drv_eth.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610
  1. /*
  2. * File : application.c
  3. * This file is part of RT-Thread RTOS
  4. * COPYRIGHT (C) 2006, RT-Thread Development Team
  5. *
  6. * The license and distribution terms for this file may be
  7. * found in the file LICENSE in this distribution or at
  8. * http://www.rt-thread.org/license/LICENSE
  9. *
  10. * Change Logs:
  11. * Date Author Notes
  12. * 2017-06-08 tanek first implementation
  13. */
  14. #include <rtthread.h>
  15. #include <netif/ethernetif.h>
  16. #include "lwipopts.h"
  17. #include "board.h"
  18. #include "drv_pcf8574.h"
  19. #include <rtdevice.h>
  20. #include <finsh.h>
  21. /* debug option */
  22. //#define DEBUG
  23. //#define ETH_RX_DUMP
  24. //#define ETH_TX_DUMP
  25. #ifdef DEBUG
  26. #define STM32_ETH_PRINTF rt_kprintf
  27. #else
  28. #define STM32_ETH_PRINTF(...)
  29. #endif
  30. /*ÍøÂçÒý½ÅÉèÖà RMII½Ó¿Ú
  31. ETH_MDIO -------------------------> PA2
  32. ETH_MDC --------------------------> PC1
  33. ETH_RMII_REF_CLK------------------> PA1
  34. ETH_RMII_CRS_DV ------------------> PA7
  35. ETH_RMII_RXD0 --------------------> PC4
  36. ETH_RMII_RXD1 --------------------> PC5
  37. ETH_RMII_TX_EN -------------------> PB11
  38. ETH_RMII_TXD0 --------------------> PG13
  39. ETH_RMII_TXD1 --------------------> PG14
  40. ETH_RESET-------------------------> PCF8574À©Õ¹IO
  41. */
  42. #define ETH_MDIO_PORN GPIOA
  43. #define ETH_MDIO_PIN GPIO_PIN_2
  44. #define ETH_MDC_PORN GPIOC
  45. #define ETH_MDC_PIN GPIO_PIN_1
  46. #define ETH_RMII_REF_CLK_PORN GPIOA
  47. #define ETH_RMII_REF_CLK_PIN GPIO_PIN_1
  48. #define ETH_RMII_CRS_DV_PORN GPIOA
  49. #define ETH_RMII_CRS_DV_PIN GPIO_PIN_7
  50. #define ETH_RMII_RXD0_PORN GPIOC
  51. #define ETH_RMII_RXD0_PIN GPIO_PIN_4
  52. #define ETH_RMII_RXD1_PORN GPIOC
  53. #define ETH_RMII_RXD1_PIN GPIO_PIN_5
  54. #define ETH_RMII_TX_EN_PORN GPIOB
  55. #define ETH_RMII_TX_EN_PIN GPIO_PIN_11
  56. #define ETH_RMII_TXD0_PORN GPIOG
  57. #define ETH_RMII_TXD0_PIN GPIO_PIN_13
  58. #define ETH_RMII_TXD1_PORN GPIOG
  59. #define ETH_RMII_TXD1_PIN GPIO_PIN_14
  60. #define LAN8742A_PHY_ADDRESS 0x00
  61. #define MAX_ADDR_LEN 6
  62. struct rt_stm32_eth
  63. {
  64. /* inherit from ethernet device */
  65. struct eth_device parent;
  66. /* interface address info. */
  67. rt_uint8_t dev_addr[MAX_ADDR_LEN]; /* hw address */
  68. uint32_t ETH_Speed; /*!< @ref ETH_Speed */
  69. uint32_t ETH_Mode; /*!< @ref ETH_Duplex_Mode */
  70. };
  71. static ETH_DMADescTypeDef DMARxDscrTab[ETH_RXBUFNB], DMATxDscrTab[ETH_TXBUFNB];
  72. static rt_uint8_t Rx_Buff[ETH_RXBUFNB][ETH_MAX_PACKET_SIZE], Tx_Buff[ETH_TXBUFNB][ETH_MAX_PACKET_SIZE];
  73. static rt_bool_t tx_is_waiting = RT_FALSE;
  74. static ETH_HandleTypeDef EthHandle;
  75. static struct rt_stm32_eth stm32_eth_device;
  76. static struct rt_semaphore tx_wait;
  77. /* interrupt service routine */
  78. void ETH_IRQHandler(void)
  79. {
  80. /* enter interrupt */
  81. rt_interrupt_enter();
  82. HAL_ETH_IRQHandler(&EthHandle);
  83. /* leave interrupt */
  84. rt_interrupt_leave();
  85. }
  86. void HAL_ETH_TxCpltCallback(ETH_HandleTypeDef *heth)
  87. {
  88. if (tx_is_waiting == RT_TRUE)
  89. {
  90. tx_is_waiting = RT_FALSE;
  91. rt_sem_release(&tx_wait);
  92. }
  93. }
  94. void HAL_ETH_RxCpltCallback(ETH_HandleTypeDef *heth)
  95. {
  96. rt_err_t result;
  97. result = eth_device_ready(&(stm32_eth_device.parent));
  98. if( result != RT_EOK )
  99. rt_kprintf("RX err =%d\n", result );
  100. }
  101. void HAL_ETH_ErrorCallback(ETH_HandleTypeDef *heth)
  102. {
  103. rt_kprintf("eth err\n");
  104. }
  105. static void delay_ms(rt_uint32_t ms)
  106. {
  107. if (ms < 1000 / RT_TICK_PER_SECOND)
  108. {
  109. rt_thread_delay(1);
  110. }
  111. else
  112. {
  113. rt_thread_delay(rt_tick_from_millisecond(ms));
  114. }
  115. }
  116. static void phy_pin_reset(void)
  117. {
  118. rt_base_t level;
  119. extern void delay_ms(rt_uint32_t nms);
  120. level = rt_hw_interrupt_disable();
  121. rt_pcf8574_write_bit(ETH_RESET_IO, 1);
  122. delay_ms(100);
  123. rt_pcf8574_write_bit(ETH_RESET_IO, 0);
  124. delay_ms(100);
  125. rt_hw_interrupt_enable(level);
  126. }
  127. #ifdef DEBUG
  128. FINSH_FUNCTION_EXPORT(phy_pin_reset, phy hardware reset);
  129. #endif
  130. /* initialize the interface */
  131. static rt_err_t rt_stm32_eth_init(rt_device_t dev)
  132. {
  133. STM32_ETH_PRINTF("rt_stm32_eth_init...\n");
  134. __HAL_RCC_ETH_CLK_ENABLE();
  135. rt_pcf8574_init();
  136. phy_pin_reset();
  137. /* ETHERNET Configuration --------------------------------------------------*/
  138. EthHandle.Instance = ETH;
  139. EthHandle.Init.MACAddr = (rt_uint8_t*)&stm32_eth_device.dev_addr[0];
  140. EthHandle.Init.AutoNegotiation = ETH_AUTONEGOTIATION_ENABLE;
  141. EthHandle.Init.Speed = ETH_SPEED_100M;
  142. EthHandle.Init.DuplexMode = ETH_MODE_FULLDUPLEX;
  143. EthHandle.Init.MediaInterface = ETH_MEDIA_INTERFACE_RMII;
  144. EthHandle.Init.RxMode = ETH_RXINTERRUPT_MODE;
  145. EthHandle.Init.ChecksumMode = ETH_CHECKSUM_BY_SOFTWARE;
  146. //EthHandle.Init.ChecksumMode = ETH_CHECKSUM_BY_HARDWARE;
  147. EthHandle.Init.PhyAddress = LAN8742A_PHY_ADDRESS;
  148. HAL_ETH_DeInit(&EthHandle);
  149. /* configure ethernet peripheral (GPIOs, clocks, MAC, DMA) */
  150. if (HAL_ETH_Init(&EthHandle) == HAL_OK)
  151. {
  152. STM32_ETH_PRINTF("eth hardware init sucess...\n");
  153. }
  154. else
  155. {
  156. STM32_ETH_PRINTF("eth hardware init faild...\n");
  157. }
  158. /* Initialize Tx Descriptors list: Chain Mode */
  159. HAL_ETH_DMATxDescListInit(&EthHandle, DMATxDscrTab, &Tx_Buff[0][0], ETH_TXBUFNB);
  160. /* Initialize Rx Descriptors list: Chain Mode */
  161. HAL_ETH_DMARxDescListInit(&EthHandle, DMARxDscrTab, &Rx_Buff[0][0], ETH_RXBUFNB);
  162. /* Enable MAC and DMA transmission and reception */
  163. if (HAL_ETH_Start(&EthHandle) == HAL_OK)
  164. {
  165. STM32_ETH_PRINTF("eth hardware start success...\n");
  166. }
  167. else
  168. {
  169. STM32_ETH_PRINTF("eth hardware start faild...\n");
  170. }
  171. //phy_monitor_thread_entry(NULL);
  172. return RT_EOK;
  173. }
  174. static rt_err_t rt_stm32_eth_open(rt_device_t dev, rt_uint16_t oflag)
  175. {
  176. STM32_ETH_PRINTF("rt_stm32_eth_open...\n");
  177. return RT_EOK;
  178. }
  179. static rt_err_t rt_stm32_eth_close(rt_device_t dev)
  180. {
  181. STM32_ETH_PRINTF("rt_stm32_eth_close...\n");
  182. return RT_EOK;
  183. }
  184. static rt_size_t rt_stm32_eth_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size)
  185. {
  186. STM32_ETH_PRINTF("rt_stm32_eth_read...\n");
  187. rt_set_errno(-RT_ENOSYS);
  188. return 0;
  189. }
  190. static rt_size_t rt_stm32_eth_write (rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size)
  191. {
  192. STM32_ETH_PRINTF("rt_stm32_eth_write...\n");
  193. rt_set_errno(-RT_ENOSYS);
  194. return 0;
  195. }
  196. static rt_err_t rt_stm32_eth_control(rt_device_t dev, int cmd, void *args)
  197. {
  198. STM32_ETH_PRINTF("rt_stm32_eth_control...\n");
  199. switch(cmd)
  200. {
  201. case NIOCTL_GADDR:
  202. /* get mac address */
  203. if(args) rt_memcpy(args, stm32_eth_device.dev_addr, 6);
  204. else return -RT_ERROR;
  205. break;
  206. default :
  207. break;
  208. }
  209. return RT_EOK;
  210. }
  211. /* ethernet device interface */
  212. /* transmit packet. */
  213. rt_err_t rt_stm32_eth_tx( rt_device_t dev, struct pbuf* p)
  214. {
  215. rt_err_t ret = RT_ERROR;
  216. HAL_StatusTypeDef state;
  217. struct pbuf *q;
  218. uint8_t *buffer = (uint8_t *)(EthHandle.TxDesc->Buffer1Addr);
  219. __IO ETH_DMADescTypeDef *DmaTxDesc;
  220. uint32_t framelength = 0;
  221. uint32_t bufferoffset = 0;
  222. uint32_t byteslefttocopy = 0;
  223. uint32_t payloadoffset = 0;
  224. DmaTxDesc = EthHandle.TxDesc;
  225. bufferoffset = 0;
  226. STM32_ETH_PRINTF("rt_stm32_eth_tx...\n");
  227. /* Check if the descriptor is owned by the ETHERNET DMA (when set) or CPU (when reset) */
  228. while ((DmaTxDesc->Status & ETH_DMATXDESC_OWN) != (uint32_t)RESET)
  229. {
  230. rt_err_t result;
  231. rt_uint32_t level;
  232. level = rt_hw_interrupt_disable();
  233. tx_is_waiting = RT_TRUE;
  234. rt_hw_interrupt_enable(level);
  235. /* it's own bit set, wait it */
  236. result = rt_sem_take(&tx_wait, RT_WAITING_FOREVER);
  237. if (result == RT_EOK) break;
  238. if (result == -RT_ERROR) return -RT_ERROR;
  239. }
  240. /* copy frame from pbufs to driver buffers */
  241. for(q = p; q != NULL; q = q->next)
  242. {
  243. /* Is this buffer available? If not, goto error */
  244. if((DmaTxDesc->Status & ETH_DMATXDESC_OWN) != (uint32_t)RESET)
  245. {
  246. STM32_ETH_PRINTF("buffer not valid ...\n");
  247. ret = ERR_USE;
  248. goto error;
  249. }
  250. STM32_ETH_PRINTF("copy one frame\n");
  251. /* Get bytes in current lwIP buffer */
  252. byteslefttocopy = q->len;
  253. payloadoffset = 0;
  254. /* Check if the length of data to copy is bigger than Tx buffer size*/
  255. while( (byteslefttocopy + bufferoffset) > ETH_TX_BUF_SIZE )
  256. {
  257. /* Copy data to Tx buffer*/
  258. memcpy( (uint8_t*)((uint8_t*)buffer + bufferoffset), (uint8_t*)((uint8_t*)q->payload + payloadoffset), (ETH_TX_BUF_SIZE - bufferoffset) );
  259. /* Point to next descriptor */
  260. DmaTxDesc = (ETH_DMADescTypeDef *)(DmaTxDesc->Buffer2NextDescAddr);
  261. /* Check if the buffer is available */
  262. if((DmaTxDesc->Status & ETH_DMATXDESC_OWN) != (uint32_t)RESET)
  263. {
  264. STM32_ETH_PRINTF("dmatxdesc buffer not valid ...\n");
  265. ret = ERR_USE;
  266. goto error;
  267. }
  268. buffer = (uint8_t *)(DmaTxDesc->Buffer1Addr);
  269. byteslefttocopy = byteslefttocopy - (ETH_TX_BUF_SIZE - bufferoffset);
  270. payloadoffset = payloadoffset + (ETH_TX_BUF_SIZE - bufferoffset);
  271. framelength = framelength + (ETH_TX_BUF_SIZE - bufferoffset);
  272. bufferoffset = 0;
  273. }
  274. /* Copy the remaining bytes */
  275. memcpy( (uint8_t*)((uint8_t*)buffer + bufferoffset), (uint8_t*)((uint8_t*)q->payload + payloadoffset), byteslefttocopy );
  276. bufferoffset = bufferoffset + byteslefttocopy;
  277. framelength = framelength + byteslefttocopy;
  278. }
  279. #ifdef ETH_TX_DUMP
  280. {
  281. rt_uint32_t i;
  282. rt_uint8_t *ptr = buffer;
  283. STM32_ETH_PRINTF("tx_dump, len:%d\r\n", p->tot_len);
  284. for(i=0; i<p->tot_len; i++)
  285. {
  286. STM32_ETH_PRINTF("%02x ",*ptr);
  287. ptr++;
  288. if(((i+1)%8) == 0)
  289. {
  290. STM32_ETH_PRINTF(" ");
  291. }
  292. if(((i+1)%16) == 0)
  293. {
  294. STM32_ETH_PRINTF("\r\n");
  295. }
  296. }
  297. STM32_ETH_PRINTF("\r\ndump done!\r\n");
  298. }
  299. #endif
  300. /* Prepare transmit descriptors to give to DMA */
  301. STM32_ETH_PRINTF("transmit frame, length: %d\n", framelength);
  302. state = HAL_ETH_TransmitFrame(&EthHandle, framelength);
  303. if (state != HAL_OK)
  304. {
  305. STM32_ETH_PRINTF("eth transmit frame faild: %d\n", state);
  306. }
  307. ret = ERR_OK;
  308. error:
  309. /* When Transmit Underflow flag is set, clear it and issue a Transmit Poll Demand to resume transmission */
  310. if ((EthHandle.Instance->DMASR & ETH_DMASR_TUS) != (uint32_t)RESET)
  311. {
  312. /* Clear TUS ETHERNET DMA flag */
  313. EthHandle.Instance->DMASR = ETH_DMASR_TUS;
  314. /* Resume DMA transmission*/
  315. EthHandle.Instance->DMATPDR = 0;
  316. }
  317. return ret;
  318. }
  319. /* reception packet. */
  320. struct pbuf *rt_stm32_eth_rx(rt_device_t dev)
  321. {
  322. struct pbuf *p = NULL;
  323. struct pbuf *q = NULL;
  324. HAL_StatusTypeDef state;
  325. uint16_t len = 0;
  326. uint8_t *buffer;
  327. __IO ETH_DMADescTypeDef *dmarxdesc;
  328. uint32_t bufferoffset = 0;
  329. uint32_t payloadoffset = 0;
  330. uint32_t byteslefttocopy = 0;
  331. uint32_t i=0;
  332. STM32_ETH_PRINTF("rt_stm32_eth_rx\n");
  333. /* Get received frame */
  334. state = HAL_ETH_GetReceivedFrame_IT(&EthHandle);
  335. if (state != HAL_OK)
  336. {
  337. STM32_ETH_PRINTF("receive frame faild\n");
  338. return NULL;
  339. }
  340. /* Obtain the size of the packet and put it into the "len" variable. */
  341. len = EthHandle.RxFrameInfos.length;
  342. buffer = (uint8_t *)EthHandle.RxFrameInfos.buffer;
  343. STM32_ETH_PRINTF("receive frame len : %d\n", len);
  344. if (len > 0)
  345. {
  346. /* We allocate a pbuf chain of pbufs from the Lwip buffer pool */
  347. p = pbuf_alloc(PBUF_RAW, len, PBUF_POOL);
  348. }
  349. #ifdef ETH_RX_DUMP
  350. {
  351. rt_uint32_t i;
  352. rt_uint8_t *ptr = buffer;
  353. STM32_ETH_PRINTF("rx_dump, len:%d\r\n", p->tot_len);
  354. for (i = 0; i < len; i++)
  355. {
  356. STM32_ETH_PRINTF("%02x ", *ptr);
  357. ptr++;
  358. if (((i + 1) % 8) == 0)
  359. {
  360. STM32_ETH_PRINTF(" ");
  361. }
  362. if (((i + 1) % 16) == 0)
  363. {
  364. STM32_ETH_PRINTF("\r\n");
  365. }
  366. }
  367. STM32_ETH_PRINTF("\r\ndump done!\r\n");
  368. }
  369. #endif
  370. if (p != NULL)
  371. {
  372. dmarxdesc = EthHandle.RxFrameInfos.FSRxDesc;
  373. bufferoffset = 0;
  374. for(q = p; q != NULL; q = q->next)
  375. {
  376. byteslefttocopy = q->len;
  377. payloadoffset = 0;
  378. /* Check if the length of bytes to copy in current pbuf is bigger than Rx buffer size*/
  379. while( (byteslefttocopy + bufferoffset) > ETH_RX_BUF_SIZE )
  380. {
  381. /* Copy data to pbuf */
  382. memcpy( (uint8_t*)((uint8_t*)q->payload + payloadoffset), (uint8_t*)((uint8_t*)buffer + bufferoffset), (ETH_RX_BUF_SIZE - bufferoffset));
  383. /* Point to next descriptor */
  384. dmarxdesc = (ETH_DMADescTypeDef *)(dmarxdesc->Buffer2NextDescAddr);
  385. buffer = (uint8_t *)(dmarxdesc->Buffer1Addr);
  386. byteslefttocopy = byteslefttocopy - (ETH_RX_BUF_SIZE - bufferoffset);
  387. payloadoffset = payloadoffset + (ETH_RX_BUF_SIZE - bufferoffset);
  388. bufferoffset = 0;
  389. }
  390. /* Copy remaining data in pbuf */
  391. memcpy( (uint8_t*)((uint8_t*)q->payload + payloadoffset), (uint8_t*)((uint8_t*)buffer + bufferoffset), byteslefttocopy);
  392. bufferoffset = bufferoffset + byteslefttocopy;
  393. }
  394. }
  395. /* Release descriptors to DMA */
  396. /* Point to first descriptor */
  397. dmarxdesc = EthHandle.RxFrameInfos.FSRxDesc;
  398. /* Set Own bit in Rx descriptors: gives the buffers back to DMA */
  399. for (i=0; i< EthHandle.RxFrameInfos.SegCount; i++)
  400. {
  401. dmarxdesc->Status |= ETH_DMARXDESC_OWN;
  402. dmarxdesc = (ETH_DMADescTypeDef *)(dmarxdesc->Buffer2NextDescAddr);
  403. }
  404. /* Clear Segment_Count */
  405. EthHandle.RxFrameInfos.SegCount =0;
  406. /* When Rx Buffer unavailable flag is set: clear it and resume reception */
  407. if ((EthHandle.Instance->DMASR & ETH_DMASR_RBUS) != (uint32_t)RESET)
  408. {
  409. /* Clear RBUS ETHERNET DMA flag */
  410. EthHandle.Instance->DMASR = ETH_DMASR_RBUS;
  411. /* Resume DMA reception */
  412. EthHandle.Instance->DMARPDR = 0;
  413. }
  414. return p;
  415. }
  416. static void NVIC_Configuration(void)
  417. {
  418. /* Enable the Ethernet global Interrupt */
  419. HAL_NVIC_SetPriority(ETH_IRQn, 0x7, 0);
  420. HAL_NVIC_EnableIRQ(ETH_IRQn);
  421. }
  422. /*
  423. * GPIO Configuration for ETH
  424. */
  425. static void GPIO_Configuration(void)
  426. {
  427. GPIO_InitTypeDef GPIO_InitStructure;
  428. STM32_ETH_PRINTF("GPIO_Configuration...\n");
  429. /* Enable SYSCFG clock */
  430. __HAL_RCC_ETH_CLK_ENABLE();
  431. __HAL_RCC_GPIOA_CLK_ENABLE();
  432. __HAL_RCC_GPIOB_CLK_ENABLE();
  433. __HAL_RCC_GPIOC_CLK_ENABLE();
  434. __HAL_RCC_GPIOG_CLK_ENABLE();
  435. GPIO_InitStructure.Speed = GPIO_SPEED_HIGH;
  436. GPIO_InitStructure.Mode = GPIO_MODE_AF_PP;
  437. GPIO_InitStructure.Alternate = GPIO_AF11_ETH;
  438. GPIO_InitStructure.Pull = GPIO_NOPULL;
  439. GPIO_InitStructure.Pin = ETH_MDIO_PIN;
  440. HAL_GPIO_Init(ETH_MDIO_PORN,&GPIO_InitStructure);
  441. GPIO_InitStructure.Pin = ETH_MDC_PIN;
  442. HAL_GPIO_Init(ETH_MDC_PORN,&GPIO_InitStructure);
  443. GPIO_InitStructure.Pin = ETH_RMII_REF_CLK_PIN;
  444. HAL_GPIO_Init(ETH_RMII_REF_CLK_PORN,&GPIO_InitStructure);
  445. GPIO_InitStructure.Pin = ETH_RMII_CRS_DV_PIN;
  446. HAL_GPIO_Init(ETH_RMII_CRS_DV_PORN,&GPIO_InitStructure);
  447. GPIO_InitStructure.Pin = ETH_RMII_REF_CLK_PIN;
  448. HAL_GPIO_Init(ETH_RMII_REF_CLK_PORN,&GPIO_InitStructure);
  449. GPIO_InitStructure.Pin = ETH_RMII_CRS_DV_PIN;
  450. HAL_GPIO_Init(ETH_RMII_CRS_DV_PORN,&GPIO_InitStructure);
  451. GPIO_InitStructure.Pin = ETH_RMII_RXD0_PIN;
  452. HAL_GPIO_Init(ETH_RMII_RXD0_PORN,&GPIO_InitStructure);
  453. GPIO_InitStructure.Pin = ETH_RMII_RXD1_PIN;
  454. HAL_GPIO_Init(ETH_RMII_RXD1_PORN,&GPIO_InitStructure);
  455. GPIO_InitStructure.Pin = ETH_RMII_TX_EN_PIN;
  456. HAL_GPIO_Init(ETH_RMII_TX_EN_PORN,&GPIO_InitStructure);
  457. GPIO_InitStructure.Pin = ETH_RMII_TXD0_PIN;
  458. HAL_GPIO_Init(ETH_RMII_TXD0_PORN,&GPIO_InitStructure);
  459. GPIO_InitStructure.Pin = ETH_RMII_TXD1_PIN;
  460. HAL_GPIO_Init(ETH_RMII_TXD1_PORN,&GPIO_InitStructure);
  461. HAL_NVIC_SetPriority(ETH_IRQn,1,0);
  462. HAL_NVIC_EnableIRQ(ETH_IRQn);
  463. }
  464. void HAL_ETH_MspInit(ETH_HandleTypeDef *heth)
  465. {
  466. GPIO_Configuration();
  467. NVIC_Configuration();
  468. }
  469. static int rt_hw_stm32_eth_init(void)
  470. {
  471. rt_err_t state;
  472. stm32_eth_device.ETH_Speed = ETH_SPEED_100M;
  473. stm32_eth_device.ETH_Mode = ETH_MODE_FULLDUPLEX;
  474. /* OUI 00-80-E1 STMICROELECTRONICS. */
  475. stm32_eth_device.dev_addr[0] = 0x00;
  476. stm32_eth_device.dev_addr[1] = 0x80;
  477. stm32_eth_device.dev_addr[2] = 0xE1;
  478. /* generate MAC addr from 96bit unique ID (only for test). */
  479. stm32_eth_device.dev_addr[3] = *(rt_uint8_t*)(UID_BASE+4);
  480. stm32_eth_device.dev_addr[4] = *(rt_uint8_t*)(UID_BASE+2);
  481. stm32_eth_device.dev_addr[5] = *(rt_uint8_t*)(UID_BASE+0);
  482. stm32_eth_device.parent.parent.init = rt_stm32_eth_init;
  483. stm32_eth_device.parent.parent.open = rt_stm32_eth_open;
  484. stm32_eth_device.parent.parent.close = rt_stm32_eth_close;
  485. stm32_eth_device.parent.parent.read = rt_stm32_eth_read;
  486. stm32_eth_device.parent.parent.write = rt_stm32_eth_write;
  487. stm32_eth_device.parent.parent.control = rt_stm32_eth_control;
  488. stm32_eth_device.parent.parent.user_data = RT_NULL;
  489. stm32_eth_device.parent.eth_rx = rt_stm32_eth_rx;
  490. stm32_eth_device.parent.eth_tx = rt_stm32_eth_tx;
  491. STM32_ETH_PRINTF("sem init: tx_wait\r\n");
  492. /* init tx semaphore */
  493. rt_sem_init(&tx_wait, "tx_wait", 0, RT_IPC_FLAG_FIFO);
  494. /* register eth device */
  495. STM32_ETH_PRINTF("eth_device_init start\r\n");
  496. state = eth_device_init(&(stm32_eth_device.parent), "e0");
  497. if (RT_EOK == state)
  498. {
  499. STM32_ETH_PRINTF("eth_device_init success\r\n");
  500. }
  501. else
  502. {
  503. STM32_ETH_PRINTF("eth_device_init faild: %d\r\n", state);
  504. }
  505. eth_device_linkchange(&stm32_eth_device.parent, RT_TRUE); //linkup the e0 for lwip to check
  506. return state;
  507. }
  508. INIT_DEVICE_EXPORT(rt_hw_stm32_eth_init);