drv_crypto.c 9.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331
  1. /*
  2. * Copyright (c) 2019 Winner Microelectronics Co., Ltd.
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2019-07-10 Ernest 1st version
  9. * 2020-10-14 Dozingfiretruck Porting for stm32wbxx
  10. */
  11. #include <rtthread.h>
  12. #include <rtdevice.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include "drv_crypto.h"
  16. #include "board.h"
  17. struct stm32_hwcrypto_device
  18. {
  19. struct rt_hwcrypto_device dev;
  20. struct rt_mutex mutex;
  21. };
  22. #if defined(BSP_USING_CRC)
  23. struct hash_ctx_des
  24. {
  25. CRC_HandleTypeDef contex;
  26. };
  27. #if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32WB)
  28. static struct hwcrypto_crc_cfg crc_backup_cfg;
  29. static int reverse_bit(rt_uint32_t n)
  30. {
  31. n = ((n >> 1) & 0x55555555) | ((n << 1) & 0xaaaaaaaa);
  32. n = ((n >> 2) & 0x33333333) | ((n << 2) & 0xcccccccc);
  33. n = ((n >> 4) & 0x0f0f0f0f) | ((n << 4) & 0xf0f0f0f0);
  34. n = ((n >> 8) & 0x00ff00ff) | ((n << 8) & 0xff00ff00);
  35. n = ((n >> 16) & 0x0000ffff) | ((n << 16) & 0xffff0000);
  36. return n;
  37. }
  38. #endif /* defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F7) */
  39. static rt_uint32_t _crc_update(struct hwcrypto_crc *ctx, const rt_uint8_t *in, rt_size_t length)
  40. {
  41. rt_uint32_t result = 0;
  42. struct stm32_hwcrypto_device *stm32_hw_dev = (struct stm32_hwcrypto_device *)ctx->parent.device->user_data;
  43. #if defined(SOC_SERIES_STM32L4)|| defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32WB)
  44. CRC_HandleTypeDef *HW_TypeDef = (CRC_HandleTypeDef *)(ctx->parent.contex);
  45. #endif
  46. rt_mutex_take(&stm32_hw_dev->mutex, RT_WAITING_FOREVER);
  47. #if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32WB)
  48. if (memcmp(&crc_backup_cfg, &ctx->crc_cfg, sizeof(struct hwcrypto_crc_cfg)) != 0)
  49. {
  50. if (HW_TypeDef->Init.DefaultPolynomialUse == DEFAULT_POLYNOMIAL_DISABLE)
  51. {
  52. HW_TypeDef->Init.GeneratingPolynomial = ctx ->crc_cfg.poly;
  53. }
  54. else
  55. {
  56. HW_TypeDef->Init.GeneratingPolynomial = DEFAULT_CRC32_POLY;
  57. }
  58. switch (ctx ->crc_cfg.flags)
  59. {
  60. case 0:
  61. HW_TypeDef->Init.InputDataInversionMode = CRC_INPUTDATA_INVERSION_NONE;
  62. HW_TypeDef->Init.OutputDataInversionMode = CRC_OUTPUTDATA_INVERSION_DISABLE;
  63. break;
  64. case CRC_FLAG_REFIN:
  65. HW_TypeDef->Init.InputDataInversionMode = CRC_INPUTDATA_INVERSION_BYTE;
  66. break;
  67. case CRC_FLAG_REFOUT:
  68. HW_TypeDef->Init.OutputDataInversionMode = CRC_OUTPUTDATA_INVERSION_ENABLE;
  69. break;
  70. case CRC_FLAG_REFIN|CRC_FLAG_REFOUT:
  71. HW_TypeDef->Init.InputDataInversionMode = CRC_INPUTDATA_INVERSION_BYTE;
  72. HW_TypeDef->Init.OutputDataInversionMode = CRC_OUTPUTDATA_INVERSION_ENABLE;
  73. break;
  74. default :
  75. goto _exit;
  76. }
  77. HW_TypeDef->Init.CRCLength = ctx ->crc_cfg.width;
  78. if (HW_TypeDef->Init.DefaultInitValueUse == DEFAULT_INIT_VALUE_DISABLE)
  79. {
  80. HW_TypeDef->Init.InitValue = ctx ->crc_cfg.last_val;
  81. }
  82. if (HAL_CRC_Init(HW_TypeDef) != HAL_OK)
  83. {
  84. goto _exit;
  85. }
  86. memcpy(&crc_backup_cfg, &ctx->crc_cfg, sizeof(struct hwcrypto_crc_cfg));
  87. }
  88. if (HAL_CRC_STATE_READY != HAL_CRC_GetState(HW_TypeDef))
  89. {
  90. goto _exit;
  91. }
  92. #else
  93. if (ctx->crc_cfg.flags != 0 || ctx->crc_cfg.last_val != 0xFFFFFFFF || ctx->crc_cfg.xorout != 0 || length % 4 != 0)
  94. {
  95. goto _exit;
  96. }
  97. length /= 4;
  98. #endif /* defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F7) */
  99. result = HAL_CRC_Accumulate(ctx->parent.contex, (rt_uint32_t *)in, length);
  100. #if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32WB)
  101. if (HW_TypeDef->Init.OutputDataInversionMode)
  102. {
  103. ctx ->crc_cfg.last_val = reverse_bit(result);
  104. }
  105. else
  106. {
  107. ctx ->crc_cfg.last_val = result;
  108. }
  109. crc_backup_cfg.last_val = ctx ->crc_cfg.last_val;
  110. result = (result ? result ^ (ctx ->crc_cfg.xorout) : result);
  111. #endif /* defined(SOC_SERIES_STM32L4)|| defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F7) */
  112. _exit:
  113. rt_mutex_release(&stm32_hw_dev->mutex);
  114. return result;
  115. }
  116. static const struct hwcrypto_crc_ops crc_ops =
  117. {
  118. .update = _crc_update,
  119. };
  120. #endif /* BSP_USING_CRC */
  121. #if defined(BSP_USING_RNG)
  122. static rt_uint32_t _rng_rand(struct hwcrypto_rng *ctx)
  123. {
  124. rt_uint32_t gen_random = 0;
  125. RNG_HandleTypeDef *HW_TypeDef = (RNG_HandleTypeDef *)(ctx->parent.contex);
  126. if (HAL_OK == HAL_RNG_GenerateRandomNumber(HW_TypeDef, &gen_random))
  127. {
  128. return gen_random ;
  129. }
  130. return 0;
  131. }
  132. static const struct hwcrypto_rng_ops rng_ops =
  133. {
  134. .update = _rng_rand,
  135. };
  136. #endif /* BSP_USING_RNG */
  137. static rt_err_t _crypto_create(struct rt_hwcrypto_ctx *ctx)
  138. {
  139. rt_err_t res = RT_EOK;
  140. switch (ctx->type & HWCRYPTO_MAIN_TYPE_MASK)
  141. {
  142. #if defined(BSP_USING_RNG)
  143. case HWCRYPTO_TYPE_RNG:
  144. {
  145. RNG_HandleTypeDef *hrng = rt_calloc(1, sizeof(RNG_HandleTypeDef));
  146. if (RT_NULL == hrng)
  147. {
  148. res = -RT_ERROR;
  149. break;
  150. }
  151. hrng->Instance = RNG;
  152. HAL_RNG_Init(hrng);
  153. ctx->contex = hrng;
  154. ((struct hwcrypto_rng *)ctx)->ops = &rng_ops;
  155. break;
  156. }
  157. #endif /* BSP_USING_RNG */
  158. #if defined(BSP_USING_CRC)
  159. case HWCRYPTO_TYPE_CRC:
  160. {
  161. CRC_HandleTypeDef *hcrc = rt_calloc(1, sizeof(CRC_HandleTypeDef));
  162. if (RT_NULL == hcrc)
  163. {
  164. res = -RT_ERROR;
  165. break;
  166. }
  167. hcrc->Instance = CRC;
  168. #if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32WB)
  169. hcrc->Init.DefaultPolynomialUse = DEFAULT_POLYNOMIAL_ENABLE;
  170. hcrc->Init.DefaultInitValueUse = DEFAULT_INIT_VALUE_DISABLE;
  171. hcrc->Init.InputDataInversionMode = CRC_INPUTDATA_INVERSION_BYTE;
  172. hcrc->Init.OutputDataInversionMode = CRC_OUTPUTDATA_INVERSION_ENABLE;
  173. hcrc->InputDataFormat = CRC_INPUTDATA_FORMAT_BYTES;
  174. #else
  175. if (HAL_CRC_Init(hcrc) != HAL_OK)
  176. {
  177. res = -RT_ERROR;
  178. }
  179. #endif /* defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F7) */
  180. ctx->contex = hcrc;
  181. ((struct hwcrypto_crc *)ctx)->ops = &crc_ops;
  182. break;
  183. }
  184. #endif /* BSP_USING_CRC */
  185. default:
  186. res = -RT_ERROR;
  187. break;
  188. }
  189. return res;
  190. }
  191. static void _crypto_destroy(struct rt_hwcrypto_ctx *ctx)
  192. {
  193. switch (ctx->type & HWCRYPTO_MAIN_TYPE_MASK)
  194. {
  195. #if defined(BSP_USING_RNG)
  196. case HWCRYPTO_TYPE_RNG:
  197. break;
  198. #endif /* BSP_USING_RNG */
  199. #if defined(BSP_USING_CRC)
  200. case HWCRYPTO_TYPE_CRC:
  201. __HAL_CRC_DR_RESET((CRC_HandleTypeDef *)ctx-> contex);
  202. HAL_CRC_DeInit((CRC_HandleTypeDef *)(ctx->contex));
  203. break;
  204. #endif /* BSP_USING_CRC */
  205. default:
  206. break;
  207. }
  208. rt_free(ctx->contex);
  209. }
  210. static rt_err_t _crypto_clone(struct rt_hwcrypto_ctx *des, const struct rt_hwcrypto_ctx *src)
  211. {
  212. rt_err_t res = RT_EOK;
  213. switch (src->type & HWCRYPTO_MAIN_TYPE_MASK)
  214. {
  215. #if defined(BSP_USING_RNG)
  216. case HWCRYPTO_TYPE_RNG:
  217. if (des->contex && src->contex)
  218. {
  219. rt_memcpy(des->contex, src->contex, sizeof(struct hash_ctx_des));
  220. }
  221. break;
  222. #endif /* BSP_USING_RNG */
  223. #if defined(BSP_USING_CRC)
  224. case HWCRYPTO_TYPE_CRC:
  225. if (des->contex && src->contex)
  226. {
  227. rt_memcpy(des->contex, src->contex, sizeof(struct hash_ctx_des));
  228. }
  229. break;
  230. #endif /* BSP_USING_CRC */
  231. default:
  232. res = -RT_ERROR;
  233. break;
  234. }
  235. return res;
  236. }
  237. static void _crypto_reset(struct rt_hwcrypto_ctx *ctx)
  238. {
  239. switch (ctx->type & HWCRYPTO_MAIN_TYPE_MASK)
  240. {
  241. #if defined(BSP_USING_RNG)
  242. case HWCRYPTO_TYPE_RNG:
  243. break;
  244. #endif /* BSP_USING_RNG */
  245. #if defined(BSP_USING_CRC)
  246. case HWCRYPTO_TYPE_CRC:
  247. __HAL_CRC_DR_RESET((CRC_HandleTypeDef *)ctx-> contex);
  248. break;
  249. #endif /* BSP_USING_CRC */
  250. default:
  251. break;
  252. }
  253. }
  254. static const struct rt_hwcrypto_ops _ops =
  255. {
  256. .create = _crypto_create,
  257. .destroy = _crypto_destroy,
  258. .copy = _crypto_clone,
  259. .reset = _crypto_reset,
  260. };
  261. int stm32_hw_crypto_device_init(void)
  262. {
  263. static struct stm32_hwcrypto_device _crypto_dev;
  264. rt_uint32_t cpuid[3] = {0};
  265. _crypto_dev.dev.ops = &_ops;
  266. #if defined(BSP_USING_UDID)
  267. #if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32WB)
  268. cpuid[0] = HAL_GetUIDw0();
  269. cpuid[1] = HAL_GetUIDw1();
  270. #elif defined(SOC_SERIES_STM32H7)
  271. cpuid[0] = HAL_GetREVID();
  272. cpuid[1] = HAL_GetDEVID();
  273. #endif
  274. #endif /* BSP_USING_UDID */
  275. _crypto_dev.dev.id = 0;
  276. rt_memcpy(&_crypto_dev.dev.id, cpuid, 8);
  277. _crypto_dev.dev.user_data = &_crypto_dev;
  278. if (rt_hwcrypto_register(&_crypto_dev.dev, RT_HWCRYPTO_DEFAULT_NAME) != RT_EOK)
  279. {
  280. return -1;
  281. }
  282. rt_mutex_init(&_crypto_dev.mutex, RT_HWCRYPTO_DEFAULT_NAME, RT_IPC_FLAG_FIFO);
  283. return 0;
  284. }
  285. INIT_DEVICE_EXPORT(stm32_hw_crypto_device_init);