dm9000.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705
  1. #include <rtthread.h>
  2. #include "dm9000.h"
  3. #include <netif/ethernetif.h>
  4. #include "lwipopts.h"
  5. #include "stm32f10x.h"
  6. // #define DM9000_DEBUG 1
  7. #if DM9000_DEBUG
  8. #define DM9000_TRACE rt_kprintf
  9. #else
  10. #define DM9000_TRACE(...)
  11. #endif
  12. /*
  13. * DM9000 interrupt line is connected to PF7
  14. */
  15. //--------------------------------------------------------
  16. #define DM9000_PHY 0x40 /* PHY address 0x01 */
  17. #define RST_1() GPIO_SetBits(GPIOF,GPIO_Pin_6)
  18. #define RST_0() GPIO_ResetBits(GPIOF,GPIO_Pin_6)
  19. #define MAX_ADDR_LEN 6
  20. enum DM9000_PHY_mode
  21. {
  22. DM9000_10MHD = 0, DM9000_100MHD = 1,
  23. DM9000_10MFD = 4, DM9000_100MFD = 5,
  24. DM9000_AUTO = 8, DM9000_1M_HPNA = 0x10
  25. };
  26. enum DM9000_TYPE
  27. {
  28. TYPE_DM9000E,
  29. TYPE_DM9000A,
  30. TYPE_DM9000B
  31. };
  32. struct rt_dm9000_eth
  33. {
  34. /* inherit from ethernet device */
  35. struct eth_device parent;
  36. enum DM9000_TYPE type;
  37. enum DM9000_PHY_mode mode;
  38. rt_uint8_t imr_all;
  39. rt_uint8_t packet_cnt; /* packet I or II */
  40. rt_uint16_t queue_packet_len; /* queued packet (packet II) */
  41. /* interface address info. */
  42. rt_uint8_t dev_addr[MAX_ADDR_LEN]; /* hw address */
  43. };
  44. static struct rt_dm9000_eth dm9000_device;
  45. static struct rt_semaphore sem_ack, sem_lock;
  46. void rt_dm9000_isr(void);
  47. static void delay_ms(rt_uint32_t ms)
  48. {
  49. rt_uint32_t len;
  50. for (;ms > 0; ms --)
  51. for (len = 0; len < 100; len++ );
  52. }
  53. /* Read a byte from I/O port */
  54. rt_inline rt_uint8_t dm9000_io_read(rt_uint16_t reg)
  55. {
  56. DM9000_IO = reg;
  57. return (rt_uint8_t) DM9000_DATA;
  58. }
  59. /* Write a byte to I/O port */
  60. rt_inline void dm9000_io_write(rt_uint16_t reg, rt_uint16_t value)
  61. {
  62. DM9000_IO = reg;
  63. DM9000_DATA = value;
  64. }
  65. /* Read a word from phyxcer */
  66. rt_inline rt_uint16_t phy_read(rt_uint16_t reg)
  67. {
  68. rt_uint16_t val;
  69. /* Fill the phyxcer register into REG_0C */
  70. dm9000_io_write(DM9000_EPAR, DM9000_PHY | reg);
  71. dm9000_io_write(DM9000_EPCR, 0xc); /* Issue phyxcer read command */
  72. delay_ms(100); /* Wait read complete */
  73. dm9000_io_write(DM9000_EPCR, 0x0); /* Clear phyxcer read command */
  74. val = (dm9000_io_read(DM9000_EPDRH) << 8) | dm9000_io_read(DM9000_EPDRL);
  75. return val;
  76. }
  77. /* Write a word to phyxcer */
  78. rt_inline void phy_write(rt_uint16_t reg, rt_uint16_t value)
  79. {
  80. /* Fill the phyxcer register into REG_0C */
  81. dm9000_io_write(DM9000_EPAR, DM9000_PHY | reg);
  82. /* Fill the written data into REG_0D & REG_0E */
  83. dm9000_io_write(DM9000_EPDRL, (value & 0xff));
  84. dm9000_io_write(DM9000_EPDRH, ((value >> 8) & 0xff));
  85. dm9000_io_write(DM9000_EPCR, 0xa); /* Issue phyxcer write command */
  86. delay_ms(500); /* Wait write complete */
  87. dm9000_io_write(DM9000_EPCR, 0x0); /* Clear phyxcer write command */
  88. }
  89. /* Set PHY operationg mode */
  90. rt_inline void phy_mode_set(rt_uint32_t media_mode)
  91. {
  92. rt_uint16_t phy_reg4 = 0x01e1, phy_reg0 = 0x1000;
  93. if (!(media_mode & DM9000_AUTO))
  94. {
  95. switch (media_mode)
  96. {
  97. case DM9000_10MHD:
  98. phy_reg4 = 0x21;
  99. phy_reg0 = 0x0000;
  100. break;
  101. case DM9000_10MFD:
  102. phy_reg4 = 0x41;
  103. phy_reg0 = 0x1100;
  104. break;
  105. case DM9000_100MHD:
  106. phy_reg4 = 0x81;
  107. phy_reg0 = 0x2000;
  108. break;
  109. case DM9000_100MFD:
  110. phy_reg4 = 0x101;
  111. phy_reg0 = 0x3100;
  112. break;
  113. }
  114. phy_write(4, phy_reg4); /* Set PHY media mode */
  115. phy_write(0, phy_reg0); /* Tmp */
  116. }
  117. dm9000_io_write(DM9000_GPCR, 0x01); /* Let GPIO0 output */
  118. dm9000_io_write(DM9000_GPR, 0x00); /* Enable PHY */
  119. }
  120. /* interrupt service routine */
  121. void rt_dm9000_isr()
  122. {
  123. rt_uint16_t int_status;
  124. rt_uint16_t last_io;
  125. last_io = DM9000_IO;
  126. /* Disable all interrupts */
  127. dm9000_io_write(DM9000_IMR, IMR_PAR);
  128. /* Got DM9000 interrupt status */
  129. int_status = dm9000_io_read(DM9000_ISR); /* Got ISR */
  130. dm9000_io_write(DM9000_ISR, int_status); /* Clear ISR status */
  131. DM9000_TRACE("dm9000 isr: int status %04x\n", int_status);
  132. /* receive overflow */
  133. if (int_status & ISR_ROS)
  134. {
  135. rt_kprintf("overflow\n");
  136. }
  137. if (int_status & ISR_ROOS)
  138. {
  139. rt_kprintf("overflow counter overflow\n");
  140. }
  141. /* Received the coming packet */
  142. if (int_status & ISR_PRS)
  143. {
  144. /* disable receive interrupt */
  145. dm9000_device.imr_all = IMR_PAR | IMR_PTM;
  146. /* a frame has been received */
  147. eth_device_ready(&(dm9000_device.parent));
  148. }
  149. /* Transmit Interrupt check */
  150. if (int_status & ISR_PTS)
  151. {
  152. /* transmit done */
  153. int tx_status = dm9000_io_read(DM9000_NSR); /* Got TX status */
  154. if (tx_status & (NSR_TX2END | NSR_TX1END))
  155. {
  156. dm9000_device.packet_cnt --;
  157. if (dm9000_device.packet_cnt > 0)
  158. {
  159. DM9000_TRACE("dm9000 isr: tx second packet\n");
  160. /* transmit packet II */
  161. /* Set TX length to DM9000 */
  162. dm9000_io_write(DM9000_TXPLL, dm9000_device.queue_packet_len & 0xff);
  163. dm9000_io_write(DM9000_TXPLH, (dm9000_device.queue_packet_len >> 8) & 0xff);
  164. /* Issue TX polling command */
  165. dm9000_io_write(DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */
  166. }
  167. /* One packet sent complete */
  168. rt_sem_release(&sem_ack);
  169. }
  170. }
  171. /* Re-enable interrupt mask */
  172. dm9000_io_write(DM9000_IMR, dm9000_device.imr_all);
  173. DM9000_IO = last_io;
  174. }
  175. /* RT-Thread Device Interface */
  176. /* initialize the interface */
  177. static rt_err_t rt_dm9000_init(rt_device_t dev)
  178. {
  179. int i, oft, lnk;
  180. rt_uint32_t value;
  181. /* RESET device */
  182. dm9000_io_write(DM9000_NCR, NCR_RST);
  183. delay_ms(1000); /* delay 1ms */
  184. /* identfy DM9000 */
  185. value = dm9000_io_read(DM9000_VIDL);
  186. value |= dm9000_io_read(DM9000_VIDH) << 8;
  187. value |= dm9000_io_read(DM9000_PIDL) << 16;
  188. value |= dm9000_io_read(DM9000_PIDH) << 24;
  189. if (value == DM9000_ID)
  190. {
  191. rt_kprintf("dm9000 id: 0x%x\n", value);
  192. }
  193. else
  194. {
  195. return -RT_ERROR;
  196. }
  197. /* GPIO0 on pre-activate PHY */
  198. dm9000_io_write(DM9000_GPR, 0x00); /* REG_1F bit0 activate phyxcer */
  199. dm9000_io_write(DM9000_GPCR, GPCR_GEP_CNTL); /* Let GPIO0 output */
  200. dm9000_io_write(DM9000_GPR, 0x00); /* Enable PHY */
  201. /* Set PHY */
  202. phy_mode_set(dm9000_device.mode);
  203. /* Program operating register */
  204. dm9000_io_write(DM9000_NCR, 0x0); /* only intern phy supported by now */
  205. dm9000_io_write(DM9000_TCR, 0); /* TX Polling clear */
  206. dm9000_io_write(DM9000_BPTR, 0x3f); /* Less 3Kb, 200us */
  207. dm9000_io_write(DM9000_FCTR, FCTR_HWOT(3) | FCTR_LWOT(8)); /* Flow Control : High/Low Water */
  208. dm9000_io_write(DM9000_FCR, 0x0); /* SH FIXME: This looks strange! Flow Control */
  209. dm9000_io_write(DM9000_SMCR, 0); /* Special Mode */
  210. dm9000_io_write(DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END); /* clear TX status */
  211. dm9000_io_write(DM9000_ISR, 0x0f); /* Clear interrupt status */
  212. dm9000_io_write(DM9000_TCR2, 0x80); /* Switch LED to mode 1 */
  213. /* set mac address */
  214. for (i = 0, oft = 0x10; i < 6; i++, oft++)
  215. dm9000_io_write(oft, dm9000_device.dev_addr[i]);
  216. /* set multicast address */
  217. for (i = 0, oft = 0x16; i < 8; i++, oft++)
  218. dm9000_io_write(oft, 0xff);
  219. /* Activate DM9000 */
  220. dm9000_io_write(DM9000_RCR, RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN); /* RX enable */
  221. dm9000_io_write(DM9000_IMR, IMR_PAR);
  222. if (dm9000_device.mode == DM9000_AUTO)
  223. {
  224. while (!(phy_read(1) & 0x20))
  225. {
  226. /* autonegation complete bit */
  227. rt_thread_delay(10);
  228. i++;
  229. if (i == 10000)
  230. {
  231. rt_kprintf("could not establish link\n");
  232. return 0;
  233. }
  234. }
  235. }
  236. /* see what we've got */
  237. lnk = phy_read(17) >> 12;
  238. rt_kprintf("operating at ");
  239. switch (lnk)
  240. {
  241. case 1:
  242. rt_kprintf("10M half duplex ");
  243. break;
  244. case 2:
  245. rt_kprintf("10M full duplex ");
  246. break;
  247. case 4:
  248. rt_kprintf("100M half duplex ");
  249. break;
  250. case 8:
  251. rt_kprintf("100M full duplex ");
  252. break;
  253. default:
  254. rt_kprintf("unknown: %d ", lnk);
  255. break;
  256. }
  257. rt_kprintf("mode\n");
  258. dm9000_io_write(DM9000_IMR, dm9000_device.imr_all); /* Enable TX/RX interrupt mask */
  259. return RT_EOK;
  260. }
  261. static rt_err_t rt_dm9000_open(rt_device_t dev, rt_uint16_t oflag)
  262. {
  263. return RT_EOK;
  264. }
  265. static rt_err_t rt_dm9000_close(rt_device_t dev)
  266. {
  267. /* RESET devie */
  268. phy_write(0, 0x8000); /* PHY RESET */
  269. dm9000_io_write(DM9000_GPR, 0x01); /* Power-Down PHY */
  270. dm9000_io_write(DM9000_IMR, 0x80); /* Disable all interrupt */
  271. dm9000_io_write(DM9000_RCR, 0x00); /* Disable RX */
  272. return RT_EOK;
  273. }
  274. static rt_size_t rt_dm9000_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size)
  275. {
  276. rt_set_errno(-RT_ENOSYS);
  277. return 0;
  278. }
  279. static rt_size_t rt_dm9000_write (rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size)
  280. {
  281. rt_set_errno(-RT_ENOSYS);
  282. return 0;
  283. }
  284. static rt_err_t rt_dm9000_control(rt_device_t dev, rt_uint8_t cmd, void *args)
  285. {
  286. switch (cmd)
  287. {
  288. case NIOCTL_GADDR:
  289. /* get mac address */
  290. if (args) rt_memcpy(args, dm9000_device.dev_addr, 6);
  291. else return -RT_ERROR;
  292. break;
  293. default :
  294. break;
  295. }
  296. return RT_EOK;
  297. }
  298. /* ethernet device interface */
  299. /* transmit packet. */
  300. rt_err_t rt_dm9000_tx( rt_device_t dev, struct pbuf* p)
  301. {
  302. struct pbuf* q;
  303. rt_int32_t len;
  304. rt_uint16_t* ptr;
  305. #if DM9000_DEBUG
  306. rt_uint8_t* dump_ptr;
  307. rt_uint32_t cnt = 0;
  308. #endif
  309. DM9000_TRACE("dm9000 tx: %d\n", p->tot_len);
  310. /* lock DM9000 device */
  311. rt_sem_take(&sem_lock, RT_WAITING_FOREVER);
  312. /* disable dm9000a interrupt */
  313. dm9000_io_write(DM9000_IMR, IMR_PAR);
  314. /* Move data to DM9000 TX RAM */
  315. DM9000_outb(DM9000_IO_BASE, DM9000_MWCMD);
  316. for (q = p; q != NULL; q = q->next)
  317. {
  318. len = q->len;
  319. ptr = q->payload;
  320. #if DM9000_DEBUG
  321. dump_ptr = q->payload;
  322. #endif
  323. /* use 16bit mode to write data to DM9000 RAM */
  324. while (len > 0)
  325. {
  326. DM9000_outw(DM9000_DATA_BASE, *ptr);
  327. ptr ++;
  328. len -= 2;
  329. #ifdef DM9000_DEBUG
  330. DM9000_TRACE("%02x ", *dump_ptr++);
  331. if (++cnt % 16 == 0) DM9000_TRACE("\n");
  332. #endif
  333. }
  334. }
  335. DM9000_TRACE("\n");
  336. if (dm9000_device.packet_cnt == 0)
  337. {
  338. DM9000_TRACE("dm9000 tx: first packet\n");
  339. dm9000_device.packet_cnt ++;
  340. /* Set TX length to DM9000 */
  341. dm9000_io_write(DM9000_TXPLL, p->tot_len & 0xff);
  342. dm9000_io_write(DM9000_TXPLH, (p->tot_len >> 8) & 0xff);
  343. /* Issue TX polling command */
  344. dm9000_io_write(DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */
  345. }
  346. else
  347. {
  348. DM9000_TRACE("dm9000 tx: second packet\n");
  349. dm9000_device.packet_cnt ++;
  350. dm9000_device.queue_packet_len = p->tot_len;
  351. }
  352. /* enable dm9000a interrupt */
  353. dm9000_io_write(DM9000_IMR, dm9000_device.imr_all);
  354. /* unlock DM9000 device */
  355. rt_sem_release(&sem_lock);
  356. /* wait ack */
  357. rt_sem_take(&sem_ack, RT_WAITING_FOREVER);
  358. DM9000_TRACE("dm9000 tx done\n");
  359. return RT_EOK;
  360. }
  361. /* reception packet. */
  362. struct pbuf *rt_dm9000_rx(rt_device_t dev)
  363. {
  364. struct pbuf* p;
  365. rt_uint32_t rxbyte;
  366. #if DM9000_DEBUG
  367. rt_uint8_t* dump_ptr;
  368. rt_uint32_t cnt = 0;
  369. #endif
  370. /* init p pointer */
  371. p = RT_NULL;
  372. /* lock DM9000 device */
  373. rt_sem_take(&sem_lock, RT_WAITING_FOREVER);
  374. /* Check packet ready or not */
  375. dm9000_io_read(DM9000_MRCMDX); /* Dummy read */
  376. rxbyte = DM9000_inb(DM9000_DATA_BASE); /* Got most updated data */
  377. if (rxbyte)
  378. {
  379. rt_uint16_t rx_status, rx_len;
  380. rt_uint16_t* data;
  381. if (rxbyte > 1)
  382. {
  383. DM9000_TRACE("dm9000 rx: rx error, stop device\n");
  384. dm9000_io_write(DM9000_RCR, 0x00); /* Stop Device */
  385. dm9000_io_write(DM9000_ISR, 0x80); /* Stop INT request */
  386. }
  387. /* A packet ready now & Get status/length */
  388. DM9000_outb(DM9000_IO_BASE, DM9000_MRCMD);
  389. rx_status = DM9000_inw(DM9000_DATA_BASE);
  390. rx_len = DM9000_inw(DM9000_DATA_BASE);
  391. DM9000_TRACE("dm9000 rx: status %04x len %d\n", rx_status, rx_len);
  392. /* allocate buffer */
  393. p = pbuf_alloc(PBUF_LINK, rx_len, PBUF_RAM);
  394. if (p != RT_NULL)
  395. {
  396. struct pbuf* q;
  397. rt_int32_t len;
  398. for (q = p; q != RT_NULL; q= q->next)
  399. {
  400. data = (rt_uint16_t*)q->payload;
  401. len = q->len;
  402. #if DM9000_DEBUG
  403. dump_ptr = q->payload;
  404. #endif
  405. while (len > 0)
  406. {
  407. *data = DM9000_inw(DM9000_DATA_BASE);
  408. data ++;
  409. len -= 2;
  410. #if DM9000_DEBUG
  411. DM9000_TRACE("%02x ", *dump_ptr++);
  412. if (++cnt % 16 == 0) DM9000_TRACE("\n");
  413. #endif
  414. }
  415. }
  416. DM9000_TRACE("\n");
  417. }
  418. else
  419. {
  420. rt_uint16_t dummy;
  421. DM9000_TRACE("dm9000 rx: no pbuf\n");
  422. /* no pbuf, discard data from DM9000 */
  423. data = &dummy;
  424. while (rx_len)
  425. {
  426. *data = DM9000_inw(DM9000_DATA_BASE);
  427. rx_len -= 2;
  428. }
  429. }
  430. if ((rx_status & 0xbf00) || (rx_len < 0x40)
  431. || (rx_len > DM9000_PKT_MAX))
  432. {
  433. rt_kprintf("rx error: status %04x\n", rx_status);
  434. if (rx_status & 0x100)
  435. {
  436. rt_kprintf("rx fifo error\n");
  437. }
  438. if (rx_status & 0x200)
  439. {
  440. rt_kprintf("rx crc error\n");
  441. }
  442. if (rx_status & 0x8000)
  443. {
  444. rt_kprintf("rx length error\n");
  445. }
  446. if (rx_len > DM9000_PKT_MAX)
  447. {
  448. rt_kprintf("rx length too big\n");
  449. /* RESET device */
  450. dm9000_io_write(DM9000_NCR, NCR_RST);
  451. rt_thread_delay(1); /* delay 5ms */
  452. }
  453. /* it issues an error, release pbuf */
  454. pbuf_free(p);
  455. p = RT_NULL;
  456. }
  457. }
  458. else
  459. {
  460. /* restore receive interrupt */
  461. dm9000_device.imr_all = IMR_PAR | IMR_PTM | IMR_PRM;
  462. dm9000_io_write(DM9000_IMR, dm9000_device.imr_all);
  463. }
  464. /* unlock DM9000 device */
  465. rt_sem_release(&sem_lock);
  466. return p;
  467. }
  468. static void RCC_Configuration(void)
  469. {
  470. /* enable gpiob port clock */
  471. RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOF | RCC_APB2Periph_AFIO, ENABLE);
  472. }
  473. static void NVIC_Configuration(void)
  474. {
  475. NVIC_InitTypeDef NVIC_InitStructure;
  476. /* Configure one bit for preemption priority */
  477. NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1);
  478. /* Enable the EXTI0 Interrupt */
  479. NVIC_InitStructure.NVIC_IRQChannel = EXTI9_5_IRQn;
  480. NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
  481. NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
  482. NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
  483. NVIC_Init(&NVIC_InitStructure);
  484. }
  485. static void GPIO_Configuration()
  486. {
  487. GPIO_InitTypeDef GPIO_InitStructure;
  488. EXTI_InitTypeDef EXTI_InitStructure;
  489. /* configure PF6 as eth RST */
  490. GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;
  491. GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
  492. GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
  493. GPIO_Init(GPIOF,&GPIO_InitStructure);
  494. GPIO_ResetBits(GPIOF,GPIO_Pin_6);
  495. RST_1();
  496. /* configure PF7 as external interrupt */
  497. GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7;
  498. GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
  499. GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPD;
  500. GPIO_Init(GPIOF, &GPIO_InitStructure);
  501. /* Connect DM9000 EXTI Line to GPIOF Pin 7 */
  502. GPIO_EXTILineConfig(GPIO_PortSourceGPIOF, GPIO_PinSource7);
  503. /* Configure DM9000 EXTI Line to generate an interrupt on falling edge */
  504. EXTI_InitStructure.EXTI_Line = EXTI_Line7;
  505. EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt;
  506. EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Rising;
  507. EXTI_InitStructure.EXTI_LineCmd = ENABLE;
  508. EXTI_Init(&EXTI_InitStructure);
  509. /* Clear the Key Button EXTI line pending bit */
  510. EXTI_ClearITPendingBit(EXTI_Line7);
  511. }
  512. void rt_hw_dm9000_init()
  513. {
  514. RCC_Configuration();
  515. NVIC_Configuration();
  516. GPIO_Configuration();
  517. rt_sem_init(&sem_ack, "tx_ack", 1, RT_IPC_FLAG_FIFO);
  518. rt_sem_init(&sem_lock, "eth_lock", 1, RT_IPC_FLAG_FIFO);
  519. dm9000_device.type = TYPE_DM9000A;
  520. dm9000_device.mode = DM9000_AUTO;
  521. dm9000_device.packet_cnt = 0;
  522. dm9000_device.queue_packet_len = 0;
  523. /*
  524. * SRAM Tx/Rx pointer automatically return to start address,
  525. * Packet Transmitted, Packet Received
  526. */
  527. dm9000_device.imr_all = IMR_PAR | IMR_PTM | IMR_PRM;
  528. dm9000_device.dev_addr[0] = 0x01;
  529. dm9000_device.dev_addr[1] = 0x60;
  530. dm9000_device.dev_addr[2] = 0x6E;
  531. dm9000_device.dev_addr[3] = 0x11;
  532. dm9000_device.dev_addr[4] = 0x02;
  533. dm9000_device.dev_addr[5] = 0x0F;
  534. dm9000_device.parent.parent.init = rt_dm9000_init;
  535. dm9000_device.parent.parent.open = rt_dm9000_open;
  536. dm9000_device.parent.parent.close = rt_dm9000_close;
  537. dm9000_device.parent.parent.read = rt_dm9000_read;
  538. dm9000_device.parent.parent.write = rt_dm9000_write;
  539. dm9000_device.parent.parent.control = rt_dm9000_control;
  540. dm9000_device.parent.parent.private = RT_NULL;
  541. dm9000_device.parent.eth_rx = rt_dm9000_rx;
  542. dm9000_device.parent.eth_tx = rt_dm9000_tx;
  543. eth_device_init(&(dm9000_device.parent), "e0");
  544. }
  545. #ifdef RT_USING_FINSH
  546. #include <finsh.h>
  547. void dm9000(void)
  548. {
  549. rt_kprintf("\n");
  550. rt_kprintf("NCR (0x00): %02x\n", dm9000_io_read(DM9000_NCR));
  551. rt_kprintf("NSR (0x01): %02x\n", dm9000_io_read(DM9000_NSR));
  552. rt_kprintf("TCR (0x02): %02x\n", dm9000_io_read(DM9000_TCR));
  553. rt_kprintf("TSRI (0x03): %02x\n", dm9000_io_read(DM9000_TSR1));
  554. rt_kprintf("TSRII (0x04): %02x\n", dm9000_io_read(DM9000_TSR2));
  555. rt_kprintf("RCR (0x05): %02x\n", dm9000_io_read(DM9000_RCR));
  556. rt_kprintf("RSR (0x06): %02x\n", dm9000_io_read(DM9000_RSR));
  557. rt_kprintf("ORCR (0x07): %02x\n", dm9000_io_read(DM9000_ROCR));
  558. rt_kprintf("CRR (0x2C): %02x\n", dm9000_io_read(DM9000_CHIPR));
  559. rt_kprintf("CSCR (0x31): %02x\n", dm9000_io_read(DM9000_CSCR));
  560. rt_kprintf("RCSSR (0x32): %02x\n", dm9000_io_read(DM9000_RCSSR));
  561. rt_kprintf("ISR (0xFE): %02x\n", dm9000_io_read(DM9000_ISR));
  562. rt_kprintf("IMR (0xFF): %02x\n", dm9000_io_read(DM9000_IMR));
  563. rt_kprintf("\n");
  564. }
  565. FINSH_FUNCTION_EXPORT(dm9000, dm9000 register dump);
  566. void rx(void)
  567. {
  568. rt_err_t result;
  569. dm9000_io_write(DM9000_ISR, ISR_PRS); /* Clear rx status */
  570. /* a frame has been received */
  571. result = eth_device_ready(&(dm9000_device.parent));
  572. if (result != RT_EOK) rt_kprintf("eth notification failed\n");
  573. RT_ASSERT(result == RT_EOK);
  574. }
  575. FINSH_FUNCTION_EXPORT(rx, notify packet rx);
  576. #endif