i++)
  76. {
  77. rt_sensor_cb(sensor->module->sen[i]);
  78. }
  79. }
  80. else
  81. {
  82. rt_sensor_cb(sensor);
  83. }
  84. }
  85. /* Sensor interrupt initialization function */
  86. static rt_err_t rt_sensor_irq_init(rt_sensor_t sensor)
  87. {
  88. if (sensor->config.irq_pin.pin == RT_PIN_NONE)
  89. {
  90. return -RT_EINVAL;
  91. }
  92. rt_pin_mode(sensor->config.irq_pin.pin, sensor->config.irq_pin.mode);
  93. if (sensor->config.irq_pin.mode == PIN_MODE_INPUT_PULLDOWN)
  94. {
  95. rt_pin_attach_irq(sensor->config.irq_pin.pin, PIN_IRQ_MODE_RISING, irq_callback, (void *)sensor);
  96. }
  97. else if (sensor->config.irq_pin.mode == PIN_MODE_INPUT_PULLUP)
  98. {
  99. rt_pin_attach_irq(sensor->config.irq_pin.pin, PIN_IRQ_MODE_FALLING, irq_callback, (void *)sensor);
  100. }
  101. else if (sensor->config.irq_pin.mode == PIN_MODE_INPUT)
  102. {
  103. rt_pin_attach_irq(sensor->config.irq_pin.pin, PIN_IRQ_MODE_RISING_FALLING, irq_callback, (void *)sensor);
  104. }
  105. rt_pin_irq_enable(sensor->config.irq_pin.pin, RT_TRUE);
  106. LOG_I("interrupt init success");
  107. return 0;
  108. }
  109. // local rt_sensor_ops
  110. static rt_size_t local_fetch_data(struct rt_sensor_device *sensor, void *buf, rt_size_t len)
  111. {
  112. LOG_D("Undefined fetch_data");
  113. return 0;
  114. }
  115. static rt_err_t local_control(struct rt_sensor_device *sensor, int cmd, void *arg)
  116. {
  117. LOG_D("Undefined control");
  118. return RT_ERROR;
  119. }
  120. static struct rt_sensor_ops local_ops = {
  121. .fetch_data = local_fetch_data,
  122. .control = local_control
  123. };
  124. /* RT-Thread Device Interface */
  125. static rt_err_t rt_sensor_open(rt_device_t dev, rt_uint16_t oflag)
  126. {
  127. rt_sensor_t sensor = (rt_sensor_t)dev;
  128. RT_ASSERT(dev != RT_NULL);
  129. rt_err_t res = RT_EOK;
  130. rt_err_t (*local_ctrl)(struct rt_sensor_device *sensor, int cmd, void *arg) = local_control;
  131. if (sensor->module)
  132. {
  133. /* take the module mutex */
  134. rt_mutex_take(sensor->module->lock, RT_WAITING_FOREVER);
  135. }
  136. if (sensor->module != RT_NULL && sensor->info.fifo_max > 0 && sensor->data_buf == RT_NULL)
  137. {
  138. /* Allocate memory for the sensor buffer */
  139. sensor->data_buf = rt_malloc(sizeof(struct rt_sensor_data) * sensor->info.fifo_max);
  140. if (sensor->data_buf == RT_NULL)
  141. {
  142. res = -RT_ENOMEM;
  143. goto __exit;
  144. }
  145. }
  146. if (sensor->ops->control != RT_NULL)
  147. {
  148. local_ctrl = sensor->ops->control;
  149. }
  150. sensor->config.mode = RT_SENSOR_MODE_POLLING;
  151. if (oflag & RT_DEVICE_FLAG_RDONLY && dev->flag & RT_DEVICE_FLAG_RDONLY)
  152. {
  153. /* If polling mode is supported, configure it to polling mode */
  154. local_ctrl(sensor, RT_SENSOR_CTRL_SET_MODE, (void *)RT_SENSOR_MODE_POLLING);
  155. }
  156. else if (oflag & RT_DEVICE_FLAG_INT_RX && dev->flag & RT_DEVICE_FLAG_INT_RX)
  157. {
  158. /* If interrupt mode is supported, configure it to interrupt mode */
  159. if (local_ctrl(sensor, RT_SENSOR_CTRL_SET_MODE, (void *)RT_SENSOR_MODE_INT) == RT_EOK)
  160. {
  161. /* Initialization sensor interrupt */
  162. rt_sensor_irq_init(sensor);
  163. sensor->config.mode = RT_SENSOR_MODE_INT;
  164. }
  165. }
  166. else if (oflag & RT_DEVICE_FLAG_FIFO_RX && dev->flag & RT_DEVICE_FLAG_FIFO_RX)
  167. {
  168. /* If fifo mode is supported, configure it to fifo mode */
  169. if (local_ctrl(sensor, RT_SENSOR_CTRL_SET_MODE, (void *)RT_SENSOR_MODE_FIFO) == RT_EOK)
  170. {
  171. /* Initialization sensor interrupt */
  172. rt_sensor_irq_init(sensor);
  173. sensor->config.mode = RT_SENSOR_MODE_FIFO;
  174. }
  175. }
  176. else
  177. {
  178. res = -RT_EINVAL;
  179. goto __exit;
  180. }
  181. /* Configure power mode to normal mode */
  182. if (local_ctrl(sensor, RT_SENSOR_CTRL_SET_POWER, (void *)RT_SENSOR_POWER_NORMAL) == RT_EOK)
  183. {
  184. sensor->config.power = RT_SENSOR_POWER_NORMAL;
  185. }
  186. __exit:
  187. if (sensor->module)
  188. {
  189. /* release the module mutex */
  190. rt_mutex_release(sensor->module->lock);
  191. }
  192. return res;
  193. }
  194. static rt_err_t rt_sensor_close(rt_device_t dev)
  195. {
  196. rt_sensor_t sensor = (rt_sensor_t)dev;
  197. int i;
  198. rt_err_t (*local_ctrl)(struct rt_sensor_device * sensor, int cmd, void *arg) = local_control;
  199. RT_ASSERT(dev != RT_NULL);
  200. if (sensor->module)
  201. {
  202. rt_mutex_take(sensor->module->lock, RT_WAITING_FOREVER);
  203. }
  204. if (sensor->ops->control != RT_NULL)
  205. {
  206. local_ctrl = sensor->ops->control;
  207. }
  208. /* Configure power mode to power down mode */
  209. if (local_ctrl(sensor, RT_SENSOR_CTRL_SET_POWER, (void *)RT_SENSOR_POWER_DOWN) == RT_EOK)
  210. {
  211. sensor->config.power = RT_SENSOR_POWER_DOWN;
  212. }
  213. if (sensor->module != RT_NULL && sensor->info.fifo_max > 0 && sensor->data_buf != RT_NULL)
  214. {
  215. for (i = 0; i < sensor->module->sen_num; i ++)
  216. {
  217. if (sensor->module->sen[i]->parent.ref_count > 0)
  218. goto __exit;
  219. }
  220. /* Free memory for the sensor buffer */
  221. for (i = 0; i < sensor->module->sen_num; i ++)
  222. {
  223. if (sensor->module->sen[i]->data_buf != RT_NULL)
  224. {
  225. rt_free(sensor->module->sen[i]->data_buf);
  226. sensor->module->sen[i]->data_buf = RT_NULL;
  227. }
  228. }
  229. }
  230. if (sensor->config.mode != RT_SENSOR_MODE_POLLING)
  231. {
  232. /* Sensor disable interrupt */
  233. if (sensor->config.irq_pin.pin != RT_PIN_NONE)
  234. {
  235. rt_pin_irq_enable(sensor->config.irq_pin.pin, RT_FALSE);
  236. }
  237. }
  238. __exit:
  239. if (sensor->module)
  240. {
  241. rt_mutex_release(sensor->module->lock);
  242. }
  243. return RT_EOK;
  244. }
  245. static rt_size_t rt_sensor_read(rt_device_t dev, rt_off_t pos, void *buf, rt_size_t len)
  246. {
  247. rt_sensor_t sensor = (rt_sensor_t)dev;
  248. rt_size_t result = 0;
  249. RT_ASSERT(dev != RT_NULL);
  250. if (buf == NULL || len == 0)
  251. {
  252. return 0;
  253. }
  254. if (sensor->module)
  255. {
  256. rt_mutex_take(sensor->module->lock, RT_WAITING_FOREVER);
  257. }
  258. /* The buffer is not empty. Read the data in the buffer first */
  259. if (sensor->data_len > 0)
  260. {
  261. if (len > sensor->data_len / sizeof(struct rt_sensor_data))
  262. {
  263. len = sensor->data_len / sizeof(struct rt_sensor_data);
  264. }
  265. rt_memcpy(buf, sensor->data_buf, len * sizeof(struct rt_sensor_data));
  266. /* Clear the buffer */
  267. sensor->data_len = 0;
  268. result = len;
  269. }
  270. else
  271. {
  272. /* If the buffer is empty read the data */
  273. if (sensor->ops->fetch_data != RT_NULL)
  274. {
  275. result = sensor->ops->fetch_data(sensor, buf, len);
  276. }
  277. }
  278. if (sensor->module)
  279. {
  280. rt_mutex_release(sensor->module->lock);
  281. }
  282. return result;
  283. }
  284. static rt_err_t rt_sensor_control(rt_device_t dev, int cmd, void *args)
  285. {
  286. rt_sensor_t sensor = (rt_sensor_t)dev;
  287. rt_err_t result = RT_EOK;
  288. RT_ASSERT(dev != RT_NULL);
  289. rt_err_t (*local_ctrl)(struct rt_sensor_device * sensor, int cmd, void *arg) = local_control;
  290. if (sensor->module)
  291. {
  292. rt_mutex_take(sensor->module->lock, RT_WAITING_FOREVER);
  293. }
  294. if (sensor->ops->control != RT_NULL)
  295. {
  296. local_ctrl = sensor->ops->control;
  297. }
  298. switch (cmd)
  299. {
  300. case RT_SENSOR_CTRL_GET_ID:
  301. if (args)
  302. {
  303. result = local_ctrl(sensor, RT_SENSOR_CTRL_GET_ID, args);
  304. }
  305. break;
  306. case RT_SENSOR_CTRL_GET_INFO:
  307. if (args)
  308. {
  309. rt_memcpy(args, &sensor->info, sizeof(struct rt_sensor_info));
  310. }
  311. break;
  312. case RT_SENSOR_CTRL_SET_RANGE:
  313. /* Configuration measurement range */
  314. result = local_ctrl(sensor, RT_SENSOR_CTRL_SET_RANGE, args);
  315. if (result == RT_EOK)
  316. {
  317. sensor->config.range = (rt_int32_t)args;
  318. LOG_D("set range %d", sensor->config.range);
  319. }
  320. break;
  321. case RT_SENSOR_CTRL_SET_ODR:
  322. /* Configuration data output rate */
  323. result = local_ctrl(sensor, RT_SENSOR_CTRL_SET_ODR, args);
  324. if (result == RT_EOK)
  325. {
  326. sensor->config.odr = (rt_uint32_t)args & 0xFFFF;
  327. LOG_D("set odr %d", sensor->config.odr);
  328. }
  329. break;
  330. case RT_SENSOR_CTRL_SET_POWER:
  331. /* Configuration sensor power mode */
  332. result = local_ctrl(sensor, RT_SENSOR_CTRL_SET_POWER, args);
  333. if (result == RT_EOK)
  334. {
  335. sensor->config.power = (rt_uint32_t)args & 0xFF;
  336. LOG_D("set power mode code:", sensor->config.power);
  337. }
  338. break;
  339. case RT_SENSOR_CTRL_SELF_TEST:
  340. /* Device self-test */
  341. result = local_ctrl(sensor, RT_SENSOR_CTRL_SELF_TEST, args);
  342. break;
  343. default:
  344. if (cmd > RT_SENSOR_CTRL_USER_CMD_START)
  345. {
  346. /* Custom commands */
  347. result = local_ctrl(sensor, cmd, args);
  348. }
  349. else
  350. {
  351. result = -RT_ERROR;
  352. }
  353. break;
  354. }
  355. if (sensor->module)
  356. {
  357. rt_mutex_release(sensor->module->lock);
  358. }
  359. return result;
  360. }
  361. #ifdef RT_USING_DEVICE_OPS
  362. const static struct rt_device_ops rt_sensor_ops =
  363. {
  364. RT_NULL,
  365. rt_sensor_open,
  366. rt_sensor_close,
  367. rt_sensor_read,
  368. RT_NULL,
  369. rt_sensor_control
  370. };
  371. #endif
  372. /*
  373. * sensor register
  374. */
  375. int rt_hw_sensor_register(rt_sensor_t sensor,
  376. const char *name,
  377. rt_uint32_t flag,
  378. void *data)
  379. {
  380. rt_int8_t result;
  381. rt_device_t device;
  382. RT_ASSERT(sensor != RT_NULL);
  383. char *sensor_name = RT_NULL, *device_name = RT_NULL;
  384. if (sensor->ops == RT_NULL)
  385. {
  386. sensor->ops = &local_ops;
  387. }
  388. /* Add a type name for the sensor device */
  389. sensor_name = sensor_name_str[sensor->info.type];
  390. device_name = (char *)rt_calloc(1, rt_strlen(sensor_name) + 1 + rt_strlen(name));
  391. if (device_name == RT_NULL)
  392. {
  393. LOG_E("device_name calloc failed!");
  394. return -RT_ERROR;
  395. }
  396. rt_memcpy(device_name, sensor_name, rt_strlen(sensor_name) + 1);
  397. strcat(device_name, name);
  398. if (sensor->module != RT_NULL && sensor->module->lock == RT_NULL)
  399. {
  400. /* Create a mutex lock for the module */
  401. sensor->module->lock = rt_mutex_create(name, RT_IPC_FLAG_PRIO);
  402. if (sensor->module->lock == RT_NULL)
  403. {
  404. rt_free(device_name);
  405. return -RT_ERROR;
  406. }
  407. }
  408. device = &sensor->parent;
  409. #ifdef RT_USING_DEVICE_OPS
  410. device->ops = &rt_sensor_ops;
  411. #else
  412. device->init = RT_NULL;
  413. device->open = rt_sensor_open;
  414. device->close = rt_sensor_close;
  415. device->read = rt_sensor_read;
  416. device->write = RT_NULL;
  417. device->control = rt_sensor_control;
  418. #endif
  419. device->type = RT_Device_Class_Sensor;
  420. device->rx_indicate = RT_NULL;
  421. device->tx_complete = RT_NULL;
  422. device->user_data = data;
  423. result = rt_device_register(device, device_name, flag | RT_DEVICE_FLAG_STANDALONE);
  424. if (result != RT_EOK)
  425. {
  426. LOG_E("rt_sensor[%s] register err code: %d", device_name, result);
  427. rt_free(device_name);
  428. return result;
  429. }
  430. rt_free(device_name);
  431. LOG_I("rt_sensor[%s] init success", device_name);
  432. return RT_EOK;
  433. }