1
0

drv_eth.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576
  1. /*
  2. * File : application.c
  3. * This file is part of RT-Thread RTOS
  4. * COPYRIGHT (C) 2006, RT-Thread Development Team
  5. *
  6. * The license and distribution terms for this file may be
  7. * found in the file LICENSE in this distribution or at
  8. * http://www.rt-thread.org/license/LICENSE
  9. *
  10. * Change Logs:
  11. * Date Author Notes
  12. * 2017-06-08 tanek first implementation
  13. */
  14. #include <rtthread.h>
  15. #include <netif/ethernetif.h>
  16. #include "lwipopts.h"
  17. #include "board.h"
  18. #include <rtdevice.h>
  19. #include <finsh.h>
  20. /* debug option */
  21. //#define DEBUG
  22. //#define ETH_RX_DUMP
  23. //#define ETH_TX_DUMP
  24. #ifdef DEBUG
  25. #define STM32_ETH_PRINTF rt_kprintf
  26. #else
  27. #define STM32_ETH_PRINTF(...)
  28. #endif
  29. /* RMII GPIO
  30. ETH_MDIO -------------------------> PA2
  31. ETH_MDC --------------------------> PC1
  32. ETH_RMII_REF_CLK------------------> PA1
  33. ETH_RMII_CRS_DV ------------------> PA7
  34. ETH_RMII_RXD0 --------------------> PC4
  35. ETH_RMII_RXD1 --------------------> PC5
  36. ETH_RMII_TX_EN -------------------> PB11
  37. ETH_RMII_TXD0 --------------------> PG13
  38. ETH_RMII_TXD1 --------------------> PG14
  39. */
  40. #define ETH_MDIO_PORN GPIOA
  41. #define ETH_MDIO_PIN GPIO_PIN_2
  42. #define ETH_MDC_PORN GPIOC
  43. #define ETH_MDC_PIN GPIO_PIN_1
  44. #define ETH_RMII_REF_CLK_PORN GPIOA
  45. #define ETH_RMII_REF_CLK_PIN GPIO_PIN_1
  46. #define ETH_RMII_CRS_DV_PORN GPIOA
  47. #define ETH_RMII_CRS_DV_PIN GPIO_PIN_7
  48. #define ETH_RMII_RXD0_PORN GPIOC
  49. #define ETH_RMII_RXD0_PIN GPIO_PIN_4
  50. #define ETH_RMII_RXD1_PORN GPIOC
  51. #define ETH_RMII_RXD1_PIN GPIO_PIN_5
  52. #define ETH_RMII_TX_EN_PORN GPIOG
  53. #define ETH_RMII_TX_EN_PIN GPIO_PIN_11
  54. #define ETH_RMII_TXD0_PORN GPIOG
  55. #define ETH_RMII_TXD0_PIN GPIO_PIN_13
  56. #define ETH_RMII_TXD1_PORN GPIOB
  57. #define ETH_RMII_TXD1_PIN GPIO_PIN_13
  58. #define PHY_ADDRESS 0x01
  59. #define MAX_ADDR_LEN 6
  60. struct rt_stm32_eth
  61. {
  62. /* inherit from ethernet device */
  63. struct eth_device parent;
  64. /* interface address info. */
  65. rt_uint8_t dev_addr[MAX_ADDR_LEN]; /* hw address */
  66. uint32_t ETH_Speed; /*!< @ref ETH_Speed */
  67. uint32_t ETH_Mode; /*!< @ref ETH_Duplex_Mode */
  68. };
  69. static ETH_DMADescTypeDef DMARxDscrTab[ETH_RXBUFNB], DMATxDscrTab[ETH_TXBUFNB];
  70. static rt_uint8_t Rx_Buff[ETH_RXBUFNB][ETH_MAX_PACKET_SIZE], Tx_Buff[ETH_TXBUFNB][ETH_MAX_PACKET_SIZE];
  71. static rt_bool_t tx_is_waiting = RT_FALSE;
  72. static ETH_HandleTypeDef EthHandle;
  73. static struct rt_stm32_eth stm32_eth_device;
  74. static struct rt_semaphore tx_wait;
  75. /* interrupt service routine */
  76. void ETH_IRQHandler(void)
  77. {
  78. /* enter interrupt */
  79. rt_interrupt_enter();
  80. HAL_ETH_IRQHandler(&EthHandle);
  81. /* leave interrupt */
  82. rt_interrupt_leave();
  83. }
  84. void HAL_ETH_TxCpltCallback(ETH_HandleTypeDef *heth)
  85. {
  86. if (tx_is_waiting == RT_TRUE)
  87. {
  88. tx_is_waiting = RT_FALSE;
  89. rt_sem_release(&tx_wait);
  90. }
  91. }
  92. void HAL_ETH_RxCpltCallback(ETH_HandleTypeDef *heth)
  93. {
  94. rt_err_t result;
  95. result = eth_device_ready(&(stm32_eth_device.parent));
  96. if( result != RT_EOK )
  97. rt_kprintf("RX err =%d\n", result );
  98. }
  99. void HAL_ETH_ErrorCallback(ETH_HandleTypeDef *heth)
  100. {
  101. rt_kprintf("eth err\n");
  102. }
  103. /* initialize the interface */
  104. static rt_err_t rt_stm32_eth_init(rt_device_t dev)
  105. {
  106. STM32_ETH_PRINTF("rt_stm32_eth_init...\n");
  107. __HAL_RCC_ETH_CLK_ENABLE();
  108. /* ETHERNET Configuration --------------------------------------------------*/
  109. EthHandle.Instance = ETH;
  110. EthHandle.Init.MACAddr = (rt_uint8_t*)&stm32_eth_device.dev_addr[0];
  111. EthHandle.Init.AutoNegotiation = ETH_AUTONEGOTIATION_ENABLE;
  112. EthHandle.Init.Speed = ETH_SPEED_100M;
  113. EthHandle.Init.DuplexMode = ETH_MODE_FULLDUPLEX;
  114. EthHandle.Init.MediaInterface = ETH_MEDIA_INTERFACE_RMII;
  115. EthHandle.Init.RxMode = ETH_RXINTERRUPT_MODE;
  116. EthHandle.Init.ChecksumMode = ETH_CHECKSUM_BY_SOFTWARE;
  117. EthHandle.Init.PhyAddress = PHY_ADDRESS;
  118. HAL_ETH_DeInit(&EthHandle);
  119. /* configure ethernet peripheral (GPIOs, clocks, MAC, DMA) */
  120. if (HAL_ETH_Init(&EthHandle) == HAL_OK)
  121. {
  122. STM32_ETH_PRINTF("eth hardware init sucess...\n");
  123. }
  124. else
  125. {
  126. STM32_ETH_PRINTF("eth hardware init faild...\n");
  127. }
  128. /* Initialize Tx Descriptors list: Chain Mode */
  129. HAL_ETH_DMATxDescListInit(&EthHandle, DMATxDscrTab, &Tx_Buff[0][0], ETH_TXBUFNB);
  130. /* Initialize Rx Descriptors list: Chain Mode */
  131. HAL_ETH_DMARxDescListInit(&EthHandle, DMARxDscrTab, &Rx_Buff[0][0], ETH_RXBUFNB);
  132. /* Enable MAC and DMA transmission and reception */
  133. if (HAL_ETH_Start(&EthHandle) == HAL_OK)
  134. {
  135. STM32_ETH_PRINTF("eth hardware start success...\n");
  136. }
  137. else
  138. {
  139. STM32_ETH_PRINTF("eth hardware start faild...\n");
  140. }
  141. return RT_EOK;
  142. }
  143. static rt_err_t rt_stm32_eth_open(rt_device_t dev, rt_uint16_t oflag)
  144. {
  145. STM32_ETH_PRINTF("rt_stm32_eth_open...\n");
  146. return RT_EOK;
  147. }
  148. static rt_err_t rt_stm32_eth_close(rt_device_t dev)
  149. {
  150. STM32_ETH_PRINTF("rt_stm32_eth_close...\n");
  151. return RT_EOK;
  152. }
  153. static rt_size_t rt_stm32_eth_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size)
  154. {
  155. STM32_ETH_PRINTF("rt_stm32_eth_read...\n");
  156. rt_set_errno(-RT_ENOSYS);
  157. return 0;
  158. }
  159. static rt_size_t rt_stm32_eth_write (rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size)
  160. {
  161. STM32_ETH_PRINTF("rt_stm32_eth_write...\n");
  162. rt_set_errno(-RT_ENOSYS);
  163. return 0;
  164. }
  165. static rt_err_t rt_stm32_eth_control(rt_device_t dev, int cmd, void *args)
  166. {
  167. STM32_ETH_PRINTF("rt_stm32_eth_control...\n");
  168. switch(cmd)
  169. {
  170. case NIOCTL_GADDR:
  171. /* get mac address */
  172. if(args) rt_memcpy(args, stm32_eth_device.dev_addr, 6);
  173. else return -RT_ERROR;
  174. break;
  175. default :
  176. break;
  177. }
  178. return RT_EOK;
  179. }
  180. /* ethernet device interface */
  181. /* transmit packet. */
  182. rt_err_t rt_stm32_eth_tx( rt_device_t dev, struct pbuf* p)
  183. {
  184. rt_err_t ret = RT_ERROR;
  185. HAL_StatusTypeDef state;
  186. struct pbuf *q;
  187. uint8_t *buffer = (uint8_t *)(EthHandle.TxDesc->Buffer1Addr);
  188. __IO ETH_DMADescTypeDef *DmaTxDesc;
  189. uint32_t framelength = 0;
  190. uint32_t bufferoffset = 0;
  191. uint32_t byteslefttocopy = 0;
  192. uint32_t payloadoffset = 0;
  193. DmaTxDesc = EthHandle.TxDesc;
  194. bufferoffset = 0;
  195. STM32_ETH_PRINTF("rt_stm32_eth_tx...\n");
  196. /* Check if the descriptor is owned by the ETHERNET DMA (when set) or CPU (when reset) */
  197. while ((DmaTxDesc->Status & ETH_DMATXDESC_OWN) != (uint32_t)RESET)
  198. {
  199. rt_err_t result;
  200. rt_uint32_t level;
  201. level = rt_hw_interrupt_disable();
  202. tx_is_waiting = RT_TRUE;
  203. rt_hw_interrupt_enable(level);
  204. /* it's own bit set, wait it */
  205. result = rt_sem_take(&tx_wait, RT_WAITING_FOREVER);
  206. if (result == RT_EOK) break;
  207. if (result == -RT_ERROR) return -RT_ERROR;
  208. }
  209. /* copy frame from pbufs to driver buffers */
  210. for(q = p; q != NULL; q = q->next)
  211. {
  212. /* Is this buffer available? If not, goto error */
  213. if((DmaTxDesc->Status & ETH_DMATXDESC_OWN) != (uint32_t)RESET)
  214. {
  215. STM32_ETH_PRINTF("buffer not valid ...\n");
  216. ret = ERR_USE;
  217. goto error;
  218. }
  219. STM32_ETH_PRINTF("copy one frame\n");
  220. /* Get bytes in current lwIP buffer */
  221. byteslefttocopy = q->len;
  222. payloadoffset = 0;
  223. /* Check if the length of data to copy is bigger than Tx buffer size*/
  224. while( (byteslefttocopy + bufferoffset) > ETH_TX_BUF_SIZE )
  225. {
  226. /* Copy data to Tx buffer*/
  227. memcpy( (uint8_t*)((uint8_t*)buffer + bufferoffset), (uint8_t*)((uint8_t*)q->payload + payloadoffset), (ETH_TX_BUF_SIZE - bufferoffset) );
  228. /* Point to next descriptor */
  229. DmaTxDesc = (ETH_DMADescTypeDef *)(DmaTxDesc->Buffer2NextDescAddr);
  230. /* Check if the buffer is available */
  231. if((DmaTxDesc->Status & ETH_DMATXDESC_OWN) != (uint32_t)RESET)
  232. {
  233. STM32_ETH_PRINTF("dmatxdesc buffer not valid ...\n");
  234. ret = ERR_USE;
  235. goto error;
  236. }
  237. buffer = (uint8_t *)(DmaTxDesc->Buffer1Addr);
  238. byteslefttocopy = byteslefttocopy - (ETH_TX_BUF_SIZE - bufferoffset);
  239. payloadoffset = payloadoffset + (ETH_TX_BUF_SIZE - bufferoffset);
  240. framelength = framelength + (ETH_TX_BUF_SIZE - bufferoffset);
  241. bufferoffset = 0;
  242. }
  243. /* Copy the remaining bytes */
  244. memcpy( (uint8_t*)((uint8_t*)buffer + bufferoffset), (uint8_t*)((uint8_t*)q->payload + payloadoffset), byteslefttocopy );
  245. bufferoffset = bufferoffset + byteslefttocopy;
  246. framelength = framelength + byteslefttocopy;
  247. }
  248. #ifdef ETH_TX_DUMP
  249. {
  250. rt_uint32_t i;
  251. rt_uint8_t *ptr = buffer;
  252. STM32_ETH_PRINTF("tx_dump, len:%d\r\n", p->tot_len);
  253. for(i=0; i<p->tot_len; i++)
  254. {
  255. STM32_ETH_PRINTF("%02x ",*ptr);
  256. ptr++;
  257. if(((i+1)%8) == 0)
  258. {
  259. STM32_ETH_PRINTF(" ");
  260. }
  261. if(((i+1)%16) == 0)
  262. {
  263. STM32_ETH_PRINTF("\r\n");
  264. }
  265. }
  266. STM32_ETH_PRINTF("\r\ndump done!\r\n");
  267. }
  268. #endif
  269. /* Prepare transmit descriptors to give to DMA */
  270. STM32_ETH_PRINTF("transmit frame, length: %d\n", framelength);
  271. state = HAL_ETH_TransmitFrame(&EthHandle, framelength);
  272. if (state != HAL_OK)
  273. {
  274. STM32_ETH_PRINTF("eth transmit frame faild: %d\n", state);
  275. }
  276. ret = ERR_OK;
  277. error:
  278. /* When Transmit Underflow flag is set, clear it and issue a Transmit Poll Demand to resume transmission */
  279. if ((EthHandle.Instance->DMASR & ETH_DMASR_TUS) != (uint32_t)RESET)
  280. {
  281. /* Clear TUS ETHERNET DMA flag */
  282. EthHandle.Instance->DMASR = ETH_DMASR_TUS;
  283. /* Resume DMA transmission*/
  284. EthHandle.Instance->DMATPDR = 0;
  285. }
  286. return ret;
  287. }
  288. /* reception packet. */
  289. struct pbuf *rt_stm32_eth_rx(rt_device_t dev)
  290. {
  291. struct pbuf *p = NULL;
  292. struct pbuf *q = NULL;
  293. HAL_StatusTypeDef state;
  294. uint16_t len = 0;
  295. uint8_t *buffer;
  296. __IO ETH_DMADescTypeDef *dmarxdesc;
  297. uint32_t bufferoffset = 0;
  298. uint32_t payloadoffset = 0;
  299. uint32_t byteslefttocopy = 0;
  300. uint32_t i=0;
  301. STM32_ETH_PRINTF("rt_stm32_eth_rx\n");
  302. /* Get received frame */
  303. state = HAL_ETH_GetReceivedFrame_IT(&EthHandle);
  304. if (state != HAL_OK)
  305. {
  306. STM32_ETH_PRINTF("receive frame faild\n");
  307. return NULL;
  308. }
  309. /* Obtain the size of the packet and put it into the "len" variable. */
  310. len = EthHandle.RxFrameInfos.length;
  311. buffer = (uint8_t *)EthHandle.RxFrameInfos.buffer;
  312. STM32_ETH_PRINTF("receive frame len : %d\n", len);
  313. if (len > 0)
  314. {
  315. /* We allocate a pbuf chain of pbufs from the Lwip buffer pool */
  316. p = pbuf_alloc(PBUF_RAW, len, PBUF_POOL);
  317. }
  318. #ifdef ETH_RX_DUMP
  319. {
  320. rt_uint32_t i;
  321. rt_uint8_t *ptr = buffer;
  322. STM32_ETH_PRINTF("rx_dump, len:%d\r\n", p->tot_len);
  323. for (i = 0; i < len; i++)
  324. {
  325. STM32_ETH_PRINTF("%02x ", *ptr);
  326. ptr++;
  327. if (((i + 1) % 8) == 0)
  328. {
  329. STM32_ETH_PRINTF(" ");
  330. }
  331. if (((i + 1) % 16) == 0)
  332. {
  333. STM32_ETH_PRINTF("\r\n");
  334. }
  335. }
  336. STM32_ETH_PRINTF("\r\ndump done!\r\n");
  337. }
  338. #endif
  339. if (p != NULL)
  340. {
  341. dmarxdesc = EthHandle.RxFrameInfos.FSRxDesc;
  342. bufferoffset = 0;
  343. for(q = p; q != NULL; q = q->next)
  344. {
  345. byteslefttocopy = q->len;
  346. payloadoffset = 0;
  347. /* Check if the length of bytes to copy in current pbuf is bigger than Rx buffer size*/
  348. while( (byteslefttocopy + bufferoffset) > ETH_RX_BUF_SIZE )
  349. {
  350. /* Copy data to pbuf */
  351. memcpy( (uint8_t*)((uint8_t*)q->payload + payloadoffset), (uint8_t*)((uint8_t*)buffer + bufferoffset), (ETH_RX_BUF_SIZE - bufferoffset));
  352. /* Point to next descriptor */
  353. dmarxdesc = (ETH_DMADescTypeDef *)(dmarxdesc->Buffer2NextDescAddr);
  354. buffer = (uint8_t *)(dmarxdesc->Buffer1Addr);
  355. byteslefttocopy = byteslefttocopy - (ETH_RX_BUF_SIZE - bufferoffset);
  356. payloadoffset = payloadoffset + (ETH_RX_BUF_SIZE - bufferoffset);
  357. bufferoffset = 0;
  358. }
  359. /* Copy remaining data in pbuf */
  360. memcpy( (uint8_t*)((uint8_t*)q->payload + payloadoffset), (uint8_t*)((uint8_t*)buffer + bufferoffset), byteslefttocopy);
  361. bufferoffset = bufferoffset + byteslefttocopy;
  362. }
  363. }
  364. /* Release descriptors to DMA */
  365. /* Point to first descriptor */
  366. dmarxdesc = EthHandle.RxFrameInfos.FSRxDesc;
  367. /* Set Own bit in Rx descriptors: gives the buffers back to DMA */
  368. for (i=0; i< EthHandle.RxFrameInfos.SegCount; i++)
  369. {
  370. dmarxdesc->Status |= ETH_DMARXDESC_OWN;
  371. dmarxdesc = (ETH_DMADescTypeDef *)(dmarxdesc->Buffer2NextDescAddr);
  372. }
  373. /* Clear Segment_Count */
  374. EthHandle.RxFrameInfos.SegCount =0;
  375. /* When Rx Buffer unavailable flag is set: clear it and resume reception */
  376. if ((EthHandle.Instance->DMASR & ETH_DMASR_RBUS) != (uint32_t)RESET)
  377. {
  378. /* Clear RBUS ETHERNET DMA flag */
  379. EthHandle.Instance->DMASR = ETH_DMASR_RBUS;
  380. /* Resume DMA reception */
  381. EthHandle.Instance->DMARPDR = 0;
  382. }
  383. return p;
  384. }
  385. static void NVIC_Configuration(void)
  386. {
  387. /* Enable the Ethernet global Interrupt */
  388. HAL_NVIC_SetPriority(ETH_IRQn, 0x7, 0);
  389. HAL_NVIC_EnableIRQ(ETH_IRQn);
  390. }
  391. /*
  392. * GPIO Configuration for ETH
  393. */
  394. static void GPIO_Configuration(void)
  395. {
  396. GPIO_InitTypeDef GPIO_InitStructure;
  397. STM32_ETH_PRINTF("GPIO_Configuration...\n");
  398. /* Enable SYSCFG clock */
  399. __HAL_RCC_ETH_CLK_ENABLE();
  400. __HAL_RCC_GPIOA_CLK_ENABLE();
  401. __HAL_RCC_GPIOB_CLK_ENABLE();
  402. __HAL_RCC_GPIOC_CLK_ENABLE();
  403. __HAL_RCC_GPIOG_CLK_ENABLE();
  404. GPIO_InitStructure.Speed = GPIO_SPEED_HIGH;
  405. GPIO_InitStructure.Mode = GPIO_MODE_AF_PP;
  406. GPIO_InitStructure.Alternate = GPIO_AF11_ETH;
  407. GPIO_InitStructure.Pull = GPIO_NOPULL;
  408. GPIO_InitStructure.Pin = ETH_MDIO_PIN;
  409. HAL_GPIO_Init(ETH_MDIO_PORN,&GPIO_InitStructure);
  410. GPIO_InitStructure.Pin = ETH_MDC_PIN;
  411. HAL_GPIO_Init(ETH_MDC_PORN,&GPIO_InitStructure);
  412. GPIO_InitStructure.Pin = ETH_RMII_REF_CLK_PIN;
  413. HAL_GPIO_Init(ETH_RMII_REF_CLK_PORN,&GPIO_InitStructure);
  414. GPIO_InitStructure.Pin = ETH_RMII_CRS_DV_PIN;
  415. HAL_GPIO_Init(ETH_RMII_CRS_DV_PORN,&GPIO_InitStructure);
  416. GPIO_InitStructure.Pin = ETH_RMII_REF_CLK_PIN;
  417. HAL_GPIO_Init(ETH_RMII_REF_CLK_PORN,&GPIO_InitStructure);
  418. GPIO_InitStructure.Pin = ETH_RMII_CRS_DV_PIN;
  419. HAL_GPIO_Init(ETH_RMII_CRS_DV_PORN,&GPIO_InitStructure);
  420. GPIO_InitStructure.Pin = ETH_RMII_RXD0_PIN;
  421. HAL_GPIO_Init(ETH_RMII_RXD0_PORN,&GPIO_InitStructure);
  422. GPIO_InitStructure.Pin = ETH_RMII_RXD1_PIN;
  423. HAL_GPIO_Init(ETH_RMII_RXD1_PORN,&GPIO_InitStructure);
  424. GPIO_InitStructure.Pin = ETH_RMII_TX_EN_PIN;
  425. HAL_GPIO_Init(ETH_RMII_TX_EN_PORN,&GPIO_InitStructure);
  426. GPIO_InitStructure.Pin = ETH_RMII_TXD0_PIN;
  427. HAL_GPIO_Init(ETH_RMII_TXD0_PORN,&GPIO_InitStructure);
  428. GPIO_InitStructure.Pin = ETH_RMII_TXD1_PIN;
  429. HAL_GPIO_Init(ETH_RMII_TXD1_PORN,&GPIO_InitStructure);
  430. HAL_NVIC_SetPriority(ETH_IRQn,1,0);
  431. HAL_NVIC_EnableIRQ(ETH_IRQn);
  432. }
  433. void HAL_ETH_MspInit(ETH_HandleTypeDef *heth)
  434. {
  435. GPIO_Configuration();
  436. NVIC_Configuration();
  437. }
  438. static int rt_hw_stm32_eth_init(void)
  439. {
  440. rt_err_t state;
  441. stm32_eth_device.ETH_Speed = ETH_SPEED_100M;
  442. stm32_eth_device.ETH_Mode = ETH_MODE_FULLDUPLEX;
  443. /* OUI 00-80-E1 STMICROELECTRONICS. */
  444. stm32_eth_device.dev_addr[0] = 0x00;
  445. stm32_eth_device.dev_addr[1] = 0x80;
  446. stm32_eth_device.dev_addr[2] = 0xE1;
  447. /* generate MAC addr from 96bit unique ID (only for test). */
  448. stm32_eth_device.dev_addr[3] = *(rt_uint8_t*)(UID_BASE+4);
  449. stm32_eth_device.dev_addr[4] = *(rt_uint8_t*)(UID_BASE+2);
  450. stm32_eth_device.dev_addr[5] = *(rt_uint8_t*)(UID_BASE+0);
  451. stm32_eth_device.parent.parent.init = rt_stm32_eth_init;
  452. stm32_eth_device.parent.parent.open = rt_stm32_eth_open;
  453. stm32_eth_device.parent.parent.close = rt_stm32_eth_close;
  454. stm32_eth_device.parent.parent.read = rt_stm32_eth_read;
  455. stm32_eth_device.parent.parent.write = rt_stm32_eth_write;
  456. stm32_eth_device.parent.parent.control = rt_stm32_eth_control;
  457. stm32_eth_device.parent.parent.user_data = RT_NULL;
  458. stm32_eth_device.parent.eth_rx = rt_stm32_eth_rx;
  459. stm32_eth_device.parent.eth_tx = rt_stm32_eth_tx;
  460. STM32_ETH_PRINTF("sem init: tx_wait\r\n");
  461. /* init tx semaphore */
  462. rt_sem_init(&tx_wait, "tx_wait", 0, RT_IPC_FLAG_FIFO);
  463. /* register eth device */
  464. STM32_ETH_PRINTF("eth_device_init start\r\n");
  465. state = eth_device_init(&(stm32_eth_device.parent), "e0");
  466. if (RT_EOK == state)
  467. {
  468. STM32_ETH_PRINTF("eth_device_init success\r\n");
  469. }
  470. else
  471. {
  472. STM32_ETH_PRINTF("eth_device_init faild: %d\r\n", state);
  473. }
  474. eth_device_linkchange(&stm32_eth_device.parent, RT_TRUE); //linkup the e0 for lwip to check
  475. return state;
  476. }
  477. INIT_APP_EXPORT(rt_hw_stm32_eth_init);