dm9000.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618
  1. #include <rtthread.h>
  2. #include <netif/ethernetif.h>
  3. #include "dm9000.h"
  4. // #define DM9000_DEBUG 1
  5. #if DM9000_DEBUG
  6. #define DM9000_TRACE rt_kprintf
  7. #else
  8. #define DM9000_TRACE(...)
  9. #endif
  10. /*
  11. * DM9000 interrupt line is connected to PF7
  12. */
  13. //--------------------------------------------------------
  14. #define DM9000_PHY 0x40 /* PHY address 0x01 */
  15. #define RST_1() GPIO_SetBits(GPIOF,GPIO_Pin_6)
  16. #define RST_0() GPIO_ResetBits(GPIOF,GPIO_Pin_6)
  17. #define MAX_ADDR_LEN 6
  18. enum DM9000_PHY_mode
  19. {
  20. DM9000_10MHD = 0, DM9000_100MHD = 1,
  21. DM9000_10MFD = 4, DM9000_100MFD = 5,
  22. DM9000_AUTO = 8, DM9000_1M_HPNA = 0x10
  23. };
  24. enum DM9000_TYPE
  25. {
  26. TYPE_DM9000E,
  27. TYPE_DM9000A,
  28. TYPE_DM9000B
  29. };
  30. struct rt_dm9000_eth
  31. {
  32. /* inherit from ethernet device */
  33. struct eth_device parent;
  34. enum DM9000_TYPE type;
  35. enum DM9000_PHY_mode mode;
  36. rt_uint8_t imr_all;
  37. rt_uint8_t packet_cnt; /* packet I or II */
  38. rt_uint16_t queue_packet_len; /* queued packet (packet II) */
  39. /* interface address info. */
  40. rt_uint8_t dev_addr[MAX_ADDR_LEN]; /* hw address */
  41. };
  42. static struct rt_dm9000_eth dm9000_device;
  43. static struct rt_semaphore sem_ack, sem_lock;
  44. void rt_dm9000_isr(void);
  45. static void delay_ms(rt_uint32_t ms)
  46. {
  47. rt_uint32_t len;
  48. for (;ms > 0; ms --)
  49. for (len = 0; len < 100; len++ );
  50. }
  51. /* Read a byte from I/O port */
  52. rt_inline rt_uint8_t dm9000_io_read(rt_uint16_t reg)
  53. {
  54. DM9000_IO = reg;
  55. return (rt_uint8_t) DM9000_DATA;
  56. }
  57. /* Write a byte to I/O port */
  58. rt_inline void dm9000_io_write(rt_uint16_t reg, rt_uint16_t value)
  59. {
  60. DM9000_IO = reg;
  61. DM9000_DATA = value;
  62. }
  63. /* Read a word from phyxcer */
  64. rt_inline rt_uint16_t phy_read(rt_uint16_t reg)
  65. {
  66. rt_uint16_t val;
  67. /* Fill the phyxcer register into REG_0C */
  68. dm9000_io_write(DM9000_EPAR, DM9000_PHY | reg);
  69. dm9000_io_write(DM9000_EPCR, 0xc); /* Issue phyxcer read command */
  70. delay_ms(100); /* Wait read complete */
  71. dm9000_io_write(DM9000_EPCR, 0x0); /* Clear phyxcer read command */
  72. val = (dm9000_io_read(DM9000_EPDRH) << 8) | dm9000_io_read(DM9000_EPDRL);
  73. return val;
  74. }
  75. /* Write a word to phyxcer */
  76. rt_inline void phy_write(rt_uint16_t reg, rt_uint16_t value)
  77. {
  78. /* Fill the phyxcer register into REG_0C */
  79. dm9000_io_write(DM9000_EPAR, DM9000_PHY | reg);
  80. /* Fill the written data into REG_0D & REG_0E */
  81. dm9000_io_write(DM9000_EPDRL, (value & 0xff));
  82. dm9000_io_write(DM9000_EPDRH, ((value >> 8) & 0xff));
  83. dm9000_io_write(DM9000_EPCR, 0xa); /* Issue phyxcer write command */
  84. delay_ms(500); /* Wait write complete */
  85. dm9000_io_write(DM9000_EPCR, 0x0); /* Clear phyxcer write command */
  86. }
  87. /* Set PHY operationg mode */
  88. rt_inline void phy_mode_set(rt_uint32_t media_mode)
  89. {
  90. rt_uint16_t phy_reg4 = 0x01e1, phy_reg0 = 0x1000;
  91. if (!(media_mode & DM9000_AUTO))
  92. {
  93. switch (media_mode)
  94. {
  95. case DM9000_10MHD:
  96. phy_reg4 = 0x21;
  97. phy_reg0 = 0x0000;
  98. break;
  99. case DM9000_10MFD:
  100. phy_reg4 = 0x41;
  101. phy_reg0 = 0x1100;
  102. break;
  103. case DM9000_100MHD:
  104. phy_reg4 = 0x81;
  105. phy_reg0 = 0x2000;
  106. break;
  107. case DM9000_100MFD:
  108. phy_reg4 = 0x101;
  109. phy_reg0 = 0x3100;
  110. break;
  111. }
  112. phy_write(4, phy_reg4); /* Set PHY media mode */
  113. phy_write(0, phy_reg0); /* Tmp */
  114. }
  115. dm9000_io_write(DM9000_GPCR, 0x01); /* Let GPIO0 output */
  116. dm9000_io_write(DM9000_GPR, 0x00); /* Enable PHY */
  117. }
  118. /* interrupt service routine */
  119. void rt_dm9000_isr()
  120. {
  121. rt_uint16_t int_status;
  122. rt_uint16_t last_io;
  123. last_io = DM9000_IO;
  124. /* Disable all interrupts */
  125. dm9000_io_write(DM9000_IMR, IMR_PAR);
  126. /* Got DM9000 interrupt status */
  127. int_status = dm9000_io_read(DM9000_ISR); /* Got ISR */
  128. dm9000_io_write(DM9000_ISR, int_status); /* Clear ISR status */
  129. DM9000_TRACE("dm9000 isr: int status %04x\n", int_status);
  130. /* receive overflow */
  131. if (int_status & ISR_ROS)
  132. {
  133. rt_kprintf("overflow\n");
  134. }
  135. if (int_status & ISR_ROOS)
  136. {
  137. rt_kprintf("overflow counter overflow\n");
  138. }
  139. /* Received the coming packet */
  140. if (int_status & ISR_PRS)
  141. {
  142. /* disable receive interrupt */
  143. dm9000_device.imr_all = IMR_PAR | IMR_PTM;
  144. /* a frame has been received */
  145. eth_device_ready(&(dm9000_device.parent));
  146. }
  147. /* Transmit Interrupt check */
  148. if (int_status & ISR_PTS)
  149. {
  150. /* transmit done */
  151. int tx_status = dm9000_io_read(DM9000_NSR); /* Got TX status */
  152. if (tx_status & (NSR_TX2END | NSR_TX1END))
  153. {
  154. dm9000_device.packet_cnt --;
  155. if (dm9000_device.packet_cnt > 0)
  156. {
  157. DM9000_TRACE("dm9000 isr: tx second packet\n");
  158. /* transmit packet II */
  159. /* Set TX length to DM9000 */
  160. dm9000_io_write(DM9000_TXPLL, dm9000_device.queue_packet_len & 0xff);
  161. dm9000_io_write(DM9000_TXPLH, (dm9000_device.queue_packet_len >> 8) & 0xff);
  162. /* Issue TX polling command */
  163. dm9000_io_write(DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */
  164. }
  165. /* One packet sent complete */
  166. rt_sem_release(&sem_ack);
  167. }
  168. }
  169. /* Re-enable interrupt mask */
  170. dm9000_io_write(DM9000_IMR, dm9000_device.imr_all);
  171. DM9000_IO = last_io;
  172. }
  173. /* RT-Thread Device Interface */
  174. /* initialize the interface */
  175. static rt_err_t rt_dm9000_init(rt_device_t dev)
  176. {
  177. int i, oft, lnk;
  178. rt_uint32_t value;
  179. /* RESET device */
  180. dm9000_io_write(DM9000_NCR, NCR_RST);
  181. delay_ms(1000); /* delay 1ms */
  182. /* identfy DM9000 */
  183. value = dm9000_io_read(DM9000_VIDL);
  184. value |= dm9000_io_read(DM9000_VIDH) << 8;
  185. value |= dm9000_io_read(DM9000_PIDL) << 16;
  186. value |= dm9000_io_read(DM9000_PIDH) << 24;
  187. if (value == DM9000_ID)
  188. {
  189. rt_kprintf("dm9000 id: 0x%x\n", value);
  190. }
  191. else
  192. {
  193. return -RT_ERROR;
  194. }
  195. /* GPIO0 on pre-activate PHY */
  196. dm9000_io_write(DM9000_GPR, 0x00); /* REG_1F bit0 activate phyxcer */
  197. dm9000_io_write(DM9000_GPCR, GPCR_GEP_CNTL); /* Let GPIO0 output */
  198. dm9000_io_write(DM9000_GPR, 0x00); /* Enable PHY */
  199. /* Set PHY */
  200. phy_mode_set(dm9000_device.mode);
  201. /* Program operating register */
  202. dm9000_io_write(DM9000_NCR, 0x0); /* only intern phy supported by now */
  203. dm9000_io_write(DM9000_TCR, 0); /* TX Polling clear */
  204. dm9000_io_write(DM9000_BPTR, 0x3f); /* Less 3Kb, 200us */
  205. dm9000_io_write(DM9000_FCTR, FCTR_HWOT(3) | FCTR_LWOT(8)); /* Flow Control : High/Low Water */
  206. dm9000_io_write(DM9000_FCR, 0x0); /* SH FIXME: This looks strange! Flow Control */
  207. dm9000_io_write(DM9000_SMCR, 0); /* Special Mode */
  208. dm9000_io_write(DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END); /* clear TX status */
  209. dm9000_io_write(DM9000_ISR, 0x0f); /* Clear interrupt status */
  210. dm9000_io_write(DM9000_TCR2, 0x80); /* Switch LED to mode 1 */
  211. /* set mac address */
  212. for (i = 0, oft = 0x10; i < 6; i++, oft++)
  213. dm9000_io_write(oft, dm9000_device.dev_addr[i]);
  214. /* set multicast address */
  215. for (i = 0, oft = 0x16; i < 8; i++, oft++)
  216. dm9000_io_write(oft, 0xff);
  217. /* Activate DM9000 */
  218. dm9000_io_write(DM9000_RCR, RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN); /* RX enable */
  219. dm9000_io_write(DM9000_IMR, IMR_PAR);
  220. if (dm9000_device.mode == DM9000_AUTO)
  221. {
  222. while (!(phy_read(1) & 0x20))
  223. {
  224. /* autonegation complete bit */
  225. rt_thread_delay(10);
  226. i++;
  227. if (i == 10000)
  228. {
  229. rt_kprintf("could not establish link\n");
  230. return 0;
  231. }
  232. }
  233. }
  234. /* see what we've got */
  235. lnk = phy_read(17) >> 12;
  236. rt_kprintf("operating at ");
  237. switch (lnk)
  238. {
  239. case 1:
  240. rt_kprintf("10M half duplex ");
  241. break;
  242. case 2:
  243. rt_kprintf("10M full duplex ");
  244. break;
  245. case 4:
  246. rt_kprintf("100M half duplex ");
  247. break;
  248. case 8:
  249. rt_kprintf("100M full duplex ");
  250. break;
  251. default:
  252. rt_kprintf("unknown: %d ", lnk);
  253. break;
  254. }
  255. rt_kprintf("mode\n");
  256. dm9000_io_write(DM9000_IMR, dm9000_device.imr_all); /* Enable TX/RX interrupt mask */
  257. return RT_EOK;
  258. }
  259. static rt_err_t rt_dm9000_open(rt_device_t dev, rt_uint16_t oflag)
  260. {
  261. return RT_EOK;
  262. }
  263. static rt_err_t rt_dm9000_close(rt_device_t dev)
  264. {
  265. /* RESET devie */
  266. phy_write(0, 0x8000); /* PHY RESET */
  267. dm9000_io_write(DM9000_GPR, 0x01); /* Power-Down PHY */
  268. dm9000_io_write(DM9000_IMR, 0x80); /* Disable all interrupt */
  269. dm9000_io_write(DM9000_RCR, 0x00); /* Disable RX */
  270. return RT_EOK;
  271. }
  272. static rt_size_t rt_dm9000_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size)
  273. {
  274. rt_set_errno(-RT_ENOSYS);
  275. return 0;
  276. }
  277. static rt_size_t rt_dm9000_write (rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size)
  278. {
  279. rt_set_errno(-RT_ENOSYS);
  280. return 0;
  281. }
  282. static rt_err_t rt_dm9000_control(rt_device_t dev, rt_uint8_t cmd, void *args)
  283. {
  284. switch (cmd)
  285. {
  286. case NIOCTL_GADDR:
  287. /* get mac address */
  288. if (args) rt_memcpy(args, dm9000_device.dev_addr, 6);
  289. else return -RT_ERROR;
  290. break;
  291. default :
  292. break;
  293. }
  294. return RT_EOK;
  295. }
  296. /* ethernet device interface */
  297. /* transmit packet. */
  298. rt_err_t rt_dm9000_tx( rt_device_t dev, struct pbuf* p)
  299. {
  300. DM9000_TRACE("dm9000 tx: %d\n", p->tot_len);
  301. /* lock DM9000 device */
  302. rt_sem_take(&sem_lock, RT_WAITING_FOREVER);
  303. /* disable dm9000a interrupt */
  304. dm9000_io_write(DM9000_IMR, IMR_PAR);
  305. /* Move data to DM9000 TX RAM */
  306. DM9000_outb(DM9000_IO_BASE, DM9000_MWCMD);
  307. {
  308. /* q traverses through linked list of pbuf's
  309. * This list MUST consist of a single packet ONLY */
  310. struct pbuf *q;
  311. rt_uint16_t pbuf_index = 0;
  312. rt_uint8_t word[2], word_index = 0;
  313. q = p;
  314. /* Write data into dm9000a, two bytes at a time
  315. * Handling pbuf's with odd number of bytes correctly
  316. * No attempt to optimize for speed has been made */
  317. while (q)
  318. {
  319. if (pbuf_index < q->len)
  320. {
  321. word[word_index++] = ((u8_t*)q->payload)[pbuf_index++];
  322. if (word_index == 2)
  323. {
  324. DM9000_outw(DM9000_DATA_BASE, (word[1] << 8) | word[0]);
  325. word_index = 0;
  326. }
  327. }
  328. else
  329. {
  330. q = q->next;
  331. pbuf_index = 0;
  332. }
  333. }
  334. /* One byte could still be unsent */
  335. if (word_index == 1)
  336. {
  337. DM9000_outw(DM9000_DATA_BASE, word[0]);
  338. }
  339. }
  340. if (dm9000_device.packet_cnt == 0)
  341. {
  342. DM9000_TRACE("dm9000 tx: first packet\n");
  343. dm9000_device.packet_cnt ++;
  344. /* Set TX length to DM9000 */
  345. dm9000_io_write(DM9000_TXPLL, p->tot_len & 0xff);
  346. dm9000_io_write(DM9000_TXPLH, (p->tot_len >> 8) & 0xff);
  347. /* Issue TX polling command */
  348. dm9000_io_write(DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */
  349. }
  350. else
  351. {
  352. DM9000_TRACE("dm9000 tx: second packet\n");
  353. dm9000_device.packet_cnt ++;
  354. dm9000_device.queue_packet_len = p->tot_len;
  355. }
  356. /* enable dm9000a interrupt */
  357. dm9000_io_write(DM9000_IMR, dm9000_device.imr_all);
  358. /* unlock DM9000 device */
  359. rt_sem_release(&sem_lock);
  360. /* wait ack */
  361. rt_sem_take(&sem_ack, RT_WAITING_FOREVER);
  362. DM9000_TRACE("dm9000 tx done\n");
  363. return RT_EOK;
  364. }
  365. /* reception packet. */
  366. struct pbuf *rt_dm9000_rx(rt_device_t dev)
  367. {
  368. struct pbuf* p;
  369. rt_uint32_t rxbyte;
  370. /* init p pointer */
  371. p = RT_NULL;
  372. /* lock DM9000 device */
  373. rt_sem_take(&sem_lock, RT_WAITING_FOREVER);
  374. /* Check packet ready or not */
  375. dm9000_io_read(DM9000_MRCMDX); /* Dummy read */
  376. rxbyte = DM9000_inb(DM9000_DATA_BASE); /* Got most updated data */
  377. if (rxbyte)
  378. {
  379. rt_uint16_t rx_status, rx_len;
  380. rt_uint16_t* data;
  381. if (rxbyte > 1)
  382. {
  383. DM9000_TRACE("dm9000 rx: rx error, stop device\n");
  384. dm9000_io_write(DM9000_RCR, 0x00); /* Stop Device */
  385. dm9000_io_write(DM9000_ISR, 0x80); /* Stop INT request */
  386. }
  387. /* A packet ready now & Get status/length */
  388. DM9000_outb(DM9000_IO_BASE, DM9000_MRCMD);
  389. rx_status = DM9000_inw(DM9000_DATA_BASE);
  390. rx_len = DM9000_inw(DM9000_DATA_BASE);
  391. DM9000_TRACE("dm9000 rx: status %04x len %d\n", rx_status, rx_len);
  392. /* allocate buffer */
  393. p = pbuf_alloc(PBUF_LINK, rx_len, PBUF_RAM);
  394. if (p != RT_NULL)
  395. {
  396. struct pbuf* q;
  397. rt_int32_t len;
  398. for (q = p; q != RT_NULL; q= q->next)
  399. {
  400. data = (rt_uint16_t*)q->payload;
  401. len = q->len;
  402. while (len > 0)
  403. {
  404. *data = DM9000_inw(DM9000_DATA_BASE);
  405. data ++;
  406. len -= 2;
  407. }
  408. }
  409. DM9000_TRACE("\n");
  410. }
  411. else
  412. {
  413. rt_uint16_t dummy;
  414. DM9000_TRACE("dm9000 rx: no pbuf\n");
  415. /* no pbuf, discard data from DM9000 */
  416. data = &dummy;
  417. while (rx_len)
  418. {
  419. *data = DM9000_inw(DM9000_DATA_BASE);
  420. rx_len -= 2;
  421. }
  422. }
  423. if ((rx_status & 0xbf00) || (rx_len < 0x40)
  424. || (rx_len > DM9000_PKT_MAX))
  425. {
  426. rt_kprintf("rx error: status %04x\n", rx_status);
  427. if (rx_status & 0x100)
  428. {
  429. rt_kprintf("rx fifo error\n");
  430. }
  431. if (rx_status & 0x200)
  432. {
  433. rt_kprintf("rx crc error\n");
  434. }
  435. if (rx_status & 0x8000)
  436. {
  437. rt_kprintf("rx length error\n");
  438. }
  439. if (rx_len > DM9000_PKT_MAX)
  440. {
  441. rt_kprintf("rx length too big\n");
  442. /* RESET device */
  443. dm9000_io_write(DM9000_NCR, NCR_RST);
  444. rt_thread_delay(1); /* delay 5ms */
  445. }
  446. /* it issues an error, release pbuf */
  447. pbuf_free(p);
  448. p = RT_NULL;
  449. }
  450. }
  451. else
  452. {
  453. /* restore receive interrupt */
  454. dm9000_device.imr_all = IMR_PAR | IMR_PTM | IMR_PRM;
  455. dm9000_io_write(DM9000_IMR, dm9000_device.imr_all);
  456. }
  457. /* unlock DM9000 device */
  458. rt_sem_release(&sem_lock);
  459. return p;
  460. }
  461. void rt_hw_dm9000_init()
  462. {
  463. rt_sem_init(&sem_ack, "tx_ack", 1, RT_IPC_FLAG_FIFO);
  464. rt_sem_init(&sem_lock, "eth_lock", 1, RT_IPC_FLAG_FIFO);
  465. dm9000_device.type = TYPE_DM9000A;
  466. dm9000_device.mode = DM9000_AUTO;
  467. dm9000_device.packet_cnt = 0;
  468. dm9000_device.queue_packet_len = 0;
  469. /*
  470. * SRAM Tx/Rx pointer automatically return to start address,
  471. * Packet Transmitted, Packet Received
  472. */
  473. dm9000_device.imr_all = IMR_PAR | IMR_PTM | IMR_PRM;
  474. dm9000_device.dev_addr[0] = 0x01;
  475. dm9000_device.dev_addr[1] = 0x60;
  476. dm9000_device.dev_addr[2] = 0x6E;
  477. dm9000_device.dev_addr[3] = 0x11;
  478. dm9000_device.dev_addr[4] = 0x02;
  479. dm9000_device.dev_addr[5] = 0x0F;
  480. dm9000_device.parent.parent.init = rt_dm9000_init;
  481. dm9000_device.parent.parent.open = rt_dm9000_open;
  482. dm9000_device.parent.parent.close = rt_dm9000_close;
  483. dm9000_device.parent.parent.read = rt_dm9000_read;
  484. dm9000_device.parent.parent.write = rt_dm9000_write;
  485. dm9000_device.parent.parent.control = rt_dm9000_control;
  486. dm9000_device.parent.parent.private = RT_NULL;
  487. dm9000_device.parent.eth_rx = rt_dm9000_rx;
  488. dm9000_device.parent.eth_tx = rt_dm9000_tx;
  489. eth_device_init(&(dm9000_device.parent), "e0");
  490. }
  491. void dm9000a(void)
  492. {
  493. rt_kprintf("\n");
  494. rt_kprintf("NCR (0x00): %02x\n", dm9000_io_read(DM9000_NCR));
  495. rt_kprintf("NSR (0x01): %02x\n", dm9000_io_read(DM9000_NSR));
  496. rt_kprintf("TCR (0x02): %02x\n", dm9000_io_read(DM9000_TCR));
  497. rt_kprintf("TSRI (0x03): %02x\n", dm9000_io_read(DM9000_TSR1));
  498. rt_kprintf("TSRII (0x04): %02x\n", dm9000_io_read(DM9000_TSR2));
  499. rt_kprintf("RCR (0x05): %02x\n", dm9000_io_read(DM9000_RCR));
  500. rt_kprintf("RSR (0x06): %02x\n", dm9000_io_read(DM9000_RSR));
  501. rt_kprintf("ORCR (0x07): %02x\n", dm9000_io_read(DM9000_ROCR));
  502. rt_kprintf("CRR (0x2C): %02x\n", dm9000_io_read(DM9000_CHIPR));
  503. rt_kprintf("CSCR (0x31): %02x\n", dm9000_io_read(DM9000_CSCR));
  504. rt_kprintf("RCSSR (0x32): %02x\n", dm9000_io_read(DM9000_RCSSR));
  505. rt_kprintf("ISR (0xFE): %02x\n", dm9000_io_read(DM9000_ISR));
  506. rt_kprintf("IMR (0xFF): %02x\n", dm9000_io_read(DM9000_IMR));
  507. rt_kprintf("\n");
  508. }
  509. #ifdef RT_USING_FINSH
  510. #include <finsh.h>
  511. FINSH_FUNCTION_EXPORT(dm9000a, dm9000a register dump);
  512. #endif