dm9000a.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759
  1. #include <rtthread.h>
  2. #include "dm9000a.h"
  3. #include <netif/ethernetif.h>
  4. #include "lwipopts.h"
  5. #include "stm32f10x.h"
  6. #include "stm32f10x_fsmc.h"
  7. // #define DM9000_DEBUG 1
  8. #if DM9000_DEBUG
  9. #define DM9000_TRACE rt_kprintf
  10. #else
  11. #define DM9000_TRACE(...)
  12. #endif
  13. /*
  14. * DM9000 interrupt line is connected to PF7
  15. */
  16. //--------------------------------------------------------
  17. #define DM9000_PHY 0x40 /* PHY address 0x01 */
  18. #define RST_1() GPIO_SetBits(GPIOF,GPIO_Pin_6)
  19. #define RST_0() GPIO_ResetBits(GPIOF,GPIO_Pin_6)
  20. #define MAX_ADDR_LEN 6
  21. enum DM9000_PHY_mode
  22. {
  23. DM9000_10MHD = 0, DM9000_100MHD = 1,
  24. DM9000_10MFD = 4, DM9000_100MFD = 5,
  25. DM9000_AUTO = 8, DM9000_1M_HPNA = 0x10
  26. };
  27. enum DM9000_TYPE
  28. {
  29. TYPE_DM9000E,
  30. TYPE_DM9000A,
  31. TYPE_DM9000B
  32. };
  33. struct rt_dm9000_eth
  34. {
  35. /* inherit from ethernet device */
  36. struct eth_device parent;
  37. enum DM9000_TYPE type;
  38. enum DM9000_PHY_mode mode;
  39. rt_uint8_t imr_all;
  40. rt_uint8_t packet_cnt; /* packet I or II */
  41. rt_uint16_t queue_packet_len; /* queued packet (packet II) */
  42. /* interface address info. */
  43. rt_uint8_t dev_addr[MAX_ADDR_LEN]; /* hw address */
  44. };
  45. static struct rt_dm9000_eth dm9000_device;
  46. static struct rt_semaphore sem_ack, sem_lock;
  47. void rt_dm9000_isr(void);
  48. static void delay_ms(rt_uint32_t ms)
  49. {
  50. rt_uint32_t len;
  51. for (;ms > 0; ms --)
  52. for (len = 0; len < 100; len++ );
  53. }
  54. /* Read a byte from I/O port */
  55. rt_inline rt_uint8_t dm9000_io_read(rt_uint16_t reg)
  56. {
  57. DM9000_IO = reg;
  58. return (rt_uint8_t) DM9000_DATA;
  59. }
  60. /* Write a byte to I/O port */
  61. rt_inline void dm9000_io_write(rt_uint16_t reg, rt_uint16_t value)
  62. {
  63. DM9000_IO = reg;
  64. DM9000_DATA = value;
  65. }
  66. /* Read a word from phyxcer */
  67. rt_inline rt_uint16_t phy_read(rt_uint16_t reg)
  68. {
  69. rt_uint16_t val;
  70. /* Fill the phyxcer register into REG_0C */
  71. dm9000_io_write(DM9000_EPAR, DM9000_PHY | reg);
  72. dm9000_io_write(DM9000_EPCR, 0xc); /* Issue phyxcer read command */
  73. delay_ms(100); /* Wait read complete */
  74. dm9000_io_write(DM9000_EPCR, 0x0); /* Clear phyxcer read command */
  75. val = (dm9000_io_read(DM9000_EPDRH) << 8) | dm9000_io_read(DM9000_EPDRL);
  76. return val;
  77. }
  78. /* Write a word to phyxcer */
  79. rt_inline void phy_write(rt_uint16_t reg, rt_uint16_t value)
  80. {
  81. /* Fill the phyxcer register into REG_0C */
  82. dm9000_io_write(DM9000_EPAR, DM9000_PHY | reg);
  83. /* Fill the written data into REG_0D & REG_0E */
  84. dm9000_io_write(DM9000_EPDRL, (value & 0xff));
  85. dm9000_io_write(DM9000_EPDRH, ((value >> 8) & 0xff));
  86. dm9000_io_write(DM9000_EPCR, 0xa); /* Issue phyxcer write command */
  87. delay_ms(500); /* Wait write complete */
  88. dm9000_io_write(DM9000_EPCR, 0x0); /* Clear phyxcer write command */
  89. }
  90. /* Set PHY operationg mode */
  91. rt_inline void phy_mode_set(rt_uint32_t media_mode)
  92. {
  93. rt_uint16_t phy_reg4 = 0x01e1, phy_reg0 = 0x1000;
  94. if (!(media_mode & DM9000_AUTO))
  95. {
  96. switch (media_mode)
  97. {
  98. case DM9000_10MHD:
  99. phy_reg4 = 0x21;
  100. phy_reg0 = 0x0000;
  101. break;
  102. case DM9000_10MFD:
  103. phy_reg4 = 0x41;
  104. phy_reg0 = 0x1100;
  105. break;
  106. case DM9000_100MHD:
  107. phy_reg4 = 0x81;
  108. phy_reg0 = 0x2000;
  109. break;
  110. case DM9000_100MFD:
  111. phy_reg4 = 0x101;
  112. phy_reg0 = 0x3100;
  113. break;
  114. }
  115. phy_write(4, phy_reg4); /* Set PHY media mode */
  116. phy_write(0, phy_reg0); /* Tmp */
  117. }
  118. dm9000_io_write(DM9000_GPCR, 0x01); /* Let GPIO0 output */
  119. dm9000_io_write(DM9000_GPR, 0x00); /* Enable PHY */
  120. }
  121. /* interrupt service routine */
  122. void rt_dm9000_isr()
  123. {
  124. rt_uint16_t int_status;
  125. rt_uint16_t last_io;
  126. last_io = DM9000_IO;
  127. /* Disable all interrupts */
  128. dm9000_io_write(DM9000_IMR, IMR_PAR);
  129. /* Got DM9000 interrupt status */
  130. int_status = dm9000_io_read(DM9000_ISR); /* Got ISR */
  131. dm9000_io_write(DM9000_ISR, int_status); /* Clear ISR status */
  132. DM9000_TRACE("dm9000 isr: int status %04x\n", int_status);
  133. /* receive overflow */
  134. if (int_status & ISR_ROS)
  135. {
  136. rt_kprintf("overflow\n");
  137. }
  138. if (int_status & ISR_ROOS)
  139. {
  140. rt_kprintf("overflow counter overflow\n");
  141. }
  142. /* Received the coming packet */
  143. if (int_status & ISR_PRS)
  144. {
  145. /* disable receive interrupt */
  146. dm9000_device.imr_all = IMR_PAR | IMR_PTM;
  147. /* a frame has been received */
  148. eth_device_ready(&(dm9000_device.parent));
  149. }
  150. /* Transmit Interrupt check */
  151. if (int_status & ISR_PTS)
  152. {
  153. /* transmit done */
  154. int tx_status = dm9000_io_read(DM9000_NSR); /* Got TX status */
  155. if (tx_status & (NSR_TX2END | NSR_TX1END))
  156. {
  157. dm9000_device.packet_cnt --;
  158. if (dm9000_device.packet_cnt > 0)
  159. {
  160. DM9000_TRACE("dm9000 isr: tx second packet\n");
  161. /* transmit packet II */
  162. /* Set TX length to DM9000 */
  163. dm9000_io_write(DM9000_TXPLL, dm9000_device.queue_packet_len & 0xff);
  164. dm9000_io_write(DM9000_TXPLH, (dm9000_device.queue_packet_len >> 8) & 0xff);
  165. /* Issue TX polling command */
  166. dm9000_io_write(DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */
  167. }
  168. /* One packet sent complete */
  169. rt_sem_release(&sem_ack);
  170. }
  171. }
  172. /* Re-enable interrupt mask */
  173. dm9000_io_write(DM9000_IMR, dm9000_device.imr_all);
  174. DM9000_IO = last_io;
  175. }
  176. /* RT-Thread Device Interface */
  177. /* initialize the interface */
  178. static rt_err_t rt_dm9000_init(rt_device_t dev)
  179. {
  180. int i, oft, lnk;
  181. rt_uint32_t value;
  182. /* RESET device */
  183. dm9000_io_write(DM9000_NCR, NCR_RST);
  184. delay_ms(1000); /* delay 1ms */
  185. /* identfy DM9000 */
  186. value = dm9000_io_read(DM9000_VIDL);
  187. value |= dm9000_io_read(DM9000_VIDH) << 8;
  188. value |= dm9000_io_read(DM9000_PIDL) << 16;
  189. value |= dm9000_io_read(DM9000_PIDH) << 24;
  190. if (value == DM9000_ID)
  191. {
  192. rt_kprintf("dm9000 id: 0x%x\n", value);
  193. }
  194. else
  195. {
  196. return -RT_ERROR;
  197. }
  198. /* GPIO0 on pre-activate PHY */
  199. dm9000_io_write(DM9000_GPR, 0x00); /* REG_1F bit0 activate phyxcer */
  200. dm9000_io_write(DM9000_GPCR, GPCR_GEP_CNTL); /* Let GPIO0 output */
  201. dm9000_io_write(DM9000_GPR, 0x00); /* Enable PHY */
  202. /* Set PHY */
  203. phy_mode_set(dm9000_device.mode);
  204. /* Program operating register */
  205. dm9000_io_write(DM9000_NCR, 0x0); /* only intern phy supported by now */
  206. dm9000_io_write(DM9000_TCR, 0); /* TX Polling clear */
  207. dm9000_io_write(DM9000_BPTR, 0x3f); /* Less 3Kb, 200us */
  208. dm9000_io_write(DM9000_FCTR, FCTR_HWOT(3) | FCTR_LWOT(8)); /* Flow Control : High/Low Water */
  209. dm9000_io_write(DM9000_FCR, 0x0); /* SH FIXME: This looks strange! Flow Control */
  210. dm9000_io_write(DM9000_SMCR, 0); /* Special Mode */
  211. dm9000_io_write(DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END); /* clear TX status */
  212. dm9000_io_write(DM9000_ISR, 0x0f); /* Clear interrupt status */
  213. dm9000_io_write(DM9000_TCR2, 0x80); /* Switch LED to mode 1 */
  214. /* set mac address */
  215. for (i = 0, oft = 0x10; i < 6; i++, oft++)
  216. dm9000_io_write(oft, dm9000_device.dev_addr[i]);
  217. /* set multicast address */
  218. for (i = 0, oft = 0x16; i < 8; i++, oft++)
  219. dm9000_io_write(oft, 0xff);
  220. /* Activate DM9000 */
  221. dm9000_io_write(DM9000_RCR, RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN); /* RX enable */
  222. dm9000_io_write(DM9000_IMR, IMR_PAR);
  223. if (dm9000_device.mode == DM9000_AUTO)
  224. {
  225. while (!(phy_read(1) & 0x20))
  226. {
  227. /* autonegation complete bit */
  228. rt_thread_delay(10);
  229. i++;
  230. if (i == 10000)
  231. {
  232. rt_kprintf("could not establish link\n");
  233. return 0;
  234. }
  235. }
  236. }
  237. /* see what we've got */
  238. lnk = phy_read(17) >> 12;
  239. rt_kprintf("operating at ");
  240. switch (lnk)
  241. {
  242. case 1:
  243. rt_kprintf("10M half duplex ");
  244. break;
  245. case 2:
  246. rt_kprintf("10M full duplex ");
  247. break;
  248. case 4:
  249. rt_kprintf("100M half duplex ");
  250. break;
  251. case 8:
  252. rt_kprintf("100M full duplex ");
  253. break;
  254. default:
  255. rt_kprintf("unknown: %d ", lnk);
  256. break;
  257. }
  258. rt_kprintf("mode\n");
  259. dm9000_io_write(DM9000_IMR, dm9000_device.imr_all); /* Enable TX/RX interrupt mask */
  260. return RT_EOK;
  261. }
  262. static rt_err_t rt_dm9000_open(rt_device_t dev, rt_uint16_t oflag)
  263. {
  264. return RT_EOK;
  265. }
  266. static rt_err_t rt_dm9000_close(rt_device_t dev)
  267. {
  268. /* RESET devie */
  269. phy_write(0, 0x8000); /* PHY RESET */
  270. dm9000_io_write(DM9000_GPR, 0x01); /* Power-Down PHY */
  271. dm9000_io_write(DM9000_IMR, 0x80); /* Disable all interrupt */
  272. dm9000_io_write(DM9000_RCR, 0x00); /* Disable RX */
  273. return RT_EOK;
  274. }
  275. static rt_size_t rt_dm9000_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size)
  276. {
  277. rt_set_errno(-RT_ENOSYS);
  278. return 0;
  279. }
  280. static rt_size_t rt_dm9000_write (rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size)
  281. {
  282. rt_set_errno(-RT_ENOSYS);
  283. return 0;
  284. }
  285. static rt_err_t rt_dm9000_control(rt_device_t dev, rt_uint8_t cmd, void *args)
  286. {
  287. switch (cmd)
  288. {
  289. case NIOCTL_GADDR:
  290. /* get mac address */
  291. if (args) rt_memcpy(args, dm9000_device.dev_addr, 6);
  292. else return -RT_ERROR;
  293. break;
  294. default :
  295. break;
  296. }
  297. return RT_EOK;
  298. }
  299. /* ethernet device interface */
  300. /* transmit packet. */
  301. rt_err_t rt_dm9000_tx( rt_device_t dev, struct pbuf* p)
  302. {
  303. DM9000_TRACE("dm9000 tx: %d\n", p->tot_len);
  304. /* lock DM9000 device */
  305. rt_sem_take(&sem_lock, RT_WAITING_FOREVER);
  306. /* disable dm9000a interrupt */
  307. dm9000_io_write(DM9000_IMR, IMR_PAR);
  308. /* Move data to DM9000 TX RAM */
  309. DM9000_outb(DM9000_IO_BASE, DM9000_MWCMD);
  310. {
  311. /* q traverses through linked list of pbuf's
  312. * This list MUST consist of a single packet ONLY */
  313. struct pbuf *q;
  314. rt_uint16_t pbuf_index = 0;
  315. rt_uint8_t word[2], word_index = 0;
  316. q = p;
  317. /* Write data into dm9000a, two bytes at a time
  318. * Handling pbuf's with odd number of bytes correctly
  319. * No attempt to optimize for speed has been made */
  320. while (q)
  321. {
  322. if (pbuf_index < q->len)
  323. {
  324. word[word_index++] = ((u8_t*)q->payload)[pbuf_index++];
  325. if (word_index == 2)
  326. {
  327. DM9000_outw(DM9000_DATA_BASE, (word[1] << 8) | word[0]);
  328. word_index = 0;
  329. }
  330. }
  331. else
  332. {
  333. q = q->next;
  334. pbuf_index = 0;
  335. }
  336. }
  337. /* One byte could still be unsent */
  338. if (word_index == 1)
  339. {
  340. DM9000_outw(DM9000_DATA_BASE, word[0]);
  341. }
  342. }
  343. if (dm9000_device.packet_cnt == 0)
  344. {
  345. DM9000_TRACE("dm9000 tx: first packet\n");
  346. dm9000_device.packet_cnt ++;
  347. /* Set TX length to DM9000 */
  348. dm9000_io_write(DM9000_TXPLL, p->tot_len & 0xff);
  349. dm9000_io_write(DM9000_TXPLH, (p->tot_len >> 8) & 0xff);
  350. /* Issue TX polling command */
  351. dm9000_io_write(DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */
  352. }
  353. else
  354. {
  355. DM9000_TRACE("dm9000 tx: second packet\n");
  356. dm9000_device.packet_cnt ++;
  357. dm9000_device.queue_packet_len = p->tot_len;
  358. }
  359. /* enable dm9000a interrupt */
  360. dm9000_io_write(DM9000_IMR, dm9000_device.imr_all);
  361. /* unlock DM9000 device */
  362. rt_sem_release(&sem_lock);
  363. /* wait ack */
  364. rt_sem_take(&sem_ack, RT_WAITING_FOREVER);
  365. DM9000_TRACE("dm9000 tx done\n");
  366. return RT_EOK;
  367. }
  368. /* reception packet. */
  369. struct pbuf *rt_dm9000_rx(rt_device_t dev)
  370. {
  371. struct pbuf* p;
  372. rt_uint32_t rxbyte;
  373. /* init p pointer */
  374. p = RT_NULL;
  375. /* lock DM9000 device */
  376. rt_sem_take(&sem_lock, RT_WAITING_FOREVER);
  377. /* Check packet ready or not */
  378. dm9000_io_read(DM9000_MRCMDX); /* Dummy read */
  379. rxbyte = DM9000_inb(DM9000_DATA_BASE); /* Got most updated data */
  380. if (rxbyte)
  381. {
  382. rt_uint16_t rx_status, rx_len;
  383. rt_uint16_t* data;
  384. if (rxbyte > 1)
  385. {
  386. DM9000_TRACE("dm9000 rx: rx error, stop device\n");
  387. dm9000_io_write(DM9000_RCR, 0x00); /* Stop Device */
  388. dm9000_io_write(DM9000_ISR, 0x80); /* Stop INT request */
  389. }
  390. /* A packet ready now & Get status/length */
  391. DM9000_outb(DM9000_IO_BASE, DM9000_MRCMD);
  392. rx_status = DM9000_inw(DM9000_DATA_BASE);
  393. rx_len = DM9000_inw(DM9000_DATA_BASE);
  394. DM9000_TRACE("dm9000 rx: status %04x len %d\n", rx_status, rx_len);
  395. /* allocate buffer */
  396. p = pbuf_alloc(PBUF_LINK, rx_len, PBUF_RAM);
  397. if (p != RT_NULL)
  398. {
  399. struct pbuf* q;
  400. rt_int32_t len;
  401. for (q = p; q != RT_NULL; q= q->next)
  402. {
  403. data = (rt_uint16_t*)q->payload;
  404. len = q->len;
  405. while (len > 0)
  406. {
  407. *data = DM9000_inw(DM9000_DATA_BASE);
  408. data ++;
  409. len -= 2;
  410. }
  411. }
  412. DM9000_TRACE("\n");
  413. }
  414. else
  415. {
  416. rt_uint16_t dummy;
  417. DM9000_TRACE("dm9000 rx: no pbuf\n");
  418. /* no pbuf, discard data from DM9000 */
  419. data = &dummy;
  420. while (rx_len)
  421. {
  422. *data = DM9000_inw(DM9000_DATA_BASE);
  423. rx_len -= 2;
  424. }
  425. }
  426. if ((rx_status & 0xbf00) || (rx_len < 0x40)
  427. || (rx_len > DM9000_PKT_MAX))
  428. {
  429. rt_kprintf("rx error: status %04x\n", rx_status);
  430. if (rx_status & 0x100)
  431. {
  432. rt_kprintf("rx fifo error\n");
  433. }
  434. if (rx_status & 0x200)
  435. {
  436. rt_kprintf("rx crc error\n");
  437. }
  438. if (rx_status & 0x8000)
  439. {
  440. rt_kprintf("rx length error\n");
  441. }
  442. if (rx_len > DM9000_PKT_MAX)
  443. {
  444. rt_kprintf("rx length too big\n");
  445. /* RESET device */
  446. dm9000_io_write(DM9000_NCR, NCR_RST);
  447. rt_thread_delay(1); /* delay 5ms */
  448. }
  449. /* it issues an error, release pbuf */
  450. pbuf_free(p);
  451. p = RT_NULL;
  452. }
  453. }
  454. else
  455. {
  456. /* restore receive interrupt */
  457. dm9000_device.imr_all = IMR_PAR | IMR_PTM | IMR_PRM;
  458. dm9000_io_write(DM9000_IMR, dm9000_device.imr_all);
  459. }
  460. /* unlock DM9000 device */
  461. rt_sem_release(&sem_lock);
  462. return p;
  463. }
  464. static void RCC_Configuration(void)
  465. {
  466. /* enable gpiob port clock */
  467. RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOF | RCC_APB2Periph_AFIO, ENABLE);
  468. /* enable FSMC clock */
  469. RCC_AHBPeriphClockCmd(RCC_AHBPeriph_FSMC, ENABLE);
  470. }
  471. static void NVIC_Configuration(void)
  472. {
  473. NVIC_InitTypeDef NVIC_InitStructure;
  474. /* Configure one bit for preemption priority */
  475. NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1);
  476. /* Enable the EXTI0 Interrupt */
  477. NVIC_InitStructure.NVIC_IRQChannel = EXTI9_5_IRQn;
  478. NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
  479. NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
  480. NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
  481. NVIC_Init(&NVIC_InitStructure);
  482. }
  483. static void GPIO_Configuration()
  484. {
  485. GPIO_InitTypeDef GPIO_InitStructure;
  486. EXTI_InitTypeDef EXTI_InitStructure;
  487. /* configure PF6 as eth RST */
  488. GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;
  489. GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
  490. GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
  491. GPIO_Init(GPIOF,&GPIO_InitStructure);
  492. GPIO_ResetBits(GPIOF,GPIO_Pin_6);
  493. RST_1();
  494. /* configure PF7 as external interrupt */
  495. GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7;
  496. GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
  497. GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPD;
  498. GPIO_Init(GPIOF, &GPIO_InitStructure);
  499. /* Connect DM9000 EXTI Line to GPIOF Pin 7 */
  500. GPIO_EXTILineConfig(GPIO_PortSourceGPIOF, GPIO_PinSource7);
  501. /* Configure DM9000 EXTI Line to generate an interrupt on falling edge */
  502. EXTI_InitStructure.EXTI_Line = EXTI_Line7;
  503. EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt;
  504. EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Rising;
  505. EXTI_InitStructure.EXTI_LineCmd = ENABLE;
  506. EXTI_Init(&EXTI_InitStructure);
  507. /* Clear the Key Button EXTI line pending bit */
  508. EXTI_ClearITPendingBit(EXTI_Line7);
  509. }
  510. static void FSMC_Configuration()
  511. {
  512. FSMC_NORSRAMInitTypeDef FSMC_NORSRAMInitStructure;
  513. FSMC_NORSRAMTimingInitTypeDef p;
  514. GPIO_InitTypeDef GPIO_InitStructure;
  515. RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOD | RCC_APB2Periph_GPIOG | RCC_APB2Periph_GPIOE |
  516. RCC_APB2Periph_GPIOF, ENABLE);
  517. /*-- GPIO Configuration ------------------------------------------------------*/
  518. /* SRAM Data lines configuration */
  519. GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_8 | GPIO_Pin_9 |
  520. GPIO_Pin_10 | GPIO_Pin_14 | GPIO_Pin_15;
  521. GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
  522. GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
  523. GPIO_Init(GPIOD, &GPIO_InitStructure);
  524. GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7 | GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10 |
  525. GPIO_Pin_11 | GPIO_Pin_12 | GPIO_Pin_13 | GPIO_Pin_14 |
  526. GPIO_Pin_15;
  527. GPIO_Init(GPIOE, &GPIO_InitStructure);
  528. /* SRAM Address lines configuration */
  529. GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3 |
  530. GPIO_Pin_4 | GPIO_Pin_5 | GPIO_Pin_12 | GPIO_Pin_13 |
  531. GPIO_Pin_14 | GPIO_Pin_15;
  532. GPIO_Init(GPIOF, &GPIO_InitStructure);
  533. GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3 |
  534. GPIO_Pin_4 | GPIO_Pin_5;
  535. GPIO_Init(GPIOG, &GPIO_InitStructure);
  536. GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11 | GPIO_Pin_12 | GPIO_Pin_13;
  537. GPIO_Init(GPIOD, &GPIO_InitStructure);
  538. /* NOE and NWE configuration */
  539. GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4 |GPIO_Pin_5;
  540. GPIO_Init(GPIOD, &GPIO_InitStructure);
  541. /* NE3 NE4 configuration */
  542. GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10 | GPIO_Pin_12;
  543. GPIO_Init(GPIOG, &GPIO_InitStructure);
  544. /* NBL0, NBL1 configuration */
  545. GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1;
  546. GPIO_Init(GPIOE, &GPIO_InitStructure);
  547. /*-- FSMC Configuration ------------------------------------------------------*/
  548. p.FSMC_AddressSetupTime = 0;
  549. p.FSMC_AddressHoldTime = 0;
  550. p.FSMC_DataSetupTime = 2;
  551. p.FSMC_BusTurnAroundDuration = 0;
  552. p.FSMC_CLKDivision = 0;
  553. p.FSMC_DataLatency = 0;
  554. p.FSMC_AccessMode = FSMC_AccessMode_A;
  555. FSMC_NORSRAMInitStructure.FSMC_Bank = FSMC_Bank1_NORSRAM4;
  556. FSMC_NORSRAMInitStructure.FSMC_DataAddressMux = FSMC_DataAddressMux_Disable;
  557. FSMC_NORSRAMInitStructure.FSMC_MemoryType = FSMC_MemoryType_SRAM;
  558. FSMC_NORSRAMInitStructure.FSMC_MemoryDataWidth = FSMC_MemoryDataWidth_16b;
  559. FSMC_NORSRAMInitStructure.FSMC_BurstAccessMode = FSMC_BurstAccessMode_Disable;
  560. FSMC_NORSRAMInitStructure.FSMC_WaitSignalPolarity = FSMC_WaitSignalPolarity_Low;
  561. FSMC_NORSRAMInitStructure.FSMC_WrapMode = FSMC_WrapMode_Disable;
  562. FSMC_NORSRAMInitStructure.FSMC_WaitSignalActive = FSMC_WaitSignalActive_BeforeWaitState;
  563. FSMC_NORSRAMInitStructure.FSMC_WriteOperation = FSMC_WriteOperation_Enable;
  564. FSMC_NORSRAMInitStructure.FSMC_WaitSignal = FSMC_WaitSignal_Disable;
  565. FSMC_NORSRAMInitStructure.FSMC_ExtendedMode = FSMC_ExtendedMode_Disable;
  566. FSMC_NORSRAMInitStructure.FSMC_WriteBurst = FSMC_WriteBurst_Disable;
  567. FSMC_NORSRAMInitStructure.FSMC_ReadWriteTimingStruct = &p;
  568. FSMC_NORSRAMInitStructure.FSMC_WriteTimingStruct = &p;
  569. FSMC_NORSRAMInit(&FSMC_NORSRAMInitStructure);
  570. /* Enable FSMC Bank1_SRAM Bank4 */
  571. FSMC_NORSRAMCmd(FSMC_Bank1_NORSRAM4, ENABLE);
  572. }
  573. void rt_hw_dm9000_init()
  574. {
  575. RCC_Configuration();
  576. NVIC_Configuration();
  577. GPIO_Configuration();
  578. FSMC_Configuration();
  579. rt_sem_init(&sem_ack, "tx_ack", 1, RT_IPC_FLAG_FIFO);
  580. rt_sem_init(&sem_lock, "eth_lock", 1, RT_IPC_FLAG_FIFO);
  581. dm9000_device.type = TYPE_DM9000A;
  582. dm9000_device.mode = DM9000_AUTO;
  583. dm9000_device.packet_cnt = 0;
  584. dm9000_device.queue_packet_len = 0;
  585. /*
  586. * SRAM Tx/Rx pointer automatically return to start address,
  587. * Packet Transmitted, Packet Received
  588. */
  589. dm9000_device.imr_all = IMR_PAR | IMR_PTM | IMR_PRM;
  590. dm9000_device.dev_addr[0] = 0x01;
  591. dm9000_device.dev_addr[1] = 0x60;
  592. dm9000_device.dev_addr[2] = 0x6E;
  593. dm9000_device.dev_addr[3] = 0x11;
  594. dm9000_device.dev_addr[4] = 0x02;
  595. dm9000_device.dev_addr[5] = 0x0F;
  596. dm9000_device.parent.parent.init = rt_dm9000_init;
  597. dm9000_device.parent.parent.open = rt_dm9000_open;
  598. dm9000_device.parent.parent.close = rt_dm9000_close;
  599. dm9000_device.parent.parent.read = rt_dm9000_read;
  600. dm9000_device.parent.parent.write = rt_dm9000_write;
  601. dm9000_device.parent.parent.control = rt_dm9000_control;
  602. dm9000_device.parent.parent.private = RT_NULL;
  603. dm9000_device.parent.eth_rx = rt_dm9000_rx;
  604. dm9000_device.parent.eth_tx = rt_dm9000_tx;
  605. eth_device_init(&(dm9000_device.parent), "e0");
  606. }
  607. void dm9000(void)
  608. {
  609. rt_kprintf("\n");
  610. rt_kprintf("NCR (0x00): %02x\n", dm9000_io_read(DM9000_NCR));
  611. rt_kprintf("NSR (0x01): %02x\n", dm9000_io_read(DM9000_NSR));
  612. rt_kprintf("TCR (0x02): %02x\n", dm9000_io_read(DM9000_TCR));
  613. rt_kprintf("TSRI (0x03): %02x\n", dm9000_io_read(DM9000_TSR1));
  614. rt_kprintf("TSRII (0x04): %02x\n", dm9000_io_read(DM9000_TSR2));
  615. rt_kprintf("RCR (0x05): %02x\n", dm9000_io_read(DM9000_RCR));
  616. rt_kprintf("RSR (0x06): %02x\n", dm9000_io_read(DM9000_RSR));
  617. rt_kprintf("ORCR (0x07): %02x\n", dm9000_io_read(DM9000_ROCR));
  618. rt_kprintf("CRR (0x2C): %02x\n", dm9000_io_read(DM9000_CHIPR));
  619. rt_kprintf("CSCR (0x31): %02x\n", dm9000_io_read(DM9000_CSCR));
  620. rt_kprintf("RCSSR (0x32): %02x\n", dm9000_io_read(DM9000_RCSSR));
  621. rt_kprintf("ISR (0xFE): %02x\n", dm9000_io_read(DM9000_ISR));
  622. rt_kprintf("IMR (0xFF): %02x\n", dm9000_io_read(DM9000_IMR));
  623. rt_kprintf("\n");
  624. }
  625. #ifdef RT_USING_FINSH
  626. #include <finsh.h>
  627. FINSH_FUNCTION_EXPORT(dm9000, dm9000 register dump);
  628. #endif