spi_flash_sfud.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611
  1. /*
  2. * File : spi_flash_sfud.c
  3. * This file is part of RT-Thread RTOS
  4. * COPYRIGHT (C) 2006 - 2016, RT-Thread Development Team
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License along
  17. * with this program; if not, write to the Free Software Foundation, Inc.,
  18. * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
  19. *
  20. * Change Logs:
  21. * Date Author Notes
  22. * 2016-09-28 armink first version.
  23. */
  24. #include <stdint.h>
  25. #include <rtdevice.h>
  26. #include "spi_flash.h"
  27. #include "spi_flash_sfud.h"
  28. #ifdef RT_USING_SFUD
  29. #ifdef RT_DEBUG_SFUD
  30. #define DEBUG_TRACE rt_kprintf("[SFUD] "); rt_kprintf
  31. #else
  32. #define DEBUG_TRACE(...)
  33. #endif /* RT_DEBUG_SFUD */
  34. #ifndef RT_SFUD_DEFAULT_SPI_CFG
  35. /* read the JEDEC SFDP command must run at 50 MHz or less */
  36. #define RT_SFUD_DEFAULT_SPI_CFG \
  37. { \
  38. .mode = RT_SPI_MODE_0 | RT_SPI_MSB, \
  39. .data_width = 8, \
  40. .max_hz = 50 * 1000 * 1000, \
  41. }
  42. #endif
  43. static char log_buf[RT_CONSOLEBUF_SIZE];
  44. void sfud_log_debug(const char *file, const long line, const char *format, ...);
  45. static rt_err_t rt_sfud_control(rt_device_t dev, int cmd, void *args) {
  46. RT_ASSERT(dev != RT_NULL);
  47. switch (cmd) {
  48. case RT_DEVICE_CTRL_BLK_GETGEOME: {
  49. struct rt_device_blk_geometry *geometry = (struct rt_device_blk_geometry *) args;
  50. struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (dev->user_data);
  51. if (rtt_dev == RT_NULL || geometry == RT_NULL) {
  52. return -RT_ERROR;
  53. }
  54. geometry->bytes_per_sector = rtt_dev->geometry.bytes_per_sector;
  55. geometry->sector_count = rtt_dev->geometry.sector_count;
  56. geometry->block_size = rtt_dev->geometry.block_size;
  57. break;
  58. }
  59. case RT_DEVICE_CTRL_BLK_ERASE: {
  60. rt_uint32_t *addrs = (rt_uint32_t *) args, start_addr = addrs[0], end_addr = addrs[1], phy_start_addr;
  61. struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (dev->user_data);
  62. sfud_flash *sfud_dev = (sfud_flash *) (rtt_dev->user_data);
  63. rt_size_t phy_size;
  64. if (addrs == RT_NULL || start_addr > end_addr || rtt_dev == RT_NULL || sfud_dev == RT_NULL) {
  65. return -RT_ERROR;
  66. }
  67. if (end_addr == start_addr) {
  68. end_addr ++;
  69. }
  70. phy_start_addr = start_addr * rtt_dev->geometry.bytes_per_sector;
  71. phy_size = (end_addr - start_addr) * rtt_dev->geometry.bytes_per_sector;
  72. if (sfud_erase(sfud_dev, phy_start_addr, phy_size) != SFUD_SUCCESS) {
  73. return -RT_ERROR;
  74. }
  75. break;
  76. }
  77. }
  78. return RT_EOK;
  79. }
  80. static rt_size_t rt_sfud_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size) {
  81. struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (dev->user_data);
  82. sfud_flash *sfud_dev = (sfud_flash *) (rtt_dev->user_data);
  83. /* change the block device¡¯s logic address to physical address */
  84. rt_off_t phy_pos = pos * rtt_dev->geometry.bytes_per_sector;
  85. rt_size_t phy_size = size * rtt_dev->geometry.bytes_per_sector;
  86. if (sfud_read(sfud_dev, phy_pos, phy_size, buffer) != SFUD_SUCCESS) {
  87. return 0;
  88. } else {
  89. return size;
  90. }
  91. }
  92. static rt_size_t rt_sfud_write(rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size) {
  93. struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (dev->user_data);
  94. sfud_flash *sfud_dev = (sfud_flash *) (rtt_dev->user_data);
  95. /* change the block device¡¯s logic address to physical address */
  96. rt_off_t phy_pos = pos * rtt_dev->geometry.bytes_per_sector;
  97. rt_size_t phy_size = size * rtt_dev->geometry.bytes_per_sector;
  98. if (sfud_erase_write(sfud_dev, phy_pos, phy_size, buffer) != SFUD_SUCCESS) {
  99. return 0;
  100. } else {
  101. return size;
  102. }
  103. }
  104. /**
  105. * SPI write data then read data
  106. */
  107. static sfud_err spi_write_read(const sfud_spi *spi, const uint8_t *write_buf, size_t write_size, uint8_t *read_buf,
  108. size_t read_size) {
  109. sfud_err result = SFUD_SUCCESS;
  110. sfud_flash *sfud_dev = (sfud_flash *) (spi->user_data);
  111. struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (sfud_dev->user_data);
  112. if (write_size) {
  113. RT_ASSERT(write_buf);
  114. }
  115. if (read_size) {
  116. RT_ASSERT(read_buf);
  117. }
  118. if (write_size && read_size) {
  119. if (rt_spi_send_then_recv(rtt_dev->rt_spi_device, write_buf, write_size, read_buf, read_size) != RT_EOK) {
  120. result = SFUD_ERR_TIMEOUT;
  121. }
  122. } else if (write_size) {
  123. if (rt_spi_send(rtt_dev->rt_spi_device, write_buf, write_size) == 0) {
  124. result = SFUD_ERR_TIMEOUT;
  125. }
  126. } else {
  127. if (rt_spi_recv(rtt_dev->rt_spi_device, read_buf, read_size) == 0) {
  128. result = SFUD_ERR_TIMEOUT;
  129. }
  130. }
  131. return result;
  132. }
  133. static void spi_lock(const sfud_spi *spi) {
  134. sfud_flash *sfud_dev = (sfud_flash *) (spi->user_data);
  135. struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (sfud_dev->user_data);
  136. rt_mutex_take(&(rtt_dev->lock), RT_WAITING_FOREVER);
  137. }
  138. static void spi_unlock(const sfud_spi *spi) {
  139. sfud_flash *sfud_dev = (sfud_flash *) (spi->user_data);
  140. struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (sfud_dev->user_data);
  141. rt_mutex_release(&(rtt_dev->lock));
  142. }
  143. static void retry_delay_100us(void) {
  144. /* 100 microsecond delay */
  145. rt_thread_delay((RT_TICK_PER_SECOND * 1 + 9999) / 10000);
  146. }
  147. /**
  148. * This function is print debug info.
  149. *
  150. * @param file the file which has call this function
  151. * @param line the line number which has call this function
  152. * @param format output format
  153. * @param ... args
  154. */
  155. void sfud_log_debug(const char *file, const long line, const char *format, ...) {
  156. va_list args;
  157. /* args point to the first variable parameter */
  158. va_start(args, format);
  159. rt_kprintf("[SFUD] (%s:%ld) ", file, line);
  160. /* must use vprintf to print */
  161. vsnprintf(log_buf, sizeof(log_buf), format, args);
  162. rt_kprintf("%s\n", log_buf);
  163. va_end(args);
  164. }
  165. /**
  166. * This function is print routine info.
  167. *
  168. * @param format output format
  169. * @param ... args
  170. */
  171. void sfud_log_info(const char *format, ...) {
  172. va_list args;
  173. /* args point to the first variable parameter */
  174. va_start(args, format);
  175. rt_kprintf("[SFUD] ");
  176. /* must use vprintf to print */
  177. vsnprintf(log_buf, sizeof(log_buf), format, args);
  178. rt_kprintf("%s\n", log_buf);
  179. va_end(args);
  180. }
  181. sfud_err sfud_spi_port_init(sfud_flash *flash) {
  182. sfud_err result = SFUD_SUCCESS;
  183. /* port SPI device interface */
  184. flash->spi.wr = spi_write_read;
  185. flash->spi.lock = spi_lock;
  186. flash->spi.unlock = spi_unlock;
  187. flash->spi.user_data = flash;
  188. if (RT_TICK_PER_SECOND < 1000) {
  189. rt_kprintf("[SFUD] Warning: The OS tick(%d) is less than 1000. So the flash write will take more time.\n", RT_TICK_PER_SECOND);
  190. }
  191. /* 100 microsecond delay */
  192. flash->retry.delay = retry_delay_100us;
  193. /* 60 seconds timeout */
  194. flash->retry.times = 60 * 10000;
  195. return result;
  196. }
  197. #ifdef RT_USING_DEVICE_OPS
  198. const static struct rt_device_ops flash_device_ops =
  199. {
  200. RT_NULL,
  201. RT_NULL,
  202. RT_NULL,
  203. rt_sfud_read,
  204. rt_sfud_write,
  205. rt_sfud_control
  206. };
  207. #endif
  208. /**
  209. * Probe SPI flash by SFUD(Serial Flash Universal Driver) driver library and though SPI device.
  210. *
  211. * @param spi_flash_dev_name the name which will create SPI flash device
  212. * @param spi_dev_name using SPI device name
  213. *
  214. * @return probed SPI flash device, probe failed will return RT_NULL
  215. */
  216. rt_spi_flash_device_t rt_sfud_flash_probe(const char *spi_flash_dev_name, const char *spi_dev_name) {
  217. rt_spi_flash_device_t rtt_dev = RT_NULL;
  218. sfud_flash *sfud_dev = RT_NULL;
  219. char *spi_flash_dev_name_bak = RT_NULL, *spi_dev_name_bak = RT_NULL;
  220. /* using default flash SPI configuration for initialize SPI Flash
  221. * @note you also can change the SPI to other configuration after initialized finish */
  222. struct rt_spi_configuration cfg = RT_SFUD_DEFAULT_SPI_CFG;
  223. extern sfud_err sfud_device_init(sfud_flash *flash);
  224. RT_ASSERT(spi_flash_dev_name);
  225. RT_ASSERT(spi_dev_name);
  226. rtt_dev = (rt_spi_flash_device_t) rt_malloc(sizeof(struct spi_flash_device));
  227. sfud_dev = (sfud_flash_t) rt_malloc(sizeof(sfud_flash));
  228. spi_flash_dev_name_bak = (char *) rt_malloc(rt_strlen(spi_flash_dev_name) + 1);
  229. spi_dev_name_bak = (char *) rt_malloc(rt_strlen(spi_dev_name) + 1);
  230. if (rtt_dev) {
  231. rt_memset(rtt_dev, 0, sizeof(struct spi_flash_device));
  232. /* initialize lock */
  233. rt_mutex_init(&(rtt_dev->lock), spi_flash_dev_name, RT_IPC_FLAG_FIFO);
  234. }
  235. if (rtt_dev && sfud_dev && spi_flash_dev_name_bak && spi_dev_name_bak) {
  236. rt_memset(sfud_dev, 0, sizeof(sfud_flash));
  237. rt_strncpy(spi_flash_dev_name_bak, spi_flash_dev_name, rt_strlen(spi_flash_dev_name));
  238. rt_strncpy(spi_dev_name_bak, spi_dev_name, rt_strlen(spi_dev_name));
  239. /* make string end sign */
  240. spi_flash_dev_name_bak[rt_strlen(spi_flash_dev_name)] = '\0';
  241. spi_dev_name_bak[rt_strlen(spi_dev_name)] = '\0';
  242. /* SPI configure */
  243. {
  244. /* RT-Thread SPI device initialize */
  245. rtt_dev->rt_spi_device = (struct rt_spi_device *) rt_device_find(spi_dev_name);
  246. if (rtt_dev->rt_spi_device == RT_NULL || rtt_dev->rt_spi_device->parent.type != RT_Device_Class_SPIDevice) {
  247. rt_kprintf("ERROR: SPI device %s not found!\n", spi_dev_name);
  248. goto error;
  249. }
  250. sfud_dev->spi.name = spi_dev_name_bak;
  251. rt_spi_configure(rtt_dev->rt_spi_device, &cfg);
  252. }
  253. /* SFUD flash device initialize */
  254. {
  255. sfud_dev->name = spi_flash_dev_name_bak;
  256. /* accessed each other */
  257. rtt_dev->user_data = sfud_dev;
  258. rtt_dev->flash_device.user_data = rtt_dev;
  259. sfud_dev->user_data = rtt_dev;
  260. /* initialize SFUD device */
  261. if (sfud_device_init(sfud_dev) != SFUD_SUCCESS) {
  262. rt_kprintf("ERROR: SPI flash probe failed by SPI device %s.\n", spi_dev_name);
  263. goto error;
  264. }
  265. /* when initialize success, then copy SFUD flash device's geometry to RT-Thread SPI flash device */
  266. rtt_dev->geometry.sector_count = sfud_dev->chip.capacity / sfud_dev->chip.erase_gran;
  267. rtt_dev->geometry.bytes_per_sector = sfud_dev->chip.erase_gran;
  268. rtt_dev->geometry.block_size = sfud_dev->chip.erase_gran;
  269. }
  270. /* register device */
  271. rtt_dev->flash_device.type = RT_Device_Class_Block;
  272. #ifdef RT_USING_DEVICE_OPS
  273. rtt_dev->flash_device.ops = &flash_device_ops;
  274. #else
  275. rtt_dev->flash_device.init = RT_NULL;
  276. rtt_dev->flash_device.open = RT_NULL;
  277. rtt_dev->flash_device.close = RT_NULL;
  278. rtt_dev->flash_device.read = rt_sfud_read;
  279. rtt_dev->flash_device.write = rt_sfud_write;
  280. rtt_dev->flash_device.control = rt_sfud_control;
  281. #endif
  282. rt_device_register(&(rtt_dev->flash_device), spi_flash_dev_name, RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_STANDALONE);
  283. DEBUG_TRACE("Probe SPI flash %s by SPI device %s success.\n",spi_flash_dev_name, spi_dev_name);
  284. return rtt_dev;
  285. } else {
  286. rt_kprintf("ERROR: Low memory.\n");
  287. goto error;
  288. }
  289. error:
  290. if (rtt_dev) {
  291. rt_mutex_detach(&(rtt_dev->lock));
  292. }
  293. /* may be one of objects memory was malloc success, so need free all */
  294. rt_free(rtt_dev);
  295. rt_free(sfud_dev);
  296. rt_free(spi_flash_dev_name_bak);
  297. rt_free(spi_dev_name_bak);
  298. return RT_NULL;
  299. }
  300. /**
  301. * Delete SPI flash device
  302. *
  303. * @param spi_flash_dev SPI flash device
  304. *
  305. * @return the operation status, RT_EOK on successful
  306. */
  307. rt_err_t rt_sfud_flash_delete(rt_spi_flash_device_t spi_flash_dev) {
  308. sfud_flash *sfud_flash_dev = (sfud_flash *) (spi_flash_dev->user_data);
  309. RT_ASSERT(spi_flash_dev);
  310. RT_ASSERT(sfud_flash_dev);
  311. rt_device_unregister(&(spi_flash_dev->flash_device));
  312. rt_mutex_detach(&(spi_flash_dev->lock));
  313. rt_free(sfud_flash_dev->spi.name);
  314. rt_free(sfud_flash_dev->name);
  315. rt_free(sfud_flash_dev);
  316. rt_free(spi_flash_dev);
  317. return RT_EOK;
  318. }
  319. #if defined(RT_USING_FINSH) && defined(FINSH_USING_MSH)
  320. #include <finsh.h>
  321. static void sf(uint8_t argc, char **argv) {
  322. #define CMD_PROBE_INDEX 0
  323. #define CMD_READ_INDEX 1
  324. #define CMD_WRITE_INDEX 2
  325. #define CMD_ERASE_INDEX 3
  326. #define CMD_RW_STATUS_INDEX 4
  327. #define CMD_BENCH_INDEX 5
  328. sfud_err result = SFUD_SUCCESS;
  329. static const sfud_flash *sfud_dev = NULL;
  330. static rt_spi_flash_device_t rtt_dev = NULL, rtt_dev_bak = NULL;
  331. size_t i = 0;
  332. const char* sf_help_info[] = {
  333. [CMD_PROBE_INDEX] = "sf probe [spi_device] - probe and init SPI flash by given 'spi_device'",
  334. [CMD_READ_INDEX] = "sf read addr size - read 'size' bytes starting at 'addr'",
  335. [CMD_WRITE_INDEX] = "sf write addr data1 ... dataN - write some bytes 'data' to flash starting at 'addr'",
  336. [CMD_ERASE_INDEX] = "sf erase addr size - erase 'size' bytes starting at 'addr'",
  337. [CMD_RW_STATUS_INDEX] = "sf status [<volatile> <status>] - read or write '1:volatile|0:non-volatile' 'status'",
  338. [CMD_BENCH_INDEX] = "sf bench - full chip benchmark. DANGER: It will erase full chip!",
  339. };
  340. if (argc < 2) {
  341. rt_kprintf("Usage:\n");
  342. for (i = 0; i < sizeof(sf_help_info) / sizeof(char*); i++) {
  343. rt_kprintf("%s\n", sf_help_info[i]);
  344. }
  345. rt_kprintf("\n");
  346. } else {
  347. const char *operator = argv[1];
  348. uint32_t addr, size;
  349. if (!strcmp(operator, "probe")) {
  350. if (argc < 3) {
  351. rt_kprintf("Usage: %s.\n", sf_help_info[CMD_PROBE_INDEX]);
  352. } else {
  353. char *spi_dev_name = argv[2];
  354. rtt_dev_bak = rtt_dev;
  355. rtt_dev = rt_sfud_flash_probe("sf_cmd", spi_dev_name);
  356. if (!rtt_dev) {
  357. return;
  358. }
  359. /* already probe then delete the old SPI flash device */
  360. if(rtt_dev_bak) {
  361. rt_sfud_flash_delete(rtt_dev_bak);
  362. }
  363. sfud_dev = (sfud_flash_t)rtt_dev->user_data;
  364. if (sfud_dev->chip.capacity < 1024 * 1024) {
  365. rt_kprintf("%d KB %s is current selected device.\n", sfud_dev->chip.capacity / 1024, sfud_dev->name);
  366. } else {
  367. rt_kprintf("%d MB %s is current selected device.\n", sfud_dev->chip.capacity / 1024 / 1024,
  368. sfud_dev->name);
  369. }
  370. }
  371. } else {
  372. if (!sfud_dev) {
  373. rt_kprintf("No flash device selected. Please run 'sf probe'.\n");
  374. return;
  375. }
  376. if (!rt_strcmp(operator, "read")) {
  377. if (argc < 4) {
  378. rt_kprintf("Usage: %s.\n", sf_help_info[CMD_READ_INDEX]);
  379. return;
  380. } else {
  381. addr = atol(argv[2]);
  382. size = atol(argv[3]);
  383. uint8_t *data = rt_malloc(size);
  384. if (data) {
  385. result = sfud_read(sfud_dev, addr, size, data);
  386. if (result == SFUD_SUCCESS) {
  387. rt_kprintf("Read the %s flash data success. Start from 0x%08X, size is %ld. The data is:\n",
  388. sfud_dev->name, addr, size);
  389. rt_kprintf("Offset (h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F\n");
  390. for (i = 0; i < size; i++) {
  391. if (i % 16 == 0) {
  392. rt_kprintf("[%08X] ", addr + i);
  393. }
  394. rt_kprintf("%02X ", data[i]);
  395. if (((i + 1) % 16 == 0) || i == size - 1) {
  396. rt_kprintf("\n");
  397. }
  398. }
  399. rt_kprintf("\n");
  400. }
  401. rt_free(data);
  402. } else {
  403. rt_kprintf("Low memory!\n");
  404. }
  405. }
  406. } else if (!rt_strcmp(operator, "write")) {
  407. if (argc < 4) {
  408. rt_kprintf("Usage: %s.\n", sf_help_info[CMD_WRITE_INDEX]);
  409. return;
  410. } else {
  411. addr = atol(argv[2]);
  412. size = argc - 3;
  413. uint8_t *data = rt_malloc(size);
  414. if (data) {
  415. for (i = 0; i < size; i++) {
  416. data[i] = atoi(argv[3 + i]);
  417. }
  418. result = sfud_write(sfud_dev, addr, size, data);
  419. if (result == SFUD_SUCCESS) {
  420. rt_kprintf("Write the %s flash data success. Start from 0x%08X, size is %ld.\n",
  421. sfud_dev->name, addr, size);
  422. rt_kprintf("Write data: ");
  423. for (i = 0; i < size; i++) {
  424. rt_kprintf("%d ", data[i]);
  425. }
  426. rt_kprintf(".\n");
  427. }
  428. rt_free(data);
  429. } else {
  430. rt_kprintf("Low memory!\n");
  431. }
  432. }
  433. } else if (!rt_strcmp(operator, "erase")) {
  434. if (argc < 4) {
  435. rt_kprintf("Usage: %s.\n", sf_help_info[CMD_ERASE_INDEX]);
  436. return;
  437. } else {
  438. addr = atol(argv[2]);
  439. size = atol(argv[3]);
  440. result = sfud_erase(sfud_dev, addr, size);
  441. if (result == SFUD_SUCCESS) {
  442. rt_kprintf("Erase the %s flash data success. Start from 0x%08X, size is %ld.\n", sfud_dev->name,
  443. addr, size);
  444. }
  445. }
  446. } else if (!rt_strcmp(operator, "status")) {
  447. if (argc < 3) {
  448. uint8_t status;
  449. result = sfud_read_status(sfud_dev, &status);
  450. if (result == SFUD_SUCCESS) {
  451. rt_kprintf("The %s flash status register current value is 0x%02X.\n", sfud_dev->name, status);
  452. }
  453. } else if (argc == 4) {
  454. bool is_volatile = atoi(argv[2]);
  455. uint8_t status = atoi(argv[3]);
  456. result = sfud_write_status(sfud_dev, is_volatile, status);
  457. if (result == SFUD_SUCCESS) {
  458. rt_kprintf("Write the %s flash status register to 0x%02X success.\n", sfud_dev->name, status);
  459. }
  460. } else {
  461. rt_kprintf("Usage: %s.\n", sf_help_info[CMD_RW_STATUS_INDEX]);
  462. return;
  463. }
  464. } else if (!rt_strcmp(operator, "bench")) {
  465. if ((argc > 2 && rt_strcmp(argv[2], "yes")) || argc < 3) {
  466. rt_kprintf("DANGER: It will erase full chip! Please run 'sf bench yes'.\n");
  467. return;
  468. }
  469. /* full chip benchmark test */
  470. addr = 0;
  471. size = sfud_dev->chip.capacity;
  472. uint32_t start_time, time_cast;
  473. size_t write_size = SFUD_WRITE_MAX_PAGE_SIZE, read_size = 4096;
  474. uint8_t *write_data = rt_malloc(write_size), *read_data = rt_malloc(read_size);
  475. if (write_data && read_data) {
  476. rt_memset(write_data, 0x55, write_size);
  477. /* benchmark testing */
  478. rt_kprintf("Erasing the %s %ld bytes data, waiting...\n", sfud_dev->name, size);
  479. start_time = rt_tick_get();
  480. result = sfud_erase(sfud_dev, addr, size);
  481. if (result == SFUD_SUCCESS) {
  482. time_cast = rt_tick_get() - start_time;
  483. rt_kprintf("Erase benchmark success, total time: %d.%03dS.\n", time_cast / RT_TICK_PER_SECOND,
  484. time_cast % RT_TICK_PER_SECOND / ((RT_TICK_PER_SECOND * 1 + 999) / 1000));
  485. } else {
  486. rt_kprintf("Erase benchmark has an error. Error code: %d.\n", result);
  487. }
  488. /* write test */
  489. rt_kprintf("Writing the %s %ld bytes data, waiting...\n", sfud_dev->name, size);
  490. start_time = rt_tick_get();
  491. for (i = 0; i < size; i += write_size) {
  492. result = sfud_write(sfud_dev, addr + i, write_size, write_data);
  493. if (result != SFUD_SUCCESS) {
  494. break;
  495. }
  496. }
  497. if (result == SFUD_SUCCESS) {
  498. time_cast = rt_tick_get() - start_time;
  499. rt_kprintf("Write benchmark success, total time: %d.%03dS.\n", time_cast / RT_TICK_PER_SECOND,
  500. time_cast % RT_TICK_PER_SECOND / ((RT_TICK_PER_SECOND * 1 + 999) / 1000));
  501. } else {
  502. rt_kprintf("Write benchmark has an error. Error code: %d.\n", result);
  503. }
  504. /* read test */
  505. rt_kprintf("Reading the %s %ld bytes data, waiting...\n", sfud_dev->name, size);
  506. start_time = rt_tick_get();
  507. for (i = 0; i < size; i += read_size) {
  508. if (i + read_size <= size) {
  509. result = sfud_read(sfud_dev, addr + i, read_size, read_data);
  510. } else {
  511. result = sfud_read(sfud_dev, addr + i, size - i, read_data);
  512. }
  513. if (result != SFUD_SUCCESS) {
  514. break;
  515. }
  516. }
  517. if (result == SFUD_SUCCESS) {
  518. time_cast = rt_tick_get() - start_time;
  519. rt_kprintf("Read benchmark success, total time: %d.%03dS.\n", time_cast / RT_TICK_PER_SECOND,
  520. time_cast % RT_TICK_PER_SECOND / ((RT_TICK_PER_SECOND * 1 + 999) / 1000));
  521. } else {
  522. rt_kprintf("Read benchmark has an error. Error code: %d.\n", result);
  523. }
  524. } else {
  525. rt_kprintf("Low memory!\n");
  526. }
  527. rt_free(write_data);
  528. rt_free(read_data);
  529. } else {
  530. rt_kprintf("Usage:\n");
  531. for (i = 0; i < sizeof(sf_help_info) / sizeof(char*); i++) {
  532. rt_kprintf("%s\n", sf_help_info[i]);
  533. }
  534. rt_kprintf("\n");
  535. return;
  536. }
  537. if (result != SFUD_SUCCESS) {
  538. rt_kprintf("This flash operate has an error. Error code: %d.\n", result);
  539. }
  540. }
  541. }
  542. }
  543. MSH_CMD_EXPORT(sf, SPI Flash operate.);
  544. #endif /* defined(RT_USING_FINSH) && defined(FINSH_USING_MSH) */
  545. #endif /* RT_USING_SFUD */