drv_spi.c 37 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124
  1. /*
  2. * Copyright (c) 2006-2024, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2018-11-5 SummerGift first version
  9. * 2018-12-11 greedyhao Porting for stm32f7xx
  10. * 2019-01-03 zylx modify DMA initialization and spixfer function
  11. * 2020-01-15 whj4674672 Porting for stm32h7xx
  12. * 2020-06-18 thread-liu Porting for stm32mp1xx
  13. * 2020-10-14 Dozingfiretruck Porting for stm32wbxx
  14. */
  15. #include <rtthread.h>
  16. #include <rtdevice.h>
  17. #include "board.h"
  18. #ifdef BSP_USING_SPI
  19. #if defined(BSP_USING_SPI1) || defined(BSP_USING_SPI2) || defined(BSP_USING_SPI3) || defined(BSP_USING_SPI4) || defined(BSP_USING_SPI5) || defined(BSP_USING_SPI6)
  20. #include "drv_spi.h"
  21. #include "drv_config.h"
  22. #include <string.h>
  23. //#define DRV_DEBUG
  24. #define LOG_TAG "drv.spi"
  25. #include <drv_log.h>
  26. enum
  27. {
  28. #ifdef BSP_USING_SPI1
  29. SPI1_INDEX,
  30. #endif
  31. #ifdef BSP_USING_SPI2
  32. SPI2_INDEX,
  33. #endif
  34. #ifdef BSP_USING_SPI3
  35. SPI3_INDEX,
  36. #endif
  37. #ifdef BSP_USING_SPI4
  38. SPI4_INDEX,
  39. #endif
  40. #ifdef BSP_USING_SPI5
  41. SPI5_INDEX,
  42. #endif
  43. #ifdef BSP_USING_SPI6
  44. SPI6_INDEX,
  45. #endif
  46. };
  47. static struct stm32_spi_config spi_config[] =
  48. {
  49. #ifdef BSP_USING_SPI1
  50. SPI1_BUS_CONFIG,
  51. #endif
  52. #ifdef BSP_USING_SPI2
  53. SPI2_BUS_CONFIG,
  54. #endif
  55. #ifdef BSP_USING_SPI3
  56. SPI3_BUS_CONFIG,
  57. #endif
  58. #ifdef BSP_USING_SPI4
  59. SPI4_BUS_CONFIG,
  60. #endif
  61. #ifdef BSP_USING_SPI5
  62. SPI5_BUS_CONFIG,
  63. #endif
  64. #ifdef BSP_USING_SPI6
  65. SPI6_BUS_CONFIG,
  66. #endif
  67. };
  68. static struct stm32_spi spi_bus_obj[sizeof(spi_config) / sizeof(spi_config[0])] = {0};
  69. static rt_err_t stm32_spi_init(struct stm32_spi *spi_drv, struct rt_spi_configuration *cfg)
  70. {
  71. RT_ASSERT(spi_drv != RT_NULL);
  72. RT_ASSERT(cfg != RT_NULL);
  73. SPI_HandleTypeDef *spi_handle = &spi_drv->handle;
  74. if (cfg->mode & RT_SPI_SLAVE)
  75. {
  76. spi_handle->Init.Mode = SPI_MODE_SLAVE;
  77. }
  78. else
  79. {
  80. spi_handle->Init.Mode = SPI_MODE_MASTER;
  81. }
  82. if (cfg->mode & RT_SPI_3WIRE)
  83. {
  84. spi_handle->Init.Direction = SPI_DIRECTION_1LINE;
  85. }
  86. else
  87. {
  88. spi_handle->Init.Direction = SPI_DIRECTION_2LINES;
  89. }
  90. if (cfg->data_width == 8)
  91. {
  92. spi_handle->Init.DataSize = SPI_DATASIZE_8BIT;
  93. }
  94. else if (cfg->data_width == 16)
  95. {
  96. spi_handle->Init.DataSize = SPI_DATASIZE_16BIT;
  97. }
  98. else
  99. {
  100. return -RT_EIO;
  101. }
  102. if (cfg->mode & RT_SPI_CPHA)
  103. {
  104. spi_handle->Init.CLKPhase = SPI_PHASE_2EDGE;
  105. }
  106. else
  107. {
  108. spi_handle->Init.CLKPhase = SPI_PHASE_1EDGE;
  109. }
  110. if (cfg->mode & RT_SPI_CPOL)
  111. {
  112. spi_handle->Init.CLKPolarity = SPI_POLARITY_HIGH;
  113. }
  114. else
  115. {
  116. spi_handle->Init.CLKPolarity = SPI_POLARITY_LOW;
  117. }
  118. spi_handle->Init.NSS = SPI_NSS_SOFT;
  119. uint32_t SPI_CLOCK = 0UL;
  120. /* Some series may only have APBPERIPH_BASE, but don't have HAL_RCC_GetPCLK2Freq */
  121. #if defined(APBPERIPH_BASE)
  122. SPI_CLOCK = HAL_RCC_GetPCLK1Freq();
  123. #elif defined(APB1PERIPH_BASE) || defined(APB2PERIPH_BASE)
  124. /* The SPI clock for H7 cannot be configured with a peripheral bus clock, so it needs to be written separately */
  125. #if defined(SOC_SERIES_STM32H7)
  126. /* When the configuration is generated using CUBEMX, the configuration for the SPI clock is placed in the HAL_SPI_Init function.
  127. Therefore, it is necessary to initialize and configure the SPI clock to automatically configure the frequency division */
  128. HAL_SPI_Init(spi_handle);
  129. SPI_CLOCK = HAL_RCCEx_GetPeriphCLKFreq(RCC_PERIPHCLK_SPI123);
  130. #else
  131. if ((rt_uint32_t)spi_drv->config->Instance >= APB2PERIPH_BASE)
  132. {
  133. SPI_CLOCK = HAL_RCC_GetPCLK2Freq();
  134. }
  135. else
  136. {
  137. SPI_CLOCK = HAL_RCC_GetPCLK1Freq();
  138. }
  139. #endif /* SOC_SERIES_STM32H7) */
  140. #endif /* APBPERIPH_BASE */
  141. if (cfg->max_hz >= SPI_CLOCK / 2)
  142. {
  143. spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2;
  144. }
  145. else if (cfg->max_hz >= SPI_CLOCK / 4)
  146. {
  147. spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_4;
  148. }
  149. else if (cfg->max_hz >= SPI_CLOCK / 8)
  150. {
  151. spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_8;
  152. }
  153. else if (cfg->max_hz >= SPI_CLOCK / 16)
  154. {
  155. spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_16;
  156. }
  157. else if (cfg->max_hz >= SPI_CLOCK / 32)
  158. {
  159. spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_32;
  160. }
  161. else if (cfg->max_hz >= SPI_CLOCK / 64)
  162. {
  163. spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_64;
  164. }
  165. else if (cfg->max_hz >= SPI_CLOCK / 128)
  166. {
  167. spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_128;
  168. }
  169. else
  170. {
  171. /* min prescaler 256 */
  172. spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_256;
  173. }
  174. LOG_D("sys freq: %d, pclk freq: %d, SPI limiting freq: %d, SPI usage freq: %d",
  175. #if defined(SOC_SERIES_STM32MP1)
  176. HAL_RCC_GetSystemCoreClockFreq(),
  177. #else
  178. HAL_RCC_GetSysClockFreq(),
  179. #endif
  180. SPI_CLOCK,
  181. cfg->max_hz,
  182. SPI_CLOCK / (rt_size_t)pow(2,(spi_handle->Init.BaudRatePrescaler >> 28) + 1));
  183. if (cfg->mode & RT_SPI_MSB)
  184. {
  185. spi_handle->Init.FirstBit = SPI_FIRSTBIT_MSB;
  186. }
  187. else
  188. {
  189. spi_handle->Init.FirstBit = SPI_FIRSTBIT_LSB;
  190. }
  191. spi_handle->Init.TIMode = SPI_TIMODE_DISABLE;
  192. spi_handle->Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
  193. spi_handle->State = HAL_SPI_STATE_RESET;
  194. #if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32WB)
  195. spi_handle->Init.NSSPMode = SPI_NSS_PULSE_DISABLE;
  196. #elif defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32MP1)
  197. spi_handle->Init.Mode = SPI_MODE_MASTER;
  198. spi_handle->Init.NSS = SPI_NSS_SOFT;
  199. spi_handle->Init.NSSPMode = SPI_NSS_PULSE_DISABLE;
  200. spi_handle->Init.NSSPolarity = SPI_NSS_POLARITY_LOW;
  201. spi_handle->Init.CRCPolynomial = 7;
  202. spi_handle->Init.TxCRCInitializationPattern = SPI_CRC_INITIALIZATION_ALL_ZERO_PATTERN;
  203. spi_handle->Init.RxCRCInitializationPattern = SPI_CRC_INITIALIZATION_ALL_ZERO_PATTERN;
  204. spi_handle->Init.MasterSSIdleness = SPI_MASTER_SS_IDLENESS_00CYCLE;
  205. spi_handle->Init.MasterInterDataIdleness = SPI_MASTER_INTERDATA_IDLENESS_00CYCLE;
  206. spi_handle->Init.MasterReceiverAutoSusp = SPI_MASTER_RX_AUTOSUSP_DISABLE;
  207. spi_handle->Init.MasterKeepIOState = SPI_MASTER_KEEP_IO_STATE_ENABLE;
  208. spi_handle->Init.IOSwap = SPI_IO_SWAP_DISABLE;
  209. spi_handle->Init.FifoThreshold = SPI_FIFO_THRESHOLD_01DATA;
  210. #endif
  211. if (HAL_SPI_Init(spi_handle) != HAL_OK)
  212. {
  213. return -RT_EIO;
  214. }
  215. #if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F0) \
  216. || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32WB)
  217. SET_BIT(spi_handle->Instance->CR2, SPI_RXFIFO_THRESHOLD_HF);
  218. #endif
  219. /* DMA configuration */
  220. if (spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG)
  221. {
  222. HAL_DMA_Init(&spi_drv->dma.handle_rx);
  223. __HAL_LINKDMA(&spi_drv->handle, hdmarx, spi_drv->dma.handle_rx);
  224. /* NVIC configuration for DMA transfer complete interrupt */
  225. HAL_NVIC_SetPriority(spi_drv->config->dma_rx->dma_irq, 0, 0);
  226. HAL_NVIC_EnableIRQ(spi_drv->config->dma_rx->dma_irq);
  227. }
  228. if (spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG)
  229. {
  230. HAL_DMA_Init(&spi_drv->dma.handle_tx);
  231. __HAL_LINKDMA(&spi_drv->handle, hdmatx, spi_drv->dma.handle_tx);
  232. /* NVIC configuration for DMA transfer complete interrupt */
  233. HAL_NVIC_SetPriority(spi_drv->config->dma_tx->dma_irq, 1, 0);
  234. HAL_NVIC_EnableIRQ(spi_drv->config->dma_tx->dma_irq);
  235. }
  236. if(spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG || spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG)
  237. {
  238. HAL_NVIC_SetPriority(spi_drv->config->irq_type, 2, 0);
  239. HAL_NVIC_EnableIRQ(spi_drv->config->irq_type);
  240. }
  241. LOG_D("%s init done", spi_drv->config->bus_name);
  242. return RT_EOK;
  243. }
  244. static rt_ssize_t spixfer(struct rt_spi_device *device, struct rt_spi_message *message)
  245. {
  246. #define DMA_TRANS_MIN_LEN 10 /* only buffer length >= DMA_TRANS_MIN_LEN will use DMA mode */
  247. HAL_StatusTypeDef state = HAL_OK;
  248. rt_size_t message_length, already_send_length;
  249. rt_uint16_t send_length;
  250. rt_uint8_t *recv_buf;
  251. const rt_uint8_t *send_buf;
  252. RT_ASSERT(device != RT_NULL);
  253. RT_ASSERT(device->bus != RT_NULL);
  254. RT_ASSERT(message != RT_NULL);
  255. struct stm32_spi *spi_drv = rt_container_of(device->bus, struct stm32_spi, spi_bus);
  256. SPI_HandleTypeDef *spi_handle = &spi_drv->handle;
  257. if (message->cs_take && !(device->config.mode & RT_SPI_NO_CS) && (device->cs_pin != PIN_NONE))
  258. {
  259. if (device->config.mode & RT_SPI_CS_HIGH)
  260. {
  261. rt_pin_write(device->cs_pin, PIN_HIGH);
  262. }
  263. else
  264. {
  265. rt_pin_write(device->cs_pin, PIN_LOW);
  266. }
  267. }
  268. LOG_D("%s transfer prepare and start", spi_drv->config->bus_name);
  269. LOG_D("%s sendbuf: %X, recvbuf: %X, length: %d",
  270. spi_drv->config->bus_name,
  271. (uint32_t)message->send_buf,
  272. (uint32_t)message->recv_buf, message->length);
  273. message_length = message->length;
  274. recv_buf = message->recv_buf;
  275. send_buf = message->send_buf;
  276. while (message_length)
  277. {
  278. /* the HAL library use uint16 to save the data length */
  279. if (message_length > 65535)
  280. {
  281. send_length = 65535;
  282. message_length = message_length - 65535;
  283. }
  284. else
  285. {
  286. send_length = message_length;
  287. message_length = 0;
  288. }
  289. /* calculate the start address */
  290. already_send_length = message->length - send_length - message_length;
  291. /* avoid null pointer problems */
  292. if (message->send_buf)
  293. {
  294. send_buf = (rt_uint8_t *)message->send_buf + already_send_length;
  295. }
  296. if (message->recv_buf)
  297. {
  298. recv_buf = (rt_uint8_t *)message->recv_buf + already_send_length;
  299. }
  300. rt_uint32_t* dma_aligned_buffer = RT_NULL;
  301. rt_uint32_t* p_txrx_buffer = RT_NULL;
  302. if ((spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG) && (send_length >= DMA_TRANS_MIN_LEN))
  303. {
  304. #if defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F7)
  305. if (RT_IS_ALIGN((rt_uint32_t)send_buf, 32) && send_buf != RT_NULL) /* aligned with 32 bytes? */
  306. {
  307. p_txrx_buffer = (rt_uint32_t *)send_buf; /* send_buf aligns with 32 bytes, no more operations */
  308. }
  309. else
  310. {
  311. /* send_buf doesn't align with 32 bytes, so creat a cache buffer with 32 bytes aligned */
  312. dma_aligned_buffer = (rt_uint32_t *)rt_malloc_align(send_length, 32);
  313. rt_memcpy(dma_aligned_buffer, send_buf, send_length);
  314. p_txrx_buffer = dma_aligned_buffer;
  315. }
  316. rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, dma_aligned_buffer, send_length);
  317. #else
  318. if (RT_IS_ALIGN((rt_uint32_t)send_buf, 4) && send_buf != RT_NULL) /* aligned with 4 bytes? */
  319. {
  320. p_txrx_buffer = (rt_uint32_t *)send_buf; /* send_buf aligns with 4 bytes, no more operations */
  321. }
  322. else
  323. {
  324. /* send_buf doesn't align with 4 bytes, so creat a cache buffer with 4 bytes aligned */
  325. dma_aligned_buffer = (rt_uint32_t *)rt_malloc(send_length); /* aligned with RT_ALIGN_SIZE (8 bytes by default) */
  326. rt_memcpy(dma_aligned_buffer, send_buf, send_length);
  327. p_txrx_buffer = dma_aligned_buffer;
  328. }
  329. #endif /* SOC_SERIES_STM32H7 || SOC_SERIES_STM32F7 */
  330. }
  331. else if ((spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG) && (send_length >= DMA_TRANS_MIN_LEN))
  332. {
  333. #if defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F7)
  334. if (RT_IS_ALIGN((rt_uint32_t)recv_buf, 32) && recv_buf != RT_NULL) /* aligned with 32 bytes? */
  335. {
  336. p_txrx_buffer = (rt_uint32_t *)recv_buf; /* recv_buf aligns with 32 bytes, no more operations */
  337. }
  338. else
  339. {
  340. /* recv_buf doesn't align with 32 bytes, so creat a cache buffer with 32 bytes aligned */
  341. dma_aligned_buffer = (rt_uint32_t *)rt_malloc_align(send_length, 32);
  342. rt_memcpy(dma_aligned_buffer, recv_buf, send_length);
  343. p_txrx_buffer = dma_aligned_buffer;
  344. }
  345. rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, dma_aligned_buffer, send_length);
  346. #else
  347. if (RT_IS_ALIGN((rt_uint32_t)recv_buf, 4) && recv_buf != RT_NULL) /* aligned with 4 bytes? */
  348. {
  349. p_txrx_buffer = (rt_uint32_t *)recv_buf; /* recv_buf aligns with 4 bytes, no more operations */
  350. }
  351. else
  352. {
  353. /* recv_buf doesn't align with 4 bytes, so creat a cache buffer with 4 bytes aligned */
  354. dma_aligned_buffer = (rt_uint32_t *)rt_malloc(send_length); /* aligned with RT_ALIGN_SIZE (8 bytes by default) */
  355. rt_memcpy(dma_aligned_buffer, recv_buf, send_length);
  356. p_txrx_buffer = dma_aligned_buffer;
  357. }
  358. #endif /* SOC_SERIES_STM32H7 || SOC_SERIES_STM32F7 */
  359. }
  360. /* start once data exchange in DMA mode */
  361. if (message->send_buf && message->recv_buf)
  362. {
  363. if ((spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG) && (spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG) && (send_length >= DMA_TRANS_MIN_LEN))
  364. {
  365. state = HAL_SPI_TransmitReceive_DMA(spi_handle, (uint8_t *)p_txrx_buffer, (uint8_t *)p_txrx_buffer, send_length);
  366. }
  367. else if ((spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG) && (send_length >= DMA_TRANS_MIN_LEN))
  368. {
  369. /* same as Tx ONLY. It will not receive SPI data any more. */
  370. state = HAL_SPI_Transmit_DMA(spi_handle, (uint8_t *)p_txrx_buffer, send_length);
  371. }
  372. else if ((spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG) && (send_length >= DMA_TRANS_MIN_LEN))
  373. {
  374. state = HAL_ERROR;
  375. LOG_E("It shoule be enabled both BSP_SPIx_TX_USING_DMA and BSP_SPIx_TX_USING_DMA flag, if wants to use SPI DMA Rx singly.");
  376. break;
  377. }
  378. else
  379. {
  380. state = HAL_SPI_TransmitReceive(spi_handle, (uint8_t *)send_buf, (uint8_t *)recv_buf, send_length, 1000);
  381. }
  382. }
  383. else if (message->send_buf)
  384. {
  385. if ((spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG) && (send_length >= DMA_TRANS_MIN_LEN))
  386. {
  387. state = HAL_SPI_Transmit_DMA(spi_handle, (uint8_t *)p_txrx_buffer, send_length);
  388. }
  389. else
  390. {
  391. state = HAL_SPI_Transmit(spi_handle, (uint8_t *)send_buf, send_length, 1000);
  392. }
  393. if (message->cs_release && (device->config.mode & RT_SPI_3WIRE))
  394. {
  395. /* release the CS by disable SPI when using 3 wires SPI */
  396. __HAL_SPI_DISABLE(spi_handle);
  397. }
  398. }
  399. else if(message->recv_buf)
  400. {
  401. rt_memset((uint8_t *)recv_buf, 0xff, send_length);
  402. if ((spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG) && (send_length >= DMA_TRANS_MIN_LEN))
  403. {
  404. state = HAL_SPI_Receive_DMA(spi_handle, (uint8_t *)p_txrx_buffer, send_length);
  405. }
  406. else
  407. {
  408. /* clear the old error flag */
  409. __HAL_SPI_CLEAR_OVRFLAG(spi_handle);
  410. state = HAL_SPI_Receive(spi_handle, (uint8_t *)recv_buf, send_length, 1000);
  411. }
  412. }
  413. else
  414. {
  415. state = HAL_ERROR;
  416. LOG_E("message->send_buf and message->recv_buf are both NULL!");
  417. }
  418. if (state != HAL_OK)
  419. {
  420. LOG_E("SPI transfer error: %d", state);
  421. message->length = 0;
  422. spi_handle->State = HAL_SPI_STATE_READY;
  423. break;
  424. }
  425. else
  426. {
  427. LOG_D("%s transfer done", spi_drv->config->bus_name);
  428. }
  429. /* For simplicity reasons, this example is just waiting till the end of the
  430. transfer, but application may perform other tasks while transfer operation
  431. is ongoing. */
  432. if ((spi_drv->spi_dma_flag & (SPI_USING_TX_DMA_FLAG | SPI_USING_RX_DMA_FLAG)) && (send_length >= DMA_TRANS_MIN_LEN))
  433. {
  434. /* blocking the thread,and the other tasks can run */
  435. if (rt_completion_wait(&spi_drv->cpt, 1000) != RT_EOK)
  436. {
  437. state = HAL_ERROR;
  438. LOG_E("wait for DMA interrupt overtime!");
  439. break;
  440. }
  441. }
  442. else
  443. {
  444. while (HAL_SPI_GetState(spi_handle) != HAL_SPI_STATE_READY);
  445. }
  446. if(dma_aligned_buffer != RT_NULL) /* re-aligned, so need to copy the data to recv_buf */
  447. {
  448. if(recv_buf != RT_NULL)
  449. {
  450. #if defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F7)
  451. rt_hw_cpu_dcache_ops(RT_HW_CACHE_INVALIDATE, p_txrx_buffer, send_length);
  452. #endif /* SOC_SERIES_STM32H7 || SOC_SERIES_STM32F7 */
  453. rt_memcpy(recv_buf, p_txrx_buffer, send_length);
  454. }
  455. #if defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F7)
  456. rt_free_align(dma_aligned_buffer);
  457. #else
  458. rt_free(dma_aligned_buffer);
  459. #endif /* SOC_SERIES_STM32H7 || SOC_SERIES_STM32F7 */
  460. }
  461. }
  462. if (message->cs_release && !(device->config.mode & RT_SPI_NO_CS) && (device->cs_pin != PIN_NONE))
  463. {
  464. if (device->config.mode & RT_SPI_CS_HIGH)
  465. rt_pin_write(device->cs_pin, PIN_LOW);
  466. else
  467. rt_pin_write(device->cs_pin, PIN_HIGH);
  468. }
  469. if(state != HAL_OK)
  470. {
  471. return -RT_ERROR;
  472. }
  473. return message->length;
  474. }
  475. static rt_err_t spi_configure(struct rt_spi_device *device,
  476. struct rt_spi_configuration *configuration)
  477. {
  478. RT_ASSERT(device != RT_NULL);
  479. RT_ASSERT(configuration != RT_NULL);
  480. struct stm32_spi *spi_drv = rt_container_of(device->bus, struct stm32_spi, spi_bus);
  481. spi_drv->cfg = configuration;
  482. rt_kprintf("@spi_configure\n");
  483. return stm32_spi_init(spi_drv, configuration);
  484. }
  485. static const struct rt_spi_ops stm_spi_ops =
  486. {
  487. .configure = spi_configure,
  488. .xfer = spixfer,
  489. };
  490. static int rt_hw_spi_bus_init(void)
  491. {
  492. rt_err_t result;
  493. for (rt_size_t i = 0; i < sizeof(spi_config) / sizeof(spi_config[0]); i++)
  494. {
  495. spi_bus_obj[i].config = &spi_config[i];
  496. spi_bus_obj[i].spi_bus.parent.user_data = &spi_config[i];
  497. spi_bus_obj[i].handle.Instance = spi_config[i].Instance;
  498. if (spi_bus_obj[i].spi_dma_flag & SPI_USING_RX_DMA_FLAG)
  499. {
  500. /* Configure the DMA handler for Transmission process */
  501. spi_bus_obj[i].dma.handle_rx.Instance = spi_config[i].dma_rx->Instance;
  502. #if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7)
  503. spi_bus_obj[i].dma.handle_rx.Init.Channel = spi_config[i].dma_rx->channel;
  504. #elif defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32MP1) || defined(SOC_SERIES_STM32WB) || defined(SOC_SERIES_STM32H7)
  505. spi_bus_obj[i].dma.handle_rx.Init.Request = spi_config[i].dma_rx->request;
  506. #endif
  507. #ifndef SOC_SERIES_STM32U5
  508. spi_bus_obj[i].dma.handle_rx.Init.Direction = DMA_PERIPH_TO_MEMORY;
  509. spi_bus_obj[i].dma.handle_rx.Init.PeriphInc = DMA_PINC_DISABLE;
  510. spi_bus_obj[i].dma.handle_rx.Init.MemInc = DMA_MINC_ENABLE;
  511. spi_bus_obj[i].dma.handle_rx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
  512. spi_bus_obj[i].dma.handle_rx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
  513. spi_bus_obj[i].dma.handle_rx.Init.Mode = DMA_NORMAL;
  514. spi_bus_obj[i].dma.handle_rx.Init.Priority = DMA_PRIORITY_HIGH;
  515. #endif
  516. #if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32MP1) || defined(SOC_SERIES_STM32H7)
  517. spi_bus_obj[i].dma.handle_rx.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
  518. spi_bus_obj[i].dma.handle_rx.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;
  519. spi_bus_obj[i].dma.handle_rx.Init.MemBurst = DMA_MBURST_INC4;
  520. spi_bus_obj[i].dma.handle_rx.Init.PeriphBurst = DMA_PBURST_INC4;
  521. #endif
  522. {
  523. rt_uint32_t tmpreg = 0x00U;
  524. #if defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32F0)
  525. /* enable DMA clock && Delay after an RCC peripheral clock enabling*/
  526. SET_BIT(RCC->AHBENR, spi_config[i].dma_rx->dma_rcc);
  527. tmpreg = READ_BIT(RCC->AHBENR, spi_config[i].dma_rx->dma_rcc);
  528. #elif defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32WB) || defined(SOC_SERIES_STM32H7)
  529. SET_BIT(RCC->AHB1ENR, spi_config[i].dma_rx->dma_rcc);
  530. /* Delay after an RCC peripheral clock enabling */
  531. tmpreg = READ_BIT(RCC->AHB1ENR, spi_config[i].dma_rx->dma_rcc);
  532. #elif defined(SOC_SERIES_STM32MP1)
  533. __HAL_RCC_DMAMUX_CLK_ENABLE();
  534. SET_BIT(RCC->MP_AHB2ENSETR, spi_config[i].dma_rx->dma_rcc);
  535. tmpreg = READ_BIT(RCC->MP_AHB2ENSETR, spi_config[i].dma_rx->dma_rcc);
  536. #endif
  537. UNUSED(tmpreg); /* To avoid compiler warnings */
  538. }
  539. }
  540. if (spi_bus_obj[i].spi_dma_flag & SPI_USING_TX_DMA_FLAG)
  541. {
  542. /* Configure the DMA handler for Transmission process */
  543. spi_bus_obj[i].dma.handle_tx.Instance = spi_config[i].dma_tx->Instance;
  544. #if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7)
  545. spi_bus_obj[i].dma.handle_tx.Init.Channel = spi_config[i].dma_tx->channel;
  546. #elif defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32MP1) || defined(SOC_SERIES_STM32WB) || defined(SOC_SERIES_STM32H7)
  547. spi_bus_obj[i].dma.handle_tx.Init.Request = spi_config[i].dma_tx->request;
  548. #endif
  549. #ifndef SOC_SERIES_STM32U5
  550. spi_bus_obj[i].dma.handle_tx.Init.Direction = DMA_MEMORY_TO_PERIPH;
  551. spi_bus_obj[i].dma.handle_tx.Init.PeriphInc = DMA_PINC_DISABLE;
  552. spi_bus_obj[i].dma.handle_tx.Init.MemInc = DMA_MINC_ENABLE;
  553. spi_bus_obj[i].dma.handle_tx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
  554. spi_bus_obj[i].dma.handle_tx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
  555. spi_bus_obj[i].dma.handle_tx.Init.Mode = DMA_NORMAL;
  556. spi_bus_obj[i].dma.handle_tx.Init.Priority = DMA_PRIORITY_LOW;
  557. #endif
  558. #if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32MP1) || defined(SOC_SERIES_STM32H7)
  559. spi_bus_obj[i].dma.handle_tx.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
  560. spi_bus_obj[i].dma.handle_tx.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;
  561. spi_bus_obj[i].dma.handle_tx.Init.MemBurst = DMA_MBURST_INC4;
  562. spi_bus_obj[i].dma.handle_tx.Init.PeriphBurst = DMA_PBURST_INC4;
  563. #endif
  564. {
  565. rt_uint32_t tmpreg = 0x00U;
  566. #if defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32F0)
  567. /* enable DMA clock && Delay after an RCC peripheral clock enabling*/
  568. SET_BIT(RCC->AHBENR, spi_config[i].dma_tx->dma_rcc);
  569. tmpreg = READ_BIT(RCC->AHBENR, spi_config[i].dma_tx->dma_rcc);
  570. #elif defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32WB) || defined(SOC_SERIES_STM32H7)
  571. SET_BIT(RCC->AHB1ENR, spi_config[i].dma_tx->dma_rcc);
  572. /* Delay after an RCC peripheral clock enabling */
  573. tmpreg = READ_BIT(RCC->AHB1ENR, spi_config[i].dma_tx->dma_rcc);
  574. #elif defined(SOC_SERIES_STM32MP1)
  575. __HAL_RCC_DMAMUX_CLK_ENABLE();
  576. SET_BIT(RCC->MP_AHB2ENSETR, spi_config[i].dma_tx->dma_rcc);
  577. tmpreg = READ_BIT(RCC->MP_AHB2ENSETR, spi_config[i].dma_tx->dma_rcc);
  578. #endif
  579. UNUSED(tmpreg); /* To avoid compiler warnings */
  580. }
  581. }
  582. /* initialize completion object */
  583. rt_completion_init(&spi_bus_obj[i].cpt);
  584. result = rt_spi_bus_register(&spi_bus_obj[i].spi_bus, spi_config[i].bus_name, &stm_spi_ops);
  585. RT_ASSERT(result == RT_EOK);
  586. LOG_D("%s bus init done", spi_config[i].bus_name);
  587. }
  588. return result;
  589. }
  590. /**
  591. * Attach the spi device to SPI bus, this function must be used after initialization.
  592. */
  593. rt_err_t rt_hw_spi_device_attach(const char *bus_name, const char *device_name, rt_base_t cs_pin)
  594. {
  595. RT_ASSERT(bus_name != RT_NULL);
  596. RT_ASSERT(device_name != RT_NULL);
  597. rt_err_t result;
  598. struct rt_spi_device *spi_device;
  599. /* attach the device to spi bus*/
  600. spi_device = (struct rt_spi_device *)rt_malloc(sizeof(struct rt_spi_device));
  601. RT_ASSERT(spi_device != RT_NULL);
  602. result = rt_spi_bus_attach_device_cspin(spi_device, device_name, bus_name, cs_pin, RT_NULL);
  603. if (result != RT_EOK)
  604. {
  605. LOG_E("%s attach to %s faild, %d\n", device_name, bus_name, result);
  606. }
  607. RT_ASSERT(result == RT_EOK);
  608. LOG_D("%s attach to %s done", device_name, bus_name);
  609. return result;
  610. }
  611. #if defined(BSP_SPI1_TX_USING_DMA) || defined(BSP_SPI1_RX_USING_DMA)
  612. void SPI1_IRQHandler(void)
  613. {
  614. /* enter interrupt */
  615. rt_interrupt_enter();
  616. HAL_SPI_IRQHandler(&spi_bus_obj[SPI1_INDEX].handle);
  617. /* leave interrupt */
  618. rt_interrupt_leave();
  619. }
  620. #endif
  621. #if defined(BSP_USING_SPI1) && defined(BSP_SPI1_RX_USING_DMA)
  622. /**
  623. * @brief This function handles DMA Rx interrupt request.
  624. * @param None
  625. * @retval None
  626. */
  627. void SPI1_DMA_RX_IRQHandler(void)
  628. {
  629. /* enter interrupt */
  630. rt_interrupt_enter();
  631. HAL_DMA_IRQHandler(&spi_bus_obj[SPI1_INDEX].dma.handle_rx);
  632. /* leave interrupt */
  633. rt_interrupt_leave();
  634. }
  635. #endif
  636. #if defined(BSP_USING_SPI1) && defined(BSP_SPI1_TX_USING_DMA)
  637. /**
  638. * @brief This function handles DMA Tx interrupt request.
  639. * @param None
  640. * @retval None
  641. */
  642. void SPI1_DMA_TX_IRQHandler(void)
  643. {
  644. /* enter interrupt */
  645. rt_interrupt_enter();
  646. HAL_DMA_IRQHandler(&spi_bus_obj[SPI1_INDEX].dma.handle_tx);
  647. /* leave interrupt */
  648. rt_interrupt_leave();
  649. }
  650. #endif /* defined(BSP_USING_SPI1) && defined(BSP_SPI_USING_DMA) */
  651. #if defined(BSP_SPI2_TX_USING_DMA) || defined(BSP_SPI2_RX_USING_DMA)
  652. void SPI2_IRQHandler(void)
  653. {
  654. /* enter interrupt */
  655. rt_interrupt_enter();
  656. HAL_SPI_IRQHandler(&spi_bus_obj[SPI2_INDEX].handle);
  657. /* leave interrupt */
  658. rt_interrupt_leave();
  659. }
  660. #endif
  661. #if defined(BSP_USING_SPI2) && defined(BSP_SPI2_RX_USING_DMA)
  662. /**
  663. * @brief This function handles DMA Rx interrupt request.
  664. * @param None
  665. * @retval None
  666. */
  667. void SPI2_DMA_RX_IRQHandler(void)
  668. {
  669. /* enter interrupt */
  670. rt_interrupt_enter();
  671. HAL_DMA_IRQHandler(&spi_bus_obj[SPI2_INDEX].dma.handle_rx);
  672. /* leave interrupt */
  673. rt_interrupt_leave();
  674. }
  675. #endif
  676. #if defined(BSP_USING_SPI2) && defined(BSP_SPI2_TX_USING_DMA)
  677. /**
  678. * @brief This function handles DMA Tx interrupt request.
  679. * @param None
  680. * @retval None
  681. */
  682. void SPI2_DMA_TX_IRQHandler(void)
  683. {
  684. /* enter interrupt */
  685. rt_interrupt_enter();
  686. HAL_DMA_IRQHandler(&spi_bus_obj[SPI2_INDEX].dma.handle_tx);
  687. /* leave interrupt */
  688. rt_interrupt_leave();
  689. }
  690. #endif /* defined(BSP_USING_SPI2) && defined(BSP_SPI_USING_DMA) */
  691. #if defined(BSP_SPI3_TX_USING_DMA) || defined(BSP_SPI3_RX_USING_DMA)
  692. void SPI3_IRQHandler(void)
  693. {
  694. /* enter interrupt */
  695. rt_interrupt_enter();
  696. HAL_SPI_IRQHandler(&spi_bus_obj[SPI3_INDEX].handle);
  697. /* leave interrupt */
  698. rt_interrupt_leave();
  699. }
  700. #endif
  701. #if defined(BSP_USING_SPI3) && defined(BSP_SPI3_RX_USING_DMA)
  702. /**
  703. * @brief This function handles DMA Rx interrupt request.
  704. * @param None
  705. * @retval None
  706. */
  707. void SPI3_DMA_RX_IRQHandler(void)
  708. {
  709. /* enter interrupt */
  710. rt_interrupt_enter();
  711. HAL_DMA_IRQHandler(&spi_bus_obj[SPI3_INDEX].dma.handle_rx);
  712. /* leave interrupt */
  713. rt_interrupt_leave();
  714. }
  715. #endif
  716. #if defined(BSP_USING_SPI3) && defined(BSP_SPI3_TX_USING_DMA)
  717. /**
  718. * @brief This function handles DMA Tx interrupt request.
  719. * @param None
  720. * @retval None
  721. */
  722. void SPI3_DMA_TX_IRQHandler(void)
  723. {
  724. /* enter interrupt */
  725. rt_interrupt_enter();
  726. HAL_DMA_IRQHandler(&spi_bus_obj[SPI3_INDEX].dma.handle_tx);
  727. /* leave interrupt */
  728. rt_interrupt_leave();
  729. }
  730. #endif /* defined(BSP_USING_SPI3) && defined(BSP_SPI_USING_DMA) */
  731. #if defined(BSP_SPI4_TX_USING_DMA) || defined(BSP_SPI4_RX_USING_DMA)
  732. void SPI4_IRQHandler(void)
  733. {
  734. /* enter interrupt */
  735. rt_interrupt_enter();
  736. HAL_SPI_IRQHandler(&spi_bus_obj[SPI4_INDEX].handle);
  737. /* leave interrupt */
  738. rt_interrupt_leave();
  739. }
  740. #endif
  741. #if defined(BSP_USING_SPI4) && defined(BSP_SPI4_RX_USING_DMA)
  742. /**
  743. * @brief This function handles DMA Rx interrupt request.
  744. * @param None
  745. * @retval None
  746. */
  747. void SPI4_DMA_RX_IRQHandler(void)
  748. {
  749. /* enter interrupt */
  750. rt_interrupt_enter();
  751. HAL_DMA_IRQHandler(&spi_bus_obj[SPI4_INDEX].dma.handle_rx);
  752. /* leave interrupt */
  753. rt_interrupt_leave();
  754. }
  755. #endif
  756. #if defined(BSP_USING_SPI4) && defined(BSP_SPI4_TX_USING_DMA)
  757. /**
  758. * @brief This function handles DMA Tx interrupt request.
  759. * @param None
  760. * @retval None
  761. */
  762. void SPI4_DMA_TX_IRQHandler(void)
  763. {
  764. /* enter interrupt */
  765. rt_interrupt_enter();
  766. HAL_DMA_IRQHandler(&spi_bus_obj[SPI4_INDEX].dma.handle_tx);
  767. /* leave interrupt */
  768. rt_interrupt_leave();
  769. }
  770. #endif /* defined(BSP_USING_SPI4) && defined(BSP_SPI_USING_DMA) */
  771. #if defined(BSP_SPI5_TX_USING_DMA) || defined(BSP_SPI5_RX_USING_DMA)
  772. void SPI5_IRQHandler(void)
  773. {
  774. /* enter interrupt */
  775. rt_interrupt_enter();
  776. HAL_SPI_IRQHandler(&spi_bus_obj[SPI5_INDEX].handle);
  777. /* leave interrupt */
  778. rt_interrupt_leave();
  779. }
  780. #endif
  781. #if defined(BSP_USING_SPI5) && defined(BSP_SPI5_RX_USING_DMA)
  782. /**
  783. * @brief This function handles DMA Rx interrupt request.
  784. * @param None
  785. * @retval None
  786. */
  787. void SPI5_DMA_RX_IRQHandler(void)
  788. {
  789. /* enter interrupt */
  790. rt_interrupt_enter();
  791. HAL_DMA_IRQHandler(&spi_bus_obj[SPI5_INDEX].dma.handle_rx);
  792. /* leave interrupt */
  793. rt_interrupt_leave();
  794. }
  795. #endif
  796. #if defined(BSP_USING_SPI5) && defined(BSP_SPI5_TX_USING_DMA)
  797. /**
  798. * @brief This function handles DMA Tx interrupt request.
  799. * @param None
  800. * @retval None
  801. */
  802. void SPI5_DMA_TX_IRQHandler(void)
  803. {
  804. /* enter interrupt */
  805. rt_interrupt_enter();
  806. HAL_DMA_IRQHandler(&spi_bus_obj[SPI5_INDEX].dma.handle_tx);
  807. /* leave interrupt */
  808. rt_interrupt_leave();
  809. }
  810. #endif /* defined(BSP_USING_SPI5) && defined(BSP_SPI_USING_DMA) */
  811. #if defined(BSP_USING_SPI6) && defined(BSP_SPI6_RX_USING_DMA)
  812. /**
  813. * @brief This function handles DMA Rx interrupt request.
  814. * @param None
  815. * @retval None
  816. */
  817. void SPI6_DMA_RX_IRQHandler(void)
  818. {
  819. /* enter interrupt */
  820. rt_interrupt_enter();
  821. HAL_DMA_IRQHandler(&spi_bus_obj[SPI6_INDEX].dma.handle_rx);
  822. /* leave interrupt */
  823. rt_interrupt_leave();
  824. }
  825. #endif
  826. #if defined(BSP_USING_SPI6) && defined(BSP_SPI6_TX_USING_DMA)
  827. /**
  828. * @brief This function handles DMA Tx interrupt request.
  829. * @param None
  830. * @retval None
  831. */
  832. void SPI6_DMA_TX_IRQHandler(void)
  833. {
  834. /* enter interrupt */
  835. rt_interrupt_enter();
  836. HAL_DMA_IRQHandler(&spi_bus_obj[SPI6_INDEX].dma.handle_tx);
  837. /* leave interrupt */
  838. rt_interrupt_leave();
  839. }
  840. #endif /* defined(BSP_USING_SPI6) && defined(BSP_SPI_USING_DMA) */
  841. static void stm32_get_dma_info(void)
  842. {
  843. #ifdef BSP_SPI1_RX_USING_DMA
  844. spi_bus_obj[SPI1_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
  845. static struct dma_config spi1_dma_rx = SPI1_RX_DMA_CONFIG;
  846. spi_config[SPI1_INDEX].dma_rx = &spi1_dma_rx;
  847. #endif
  848. #ifdef BSP_SPI1_TX_USING_DMA
  849. spi_bus_obj[SPI1_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
  850. static struct dma_config spi1_dma_tx = SPI1_TX_DMA_CONFIG;
  851. spi_config[SPI1_INDEX].dma_tx = &spi1_dma_tx;
  852. #endif
  853. #ifdef BSP_SPI2_RX_USING_DMA
  854. spi_bus_obj[SPI2_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
  855. static struct dma_config spi2_dma_rx = SPI2_RX_DMA_CONFIG;
  856. spi_config[SPI2_INDEX].dma_rx = &spi2_dma_rx;
  857. #endif
  858. #ifdef BSP_SPI2_TX_USING_DMA
  859. spi_bus_obj[SPI2_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
  860. static struct dma_config spi2_dma_tx = SPI2_TX_DMA_CONFIG;
  861. spi_config[SPI2_INDEX].dma_tx = &spi2_dma_tx;
  862. #endif
  863. #ifdef BSP_SPI3_RX_USING_DMA
  864. spi_bus_obj[SPI3_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
  865. static struct dma_config spi3_dma_rx = SPI3_RX_DMA_CONFIG;
  866. spi_config[SPI3_INDEX].dma_rx = &spi3_dma_rx;
  867. #endif
  868. #ifdef BSP_SPI3_TX_USING_DMA
  869. spi_bus_obj[SPI3_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
  870. static struct dma_config spi3_dma_tx = SPI3_TX_DMA_CONFIG;
  871. spi_config[SPI3_INDEX].dma_tx = &spi3_dma_tx;
  872. #endif
  873. #ifdef BSP_SPI4_RX_USING_DMA
  874. spi_bus_obj[SPI4_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
  875. static struct dma_config spi4_dma_rx = SPI4_RX_DMA_CONFIG;
  876. spi_config[SPI4_INDEX].dma_rx = &spi4_dma_rx;
  877. #endif
  878. #ifdef BSP_SPI4_TX_USING_DMA
  879. spi_bus_obj[SPI4_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
  880. static struct dma_config spi4_dma_tx = SPI4_TX_DMA_CONFIG;
  881. spi_config[SPI4_INDEX].dma_tx = &spi4_dma_tx;
  882. #endif
  883. #ifdef BSP_SPI5_RX_USING_DMA
  884. spi_bus_obj[SPI5_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
  885. static struct dma_config spi5_dma_rx = SPI5_RX_DMA_CONFIG;
  886. spi_config[SPI5_INDEX].dma_rx = &spi5_dma_rx;
  887. #endif
  888. #ifdef BSP_SPI5_TX_USING_DMA
  889. spi_bus_obj[SPI5_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
  890. static struct dma_config spi5_dma_tx = SPI5_TX_DMA_CONFIG;
  891. spi_config[SPI5_INDEX].dma_tx = &spi5_dma_tx;
  892. #endif
  893. #ifdef BSP_SPI6_RX_USING_DMA
  894. spi_bus_obj[SPI6_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
  895. static struct dma_config spi6_dma_rx = SPI6_RX_DMA_CONFIG;
  896. spi_config[SPI6_INDEX].dma_rx = &spi6_dma_rx;
  897. #endif
  898. #ifdef BSP_SPI6_TX_USING_DMA
  899. spi_bus_obj[SPI6_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
  900. static struct dma_config spi6_dma_tx = SPI6_TX_DMA_CONFIG;
  901. spi_config[SPI6_INDEX].dma_tx = &spi6_dma_tx;
  902. #endif
  903. }
  904. void HAL_SPI_TxRxCpltCallback(SPI_HandleTypeDef *hspi)
  905. {
  906. struct stm32_spi *spi_drv = rt_container_of(hspi, struct stm32_spi, handle);
  907. rt_completion_done(&spi_drv->cpt);
  908. }
  909. void HAL_SPI_TxCpltCallback(SPI_HandleTypeDef *hspi)
  910. {
  911. struct stm32_spi *spi_drv = rt_container_of(hspi, struct stm32_spi, handle);
  912. rt_completion_done(&spi_drv->cpt);
  913. }
  914. void HAL_SPI_RxCpltCallback(SPI_HandleTypeDef *hspi)
  915. {
  916. struct stm32_spi *spi_drv = rt_container_of(hspi, struct stm32_spi, handle);
  917. rt_completion_done(&spi_drv->cpt);
  918. }
  919. #if defined(SOC_SERIES_STM32F0)
  920. void SPI1_DMA_RX_TX_IRQHandler(void)
  921. {
  922. #if defined(BSP_USING_SPI1) && defined(BSP_SPI1_TX_USING_DMA)
  923. SPI1_DMA_TX_IRQHandler();
  924. #endif
  925. #if defined(BSP_USING_SPI1) && defined(BSP_SPI1_RX_USING_DMA)
  926. SPI1_DMA_RX_IRQHandler();
  927. #endif
  928. }
  929. void SPI2_DMA_RX_TX_IRQHandler(void)
  930. {
  931. #if defined(BSP_USING_SPI2) && defined(BSP_SPI2_TX_USING_DMA)
  932. SPI2_DMA_TX_IRQHandler();
  933. #endif
  934. #if defined(BSP_USING_SPI2) && defined(BSP_SPI2_RX_USING_DMA)
  935. SPI2_DMA_RX_IRQHandler();
  936. #endif
  937. }
  938. #elif defined(SOC_SERIES_STM32G0)
  939. #if defined(BSP_SPI1_TX_USING_DMA) || defined(BSP_SPI1_RX_USING_DMA)
  940. void SPI1_DMA_RX_TX_IRQHandler(void)
  941. {
  942. #if defined(BSP_SPI1_TX_USING_DMA)
  943. SPI1_DMA_TX_IRQHandler();
  944. #endif
  945. #if defined(BSP_SPI1_RX_USING_DMA)
  946. SPI1_DMA_RX_IRQHandler();
  947. #endif
  948. }
  949. #endif /* defined(BSP_SPI1_TX_USING_DMA) || defined(BSP_SPI1_RX_USING_DMA) */
  950. #if defined(BSP_SPI2_TX_USING_DMA) || defined(BSP_SPI2_RX_USING_DMA)
  951. void SPI2_DMA_RX_TX_IRQHandler(void)
  952. {
  953. #if defined(BSP_SPI2_TX_USING_DMA)
  954. SPI2_DMA_TX_IRQHandler();
  955. #endif
  956. #if defined(BSP_SPI2_RX_USING_DMA)
  957. SPI2_DMA_RX_IRQHandler();
  958. #endif
  959. }
  960. #endif /* defined(BSP_SPI1_TX_USING_DMA) || defined(BSP_SPI1_RX_USING_DMA) */
  961. #if defined(STM32G0B0xx) || defined(STM32G0B1xx) || defined(STM32G0C1xx)
  962. #if defined(BSP_USING_SPI2) || defined(BSP_USING_SPI3)
  963. void SPI2_3_IRQHandler(void)
  964. {
  965. #if defined(BSP_SPI2_TX_USING_DMA) || defined(BSP_SPI2_RX_USING_DMA)
  966. SPI2_IRQHandler();
  967. #endif
  968. #if defined(BSP_SPI3_TX_USING_DMA) || defined(BSP_SPI3_RX_USING_DMA)
  969. SPI3_IRQHandler();
  970. #endif
  971. }
  972. #endif /* defined(BSP_USING_SPI2) || defined(BSP_USING_SPI3) */
  973. #endif /* defined(STM32G0B0xx) || defined(STM32G0B1xx) || defined(STM32G0C1xx) */
  974. #endif /* defined(SOC_SERIES_STM32F0) */
  975. int rt_hw_spi_init(void)
  976. {
  977. stm32_get_dma_info();
  978. return rt_hw_spi_bus_init();
  979. }
  980. INIT_BOARD_EXPORT(rt_hw_spi_init);
  981. #endif /* BSP_USING_SPI1 || BSP_USING_SPI2 || BSP_USING_SPI3 || BSP_USING_SPI4 || BSP_USING_SPI5 */
  982. #endif /* BSP_USING_SPI */