drv_usart.c 35 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180
  1. /*
  2. * Copyright (c) 2006-2022, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2018-10-30 SummerGift first version
  9. * 2020-03-16 SummerGift add device close feature
  10. * 2020-03-20 SummerGift fix bug caused by ORE
  11. * 2020-05-02 whj4674672 support stm32h7 uart dma
  12. * 2020-09-09 forest-rain support stm32wl uart
  13. * 2020-10-14 Dozingfiretruck Porting for stm32wbxx
  14. */
  15. #include "board.h"
  16. #include "drv_usart.h"
  17. #include "drv_config.h"
  18. #ifdef RT_USING_SERIAL
  19. //#define DRV_DEBUG
  20. #define LOG_TAG "drv.usart"
  21. #include <drv_log.h>
  22. #if !defined(BSP_USING_UART1) && !defined(BSP_USING_UART2) && !defined(BSP_USING_UART3) && \
  23. !defined(BSP_USING_UART4) && !defined(BSP_USING_UART5) && !defined(BSP_USING_UART6) && \
  24. !defined(BSP_USING_UART7) && !defined(BSP_USING_UART8) && !defined(BSP_USING_LPUART1)
  25. #error "Please define at least one BSP_USING_UARTx"
  26. /* this driver can be disabled at menuconfig -> RT-Thread Components -> Device Drivers */
  27. #endif
  28. #ifdef RT_SERIAL_USING_DMA
  29. static void stm32_dma_config(struct rt_serial_device *serial, rt_ubase_t flag);
  30. #endif
  31. enum
  32. {
  33. #ifdef BSP_USING_UART1
  34. UART1_INDEX,
  35. #endif
  36. #ifdef BSP_USING_UART2
  37. UART2_INDEX,
  38. #endif
  39. #ifdef BSP_USING_UART3
  40. UART3_INDEX,
  41. #endif
  42. #ifdef BSP_USING_UART4
  43. UART4_INDEX,
  44. #endif
  45. #ifdef BSP_USING_UART5
  46. UART5_INDEX,
  47. #endif
  48. #ifdef BSP_USING_UART6
  49. UART6_INDEX,
  50. #endif
  51. #ifdef BSP_USING_UART7
  52. UART7_INDEX,
  53. #endif
  54. #ifdef BSP_USING_UART8
  55. UART8_INDEX,
  56. #endif
  57. #ifdef BSP_USING_LPUART1
  58. LPUART1_INDEX,
  59. #endif
  60. };
  61. static struct stm32_uart_config uart_config[] =
  62. {
  63. #ifdef BSP_USING_UART1
  64. UART1_CONFIG,
  65. #endif
  66. #ifdef BSP_USING_UART2
  67. UART2_CONFIG,
  68. #endif
  69. #ifdef BSP_USING_UART3
  70. UART3_CONFIG,
  71. #endif
  72. #ifdef BSP_USING_UART4
  73. UART4_CONFIG,
  74. #endif
  75. #ifdef BSP_USING_UART5
  76. UART5_CONFIG,
  77. #endif
  78. #ifdef BSP_USING_UART6
  79. UART6_CONFIG,
  80. #endif
  81. #ifdef BSP_USING_UART7
  82. UART7_CONFIG,
  83. #endif
  84. #ifdef BSP_USING_UART8
  85. UART8_CONFIG,
  86. #endif
  87. #ifdef BSP_USING_LPUART1
  88. LPUART1_CONFIG,
  89. #endif
  90. };
  91. static struct stm32_uart uart_obj[sizeof(uart_config) / sizeof(uart_config[0])] = {0};
  92. static rt_err_t stm32_configure(struct rt_serial_device *serial, struct serial_configure *cfg)
  93. {
  94. struct stm32_uart *uart;
  95. RT_ASSERT(serial != RT_NULL);
  96. RT_ASSERT(cfg != RT_NULL);
  97. uart = rt_container_of(serial, struct stm32_uart, serial);
  98. uart->handle.Instance = uart->config->Instance;
  99. uart->handle.Init.BaudRate = cfg->baud_rate;
  100. uart->handle.Init.Mode = UART_MODE_TX_RX;
  101. uart->handle.Init.OverSampling = UART_OVERSAMPLING_16;
  102. switch (cfg->flowcontrol)
  103. {
  104. case RT_SERIAL_FLOWCONTROL_NONE:
  105. uart->handle.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  106. break;
  107. case RT_SERIAL_FLOWCONTROL_CTSRTS:
  108. uart->handle.Init.HwFlowCtl = UART_HWCONTROL_RTS_CTS;
  109. break;
  110. default:
  111. uart->handle.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  112. break;
  113. }
  114. switch (cfg->data_bits)
  115. {
  116. case DATA_BITS_8:
  117. if (cfg->parity == PARITY_ODD || cfg->parity == PARITY_EVEN)
  118. uart->handle.Init.WordLength = UART_WORDLENGTH_9B;
  119. else
  120. uart->handle.Init.WordLength = UART_WORDLENGTH_8B;
  121. break;
  122. case DATA_BITS_9:
  123. uart->handle.Init.WordLength = UART_WORDLENGTH_9B;
  124. break;
  125. default:
  126. uart->handle.Init.WordLength = UART_WORDLENGTH_8B;
  127. break;
  128. }
  129. switch (cfg->stop_bits)
  130. {
  131. case STOP_BITS_1:
  132. uart->handle.Init.StopBits = UART_STOPBITS_1;
  133. break;
  134. case STOP_BITS_2:
  135. uart->handle.Init.StopBits = UART_STOPBITS_2;
  136. break;
  137. default:
  138. uart->handle.Init.StopBits = UART_STOPBITS_1;
  139. break;
  140. }
  141. switch (cfg->parity)
  142. {
  143. case PARITY_NONE:
  144. uart->handle.Init.Parity = UART_PARITY_NONE;
  145. break;
  146. case PARITY_ODD:
  147. uart->handle.Init.Parity = UART_PARITY_ODD;
  148. break;
  149. case PARITY_EVEN:
  150. uart->handle.Init.Parity = UART_PARITY_EVEN;
  151. break;
  152. default:
  153. uart->handle.Init.Parity = UART_PARITY_NONE;
  154. break;
  155. }
  156. #ifdef RT_SERIAL_USING_DMA
  157. if (!(serial->parent.open_flag & RT_DEVICE_OFLAG_OPEN)) {
  158. uart->dma_rx.last_index = 0;
  159. }
  160. #endif
  161. if (HAL_UART_Init(&uart->handle) != HAL_OK)
  162. {
  163. return -RT_ERROR;
  164. }
  165. return RT_EOK;
  166. }
  167. static rt_err_t stm32_control(struct rt_serial_device *serial, int cmd, void *arg)
  168. {
  169. struct stm32_uart *uart;
  170. #ifdef RT_SERIAL_USING_DMA
  171. rt_ubase_t ctrl_arg = (rt_ubase_t)arg;
  172. #endif
  173. RT_ASSERT(serial != RT_NULL);
  174. uart = rt_container_of(serial, struct stm32_uart, serial);
  175. switch (cmd)
  176. {
  177. /* disable interrupt */
  178. case RT_DEVICE_CTRL_CLR_INT:
  179. /* disable rx irq */
  180. NVIC_DisableIRQ(uart->config->irq_type);
  181. /* disable interrupt */
  182. __HAL_UART_DISABLE_IT(&(uart->handle), UART_IT_RXNE);
  183. #ifdef RT_SERIAL_USING_DMA
  184. /* disable DMA */
  185. if (ctrl_arg == RT_DEVICE_FLAG_DMA_RX)
  186. {
  187. HAL_NVIC_DisableIRQ(uart->config->dma_rx->dma_irq);
  188. if (HAL_DMA_Abort(&(uart->dma_rx.handle)) != HAL_OK)
  189. {
  190. RT_ASSERT(0);
  191. }
  192. if (HAL_DMA_DeInit(&(uart->dma_rx.handle)) != HAL_OK)
  193. {
  194. RT_ASSERT(0);
  195. }
  196. }
  197. else if(ctrl_arg == RT_DEVICE_FLAG_DMA_TX)
  198. {
  199. HAL_NVIC_DisableIRQ(uart->config->dma_tx->dma_irq);
  200. if (HAL_DMA_DeInit(&(uart->dma_tx.handle)) != HAL_OK)
  201. {
  202. RT_ASSERT(0);
  203. }
  204. }
  205. #endif
  206. break;
  207. /* enable interrupt */
  208. case RT_DEVICE_CTRL_SET_INT:
  209. /* enable rx irq */
  210. HAL_NVIC_SetPriority(uart->config->irq_type, 1, 0);
  211. HAL_NVIC_EnableIRQ(uart->config->irq_type);
  212. /* enable interrupt */
  213. __HAL_UART_ENABLE_IT(&(uart->handle), UART_IT_RXNE);
  214. break;
  215. #ifdef RT_SERIAL_USING_DMA
  216. case RT_DEVICE_CTRL_CONFIG:
  217. stm32_dma_config(serial, ctrl_arg);
  218. break;
  219. #endif
  220. case RT_DEVICE_CTRL_CLOSE:
  221. if (HAL_UART_DeInit(&(uart->handle)) != HAL_OK )
  222. {
  223. RT_ASSERT(0)
  224. }
  225. break;
  226. }
  227. return RT_EOK;
  228. }
  229. rt_uint32_t stm32_uart_get_mask(rt_uint32_t word_length, rt_uint32_t parity)
  230. {
  231. rt_uint32_t mask;
  232. if (word_length == UART_WORDLENGTH_8B)
  233. {
  234. if (parity == UART_PARITY_NONE)
  235. {
  236. mask = 0x00FFU ;
  237. }
  238. else
  239. {
  240. mask = 0x007FU ;
  241. }
  242. }
  243. #ifdef UART_WORDLENGTH_9B
  244. else if (word_length == UART_WORDLENGTH_9B)
  245. {
  246. if (parity == UART_PARITY_NONE)
  247. {
  248. mask = 0x01FFU ;
  249. }
  250. else
  251. {
  252. mask = 0x00FFU ;
  253. }
  254. }
  255. #endif
  256. #ifdef UART_WORDLENGTH_7B
  257. else if (word_length == UART_WORDLENGTH_7B)
  258. {
  259. if (parity == UART_PARITY_NONE)
  260. {
  261. mask = 0x007FU ;
  262. }
  263. else
  264. {
  265. mask = 0x003FU ;
  266. }
  267. }
  268. else
  269. {
  270. mask = 0x0000U;
  271. }
  272. #endif
  273. return mask;
  274. }
  275. static int stm32_putc(struct rt_serial_device *serial, char c)
  276. {
  277. struct stm32_uart *uart;
  278. RT_ASSERT(serial != RT_NULL);
  279. uart = rt_container_of(serial, struct stm32_uart, serial);
  280. UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_TC);
  281. #if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32WL) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32F0) \
  282. || defined(SOC_SERIES_STM32L0) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32L5) \
  283. || defined(SOC_SERIES_STM32G4) || defined(SOC_SERIES_STM32MP1) || defined(SOC_SERIES_STM32WB) || defined(SOC_SERIES_STM32F3) \
  284. || defined(SOC_SERIES_STM32U5)
  285. uart->handle.Instance->TDR = c;
  286. #else
  287. uart->handle.Instance->DR = c;
  288. #endif
  289. while (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_TC) == RESET);
  290. return 1;
  291. }
  292. static int stm32_getc(struct rt_serial_device *serial)
  293. {
  294. int ch;
  295. struct stm32_uart *uart;
  296. RT_ASSERT(serial != RT_NULL);
  297. uart = rt_container_of(serial, struct stm32_uart, serial);
  298. ch = -1;
  299. if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_RXNE) != RESET)
  300. {
  301. #if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32WL) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32F0) \
  302. || defined(SOC_SERIES_STM32L0) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32L5) \
  303. || defined(SOC_SERIES_STM32G4) || defined(SOC_SERIES_STM32MP1) || defined(SOC_SERIES_STM32WB)|| defined(SOC_SERIES_STM32F3) \
  304. || defined(SOC_SERIES_STM32U5)
  305. ch = uart->handle.Instance->RDR & stm32_uart_get_mask(uart->handle.Init.WordLength, uart->handle.Init.Parity);
  306. #else
  307. ch = uart->handle.Instance->DR & stm32_uart_get_mask(uart->handle.Init.WordLength, uart->handle.Init.Parity);
  308. #endif
  309. }
  310. return ch;
  311. }
  312. static rt_size_t stm32_dma_transmit(struct rt_serial_device *serial, rt_uint8_t *buf, rt_size_t size, int direction)
  313. {
  314. struct stm32_uart *uart;
  315. RT_ASSERT(serial != RT_NULL);
  316. RT_ASSERT(buf != RT_NULL);
  317. uart = rt_container_of(serial, struct stm32_uart, serial);
  318. if (size == 0)
  319. {
  320. return 0;
  321. }
  322. if (RT_SERIAL_DMA_TX == direction)
  323. {
  324. if (HAL_UART_Transmit_DMA(&uart->handle, buf, size) == HAL_OK)
  325. {
  326. return size;
  327. }
  328. else
  329. {
  330. return 0;
  331. }
  332. }
  333. return 0;
  334. }
  335. /**
  336. * Uart common interrupt process. This need add to uart ISR.
  337. *
  338. * @param serial serial device
  339. */
  340. static void uart_isr(struct rt_serial_device *serial)
  341. {
  342. struct stm32_uart *uart;
  343. #ifdef RT_SERIAL_USING_DMA
  344. rt_size_t recv_total_index, recv_len;
  345. rt_base_t level;
  346. #endif
  347. RT_ASSERT(serial != RT_NULL);
  348. uart = rt_container_of(serial, struct stm32_uart, serial);
  349. /* UART in mode Receiver -------------------------------------------------*/
  350. if ((__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_RXNE) != RESET) &&
  351. (__HAL_UART_GET_IT_SOURCE(&(uart->handle), UART_IT_RXNE) != RESET))
  352. {
  353. rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_IND);
  354. }
  355. #ifdef RT_SERIAL_USING_DMA
  356. else if ((uart->uart_dma_flag) && (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_IDLE) != RESET)
  357. && (__HAL_UART_GET_IT_SOURCE(&(uart->handle), UART_IT_IDLE) != RESET))
  358. {
  359. level = rt_hw_interrupt_disable();
  360. recv_total_index = serial->config.bufsz - __HAL_DMA_GET_COUNTER(&(uart->dma_rx.handle));
  361. recv_len = recv_total_index - uart->dma_rx.last_index;
  362. uart->dma_rx.last_index = recv_total_index;
  363. rt_hw_interrupt_enable(level);
  364. if (recv_len)
  365. {
  366. rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_DMADONE | (recv_len << 8));
  367. }
  368. __HAL_UART_CLEAR_IDLEFLAG(&uart->handle);
  369. }
  370. else if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_TC) &&
  371. (__HAL_UART_GET_IT_SOURCE(&(uart->handle), UART_IT_TC) != RESET))
  372. {
  373. if ((serial->parent.open_flag & RT_DEVICE_FLAG_DMA_TX) != 0)
  374. {
  375. HAL_UART_IRQHandler(&(uart->handle));
  376. }
  377. UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_TC);
  378. }
  379. #endif
  380. else
  381. {
  382. if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_ORE) != RESET)
  383. {
  384. __HAL_UART_CLEAR_OREFLAG(&uart->handle);
  385. }
  386. if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_NE) != RESET)
  387. {
  388. __HAL_UART_CLEAR_NEFLAG(&uart->handle);
  389. }
  390. if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_FE) != RESET)
  391. {
  392. __HAL_UART_CLEAR_FEFLAG(&uart->handle);
  393. }
  394. if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_PE) != RESET)
  395. {
  396. __HAL_UART_CLEAR_PEFLAG(&uart->handle);
  397. }
  398. #if !defined(SOC_SERIES_STM32L4) && !defined(SOC_SERIES_STM32WL) && !defined(SOC_SERIES_STM32F7) && !defined(SOC_SERIES_STM32F0) \
  399. && !defined(SOC_SERIES_STM32L0) && !defined(SOC_SERIES_STM32G0) && !defined(SOC_SERIES_STM32H7) \
  400. && !defined(SOC_SERIES_STM32G4) && !defined(SOC_SERIES_STM32MP1) && !defined(SOC_SERIES_STM32WB) \
  401. && !defined(SOC_SERIES_STM32L5) && !defined(SOC_SERIES_STM32U5)
  402. #ifdef SOC_SERIES_STM32F3
  403. if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_LBDF) != RESET)
  404. {
  405. UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_LBDF);
  406. }
  407. #else
  408. if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_LBD) != RESET)
  409. {
  410. UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_LBD);
  411. }
  412. #endif
  413. #endif
  414. if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_CTS) != RESET)
  415. {
  416. UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_CTS);
  417. }
  418. if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_TXE) != RESET)
  419. {
  420. UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_TXE);
  421. }
  422. if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_RXNE) != RESET)
  423. {
  424. UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_RXNE);
  425. }
  426. }
  427. }
  428. #ifdef RT_SERIAL_USING_DMA
  429. static void dma_isr(struct rt_serial_device *serial)
  430. {
  431. struct stm32_uart *uart;
  432. rt_size_t recv_total_index, recv_len;
  433. rt_base_t level;
  434. RT_ASSERT(serial != RT_NULL);
  435. uart = rt_container_of(serial, struct stm32_uart, serial);
  436. if ((__HAL_DMA_GET_IT_SOURCE(&(uart->dma_rx.handle), DMA_IT_TC) != RESET) ||
  437. (__HAL_DMA_GET_IT_SOURCE(&(uart->dma_rx.handle), DMA_IT_HT) != RESET))
  438. {
  439. level = rt_hw_interrupt_disable();
  440. recv_total_index = serial->config.bufsz - __HAL_DMA_GET_COUNTER(&(uart->dma_rx.handle));
  441. if (recv_total_index == 0)
  442. {
  443. recv_len = serial->config.bufsz - uart->dma_rx.last_index;
  444. }
  445. else
  446. {
  447. recv_len = serial->config.bufsz - uart->dma_rx.last_index + recv_total_index;
  448. }
  449. uart->dma_rx.last_index = recv_total_index;
  450. rt_hw_interrupt_enable(level);
  451. if (recv_len)
  452. {
  453. rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_DMADONE | (recv_len << 8));
  454. }
  455. }
  456. }
  457. #endif
  458. #if defined(BSP_USING_UART1)
  459. void USART1_IRQHandler(void)
  460. {
  461. /* enter interrupt */
  462. rt_interrupt_enter();
  463. uart_isr(&(uart_obj[UART1_INDEX].serial));
  464. /* leave interrupt */
  465. rt_interrupt_leave();
  466. }
  467. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART1_RX_USING_DMA)
  468. void UART1_DMA_RX_IRQHandler(void)
  469. {
  470. /* enter interrupt */
  471. rt_interrupt_enter();
  472. HAL_DMA_IRQHandler(&uart_obj[UART1_INDEX].dma_rx.handle);
  473. /* leave interrupt */
  474. rt_interrupt_leave();
  475. }
  476. #endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART1_RX_USING_DMA) */
  477. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART1_TX_USING_DMA)
  478. void UART1_DMA_TX_IRQHandler(void)
  479. {
  480. /* enter interrupt */
  481. rt_interrupt_enter();
  482. HAL_DMA_IRQHandler(&uart_obj[UART1_INDEX].dma_tx.handle);
  483. /* leave interrupt */
  484. rt_interrupt_leave();
  485. }
  486. #endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART1_TX_USING_DMA) */
  487. #endif /* BSP_USING_UART1 */
  488. #if defined(BSP_USING_UART2)
  489. void USART2_IRQHandler(void)
  490. {
  491. /* enter interrupt */
  492. rt_interrupt_enter();
  493. uart_isr(&(uart_obj[UART2_INDEX].serial));
  494. /* leave interrupt */
  495. rt_interrupt_leave();
  496. }
  497. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART2_RX_USING_DMA)
  498. void UART2_DMA_RX_IRQHandler(void)
  499. {
  500. /* enter interrupt */
  501. rt_interrupt_enter();
  502. HAL_DMA_IRQHandler(&uart_obj[UART2_INDEX].dma_rx.handle);
  503. /* leave interrupt */
  504. rt_interrupt_leave();
  505. }
  506. #endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART2_RX_USING_DMA) */
  507. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART2_TX_USING_DMA)
  508. void UART2_DMA_TX_IRQHandler(void)
  509. {
  510. /* enter interrupt */
  511. rt_interrupt_enter();
  512. HAL_DMA_IRQHandler(&uart_obj[UART2_INDEX].dma_tx.handle);
  513. /* leave interrupt */
  514. rt_interrupt_leave();
  515. }
  516. #endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART2_TX_USING_DMA) */
  517. #endif /* BSP_USING_UART2 */
  518. #if defined(BSP_USING_UART3)
  519. void USART3_IRQHandler(void)
  520. {
  521. /* enter interrupt */
  522. rt_interrupt_enter();
  523. uart_isr(&(uart_obj[UART3_INDEX].serial));
  524. /* leave interrupt */
  525. rt_interrupt_leave();
  526. }
  527. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART3_RX_USING_DMA)
  528. void UART3_DMA_RX_IRQHandler(void)
  529. {
  530. /* enter interrupt */
  531. rt_interrupt_enter();
  532. HAL_DMA_IRQHandler(&uart_obj[UART3_INDEX].dma_rx.handle);
  533. /* leave interrupt */
  534. rt_interrupt_leave();
  535. }
  536. #endif /* defined(BSP_UART_USING_DMA_RX) && defined(BSP_UART3_RX_USING_DMA) */
  537. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART3_TX_USING_DMA)
  538. void UART3_DMA_TX_IRQHandler(void)
  539. {
  540. /* enter interrupt */
  541. rt_interrupt_enter();
  542. HAL_DMA_IRQHandler(&uart_obj[UART3_INDEX].dma_tx.handle);
  543. /* leave interrupt */
  544. rt_interrupt_leave();
  545. }
  546. #endif /* defined(BSP_UART_USING_DMA_TX) && defined(BSP_UART3_TX_USING_DMA) */
  547. #endif /* BSP_USING_UART3*/
  548. #if defined(BSP_USING_UART4)
  549. void UART4_IRQHandler(void)
  550. {
  551. /* enter interrupt */
  552. rt_interrupt_enter();
  553. uart_isr(&(uart_obj[UART4_INDEX].serial));
  554. /* leave interrupt */
  555. rt_interrupt_leave();
  556. }
  557. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART4_RX_USING_DMA)
  558. void UART4_DMA_RX_IRQHandler(void)
  559. {
  560. /* enter interrupt */
  561. rt_interrupt_enter();
  562. HAL_DMA_IRQHandler(&uart_obj[UART4_INDEX].dma_rx.handle);
  563. /* leave interrupt */
  564. rt_interrupt_leave();
  565. }
  566. #endif /* defined(BSP_UART_USING_DMA_RX) && defined(BSP_UART4_RX_USING_DMA) */
  567. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART4_TX_USING_DMA)
  568. void UART4_DMA_TX_IRQHandler(void)
  569. {
  570. /* enter interrupt */
  571. rt_interrupt_enter();
  572. HAL_DMA_IRQHandler(&uart_obj[UART4_INDEX].dma_tx.handle);
  573. /* leave interrupt */
  574. rt_interrupt_leave();
  575. }
  576. #endif /* defined(BSP_UART_USING_DMA_TX) && defined(BSP_UART4_TX_USING_DMA) */
  577. #endif /* BSP_USING_UART4*/
  578. #if defined(BSP_USING_UART5)
  579. void UART5_IRQHandler(void)
  580. {
  581. /* enter interrupt */
  582. rt_interrupt_enter();
  583. uart_isr(&(uart_obj[UART5_INDEX].serial));
  584. /* leave interrupt */
  585. rt_interrupt_leave();
  586. }
  587. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART5_RX_USING_DMA)
  588. void UART5_DMA_RX_IRQHandler(void)
  589. {
  590. /* enter interrupt */
  591. rt_interrupt_enter();
  592. HAL_DMA_IRQHandler(&uart_obj[UART5_INDEX].dma_rx.handle);
  593. /* leave interrupt */
  594. rt_interrupt_leave();
  595. }
  596. #endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART5_RX_USING_DMA) */
  597. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART5_TX_USING_DMA)
  598. void UART5_DMA_TX_IRQHandler(void)
  599. {
  600. /* enter interrupt */
  601. rt_interrupt_enter();
  602. HAL_DMA_IRQHandler(&uart_obj[UART5_INDEX].dma_tx.handle);
  603. /* leave interrupt */
  604. rt_interrupt_leave();
  605. }
  606. #endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART5_TX_USING_DMA) */
  607. #endif /* BSP_USING_UART5*/
  608. #if defined(BSP_USING_UART6)
  609. void USART6_IRQHandler(void)
  610. {
  611. /* enter interrupt */
  612. rt_interrupt_enter();
  613. uart_isr(&(uart_obj[UART6_INDEX].serial));
  614. /* leave interrupt */
  615. rt_interrupt_leave();
  616. }
  617. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART6_RX_USING_DMA)
  618. void UART6_DMA_RX_IRQHandler(void)
  619. {
  620. /* enter interrupt */
  621. rt_interrupt_enter();
  622. HAL_DMA_IRQHandler(&uart_obj[UART6_INDEX].dma_rx.handle);
  623. /* leave interrupt */
  624. rt_interrupt_leave();
  625. }
  626. #endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART6_RX_USING_DMA) */
  627. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART6_TX_USING_DMA)
  628. void UART6_DMA_TX_IRQHandler(void)
  629. {
  630. /* enter interrupt */
  631. rt_interrupt_enter();
  632. HAL_DMA_IRQHandler(&uart_obj[UART6_INDEX].dma_tx.handle);
  633. /* leave interrupt */
  634. rt_interrupt_leave();
  635. }
  636. #endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART6_TX_USING_DMA) */
  637. #endif /* BSP_USING_UART6*/
  638. #if defined(BSP_USING_UART7)
  639. void UART7_IRQHandler(void)
  640. {
  641. /* enter interrupt */
  642. rt_interrupt_enter();
  643. uart_isr(&(uart_obj[UART7_INDEX].serial));
  644. /* leave interrupt */
  645. rt_interrupt_leave();
  646. }
  647. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART7_RX_USING_DMA)
  648. void UART7_DMA_RX_IRQHandler(void)
  649. {
  650. /* enter interrupt */
  651. rt_interrupt_enter();
  652. HAL_DMA_IRQHandler(&uart_obj[UART7_INDEX].dma_rx.handle);
  653. /* leave interrupt */
  654. rt_interrupt_leave();
  655. }
  656. #endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART7_RX_USING_DMA) */
  657. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART7_TX_USING_DMA)
  658. void UART7_DMA_TX_IRQHandler(void)
  659. {
  660. /* enter interrupt */
  661. rt_interrupt_enter();
  662. HAL_DMA_IRQHandler(&uart_obj[UART7_INDEX].dma_tx.handle);
  663. /* leave interrupt */
  664. rt_interrupt_leave();
  665. }
  666. #endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART7_TX_USING_DMA) */
  667. #endif /* BSP_USING_UART7*/
  668. #if defined(BSP_USING_UART8)
  669. void UART8_IRQHandler(void)
  670. {
  671. /* enter interrupt */
  672. rt_interrupt_enter();
  673. uart_isr(&(uart_obj[UART8_INDEX].serial));
  674. /* leave interrupt */
  675. rt_interrupt_leave();
  676. }
  677. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART8_RX_USING_DMA)
  678. void UART8_DMA_RX_IRQHandler(void)
  679. {
  680. /* enter interrupt */
  681. rt_interrupt_enter();
  682. HAL_DMA_IRQHandler(&uart_obj[UART8_INDEX].dma_rx.handle);
  683. /* leave interrupt */
  684. rt_interrupt_leave();
  685. }
  686. #endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART8_RX_USING_DMA) */
  687. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART8_TX_USING_DMA)
  688. void UART8_DMA_TX_IRQHandler(void)
  689. {
  690. /* enter interrupt */
  691. rt_interrupt_enter();
  692. HAL_DMA_IRQHandler(&uart_obj[UART8_INDEX].dma_tx.handle);
  693. /* leave interrupt */
  694. rt_interrupt_leave();
  695. }
  696. #endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART8_TX_USING_DMA) */
  697. #endif /* BSP_USING_UART8*/
  698. #if defined(BSP_USING_LPUART1)
  699. void LPUART1_IRQHandler(void)
  700. {
  701. /* enter interrupt */
  702. rt_interrupt_enter();
  703. uart_isr(&(uart_obj[LPUART1_INDEX].serial));
  704. /* leave interrupt */
  705. rt_interrupt_leave();
  706. }
  707. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_LPUART1_RX_USING_DMA)
  708. void LPUART1_DMA_RX_IRQHandler(void)
  709. {
  710. /* enter interrupt */
  711. rt_interrupt_enter();
  712. HAL_DMA_IRQHandler(&uart_obj[LPUART1_INDEX].dma_rx.handle);
  713. /* leave interrupt */
  714. rt_interrupt_leave();
  715. }
  716. #endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_LPUART1_RX_USING_DMA) */
  717. #endif /* BSP_USING_LPUART1*/
  718. static void stm32_uart_get_dma_config(void)
  719. {
  720. #ifdef BSP_USING_UART1
  721. uart_obj[UART1_INDEX].uart_dma_flag = 0;
  722. #ifdef BSP_UART1_RX_USING_DMA
  723. uart_obj[UART1_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  724. static struct dma_config uart1_dma_rx = UART1_DMA_RX_CONFIG;
  725. uart_config[UART1_INDEX].dma_rx = &uart1_dma_rx;
  726. #endif
  727. #ifdef BSP_UART1_TX_USING_DMA
  728. uart_obj[UART1_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  729. static struct dma_config uart1_dma_tx = UART1_DMA_TX_CONFIG;
  730. uart_config[UART1_INDEX].dma_tx = &uart1_dma_tx;
  731. #endif
  732. #endif
  733. #ifdef BSP_USING_UART2
  734. uart_obj[UART2_INDEX].uart_dma_flag = 0;
  735. #ifdef BSP_UART2_RX_USING_DMA
  736. uart_obj[UART2_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  737. static struct dma_config uart2_dma_rx = UART2_DMA_RX_CONFIG;
  738. uart_config[UART2_INDEX].dma_rx = &uart2_dma_rx;
  739. #endif
  740. #ifdef BSP_UART2_TX_USING_DMA
  741. uart_obj[UART2_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  742. static struct dma_config uart2_dma_tx = UART2_DMA_TX_CONFIG;
  743. uart_config[UART2_INDEX].dma_tx = &uart2_dma_tx;
  744. #endif
  745. #endif
  746. #ifdef BSP_USING_UART3
  747. uart_obj[UART3_INDEX].uart_dma_flag = 0;
  748. #ifdef BSP_UART3_RX_USING_DMA
  749. uart_obj[UART3_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  750. static struct dma_config uart3_dma_rx = UART3_DMA_RX_CONFIG;
  751. uart_config[UART3_INDEX].dma_rx = &uart3_dma_rx;
  752. #endif
  753. #ifdef BSP_UART3_TX_USING_DMA
  754. uart_obj[UART3_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  755. static struct dma_config uart3_dma_tx = UART3_DMA_TX_CONFIG;
  756. uart_config[UART3_INDEX].dma_tx = &uart3_dma_tx;
  757. #endif
  758. #endif
  759. #ifdef BSP_USING_UART4
  760. uart_obj[UART4_INDEX].uart_dma_flag = 0;
  761. #ifdef BSP_UART4_RX_USING_DMA
  762. uart_obj[UART4_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  763. static struct dma_config uart4_dma_rx = UART4_DMA_RX_CONFIG;
  764. uart_config[UART4_INDEX].dma_rx = &uart4_dma_rx;
  765. #endif
  766. #ifdef BSP_UART4_TX_USING_DMA
  767. uart_obj[UART4_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  768. static struct dma_config uart4_dma_tx = UART4_DMA_TX_CONFIG;
  769. uart_config[UART4_INDEX].dma_tx = &uart4_dma_tx;
  770. #endif
  771. #endif
  772. #ifdef BSP_USING_UART5
  773. uart_obj[UART5_INDEX].uart_dma_flag = 0;
  774. #ifdef BSP_UART5_RX_USING_DMA
  775. uart_obj[UART5_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  776. static struct dma_config uart5_dma_rx = UART5_DMA_RX_CONFIG;
  777. uart_config[UART5_INDEX].dma_rx = &uart5_dma_rx;
  778. #endif
  779. #ifdef BSP_UART5_TX_USING_DMA
  780. uart_obj[UART5_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  781. static struct dma_config uart5_dma_tx = UART5_DMA_TX_CONFIG;
  782. uart_config[UART5_INDEX].dma_tx = &uart5_dma_tx;
  783. #endif
  784. #endif
  785. #ifdef BSP_USING_UART6
  786. uart_obj[UART6_INDEX].uart_dma_flag = 0;
  787. #ifdef BSP_UART6_RX_USING_DMA
  788. uart_obj[UART6_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  789. static struct dma_config uart6_dma_rx = UART6_DMA_RX_CONFIG;
  790. uart_config[UART6_INDEX].dma_rx = &uart6_dma_rx;
  791. #endif
  792. #ifdef BSP_UART6_TX_USING_DMA
  793. uart_obj[UART6_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  794. static struct dma_config uart6_dma_tx = UART6_DMA_TX_CONFIG;
  795. uart_config[UART6_INDEX].dma_tx = &uart6_dma_tx;
  796. #endif
  797. #endif
  798. #ifdef BSP_USING_UART7
  799. uart_obj[UART7_INDEX].uart_dma_flag = 0;
  800. #ifdef BSP_UART7_RX_USING_DMA
  801. uart_obj[UART7_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  802. static struct dma_config uart7_dma_rx = UART7_DMA_RX_CONFIG;
  803. uart_config[UART7_INDEX].dma_rx = &uart7_dma_rx;
  804. #endif
  805. #ifdef BSP_UART7_TX_USING_DMA
  806. uart_obj[UART7_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  807. static struct dma_config uart7_dma_tx = UART7_DMA_TX_CONFIG;
  808. uart_config[UART7_INDEX].dma_tx = &uart7_dma_tx;
  809. #endif
  810. #endif
  811. #ifdef BSP_USING_UART8
  812. uart_obj[UART8_INDEX].uart_dma_flag = 0;
  813. #ifdef BSP_UART8_RX_USING_DMA
  814. uart_obj[UART8_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  815. static struct dma_config uart8_dma_rx = UART8_DMA_RX_CONFIG;
  816. uart_config[UART8_INDEX].dma_rx = &uart8_dma_rx;
  817. #endif
  818. #ifdef BSP_UART8_TX_USING_DMA
  819. uart_obj[UART8_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  820. static struct dma_config uart8_dma_tx = UART8_DMA_TX_CONFIG;
  821. uart_config[UART8_INDEX].dma_tx = &uart8_dma_tx;
  822. #endif
  823. #endif
  824. }
  825. #ifdef RT_SERIAL_USING_DMA
  826. static void stm32_dma_config(struct rt_serial_device *serial, rt_ubase_t flag)
  827. {
  828. struct rt_serial_rx_fifo *rx_fifo;
  829. DMA_HandleTypeDef *DMA_Handle;
  830. struct dma_config *dma_config;
  831. struct stm32_uart *uart;
  832. RT_ASSERT(serial != RT_NULL);
  833. RT_ASSERT(flag == RT_DEVICE_FLAG_DMA_TX || flag == RT_DEVICE_FLAG_DMA_RX);
  834. uart = rt_container_of(serial, struct stm32_uart, serial);
  835. if (RT_DEVICE_FLAG_DMA_RX == flag)
  836. {
  837. DMA_Handle = &uart->dma_rx.handle;
  838. dma_config = uart->config->dma_rx;
  839. }
  840. else /* RT_DEVICE_FLAG_DMA_TX == flag */
  841. {
  842. DMA_Handle = &uart->dma_tx.handle;
  843. dma_config = uart->config->dma_tx;
  844. }
  845. LOG_D("%s dma config start", uart->config->name);
  846. {
  847. rt_uint32_t tmpreg = 0x00U;
  848. #if defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32G0) \
  849. || defined(SOC_SERIES_STM32L0)|| defined(SOC_SERIES_STM32F3) || defined(SOC_SERIES_STM32L1)
  850. /* enable DMA clock && Delay after an RCC peripheral clock enabling*/
  851. SET_BIT(RCC->AHBENR, dma_config->dma_rcc);
  852. tmpreg = READ_BIT(RCC->AHBENR, dma_config->dma_rcc);
  853. #elif defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32WL) \
  854. || defined(SOC_SERIES_STM32G4)|| defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32WB)
  855. /* enable DMA clock && Delay after an RCC peripheral clock enabling*/
  856. SET_BIT(RCC->AHB1ENR, dma_config->dma_rcc);
  857. tmpreg = READ_BIT(RCC->AHB1ENR, dma_config->dma_rcc);
  858. #elif defined(SOC_SERIES_STM32MP1)
  859. /* enable DMA clock && Delay after an RCC peripheral clock enabling*/
  860. SET_BIT(RCC->MP_AHB2ENSETR, dma_config->dma_rcc);
  861. tmpreg = READ_BIT(RCC->MP_AHB2ENSETR, dma_config->dma_rcc);
  862. #endif
  863. #if (defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32WL) || defined(SOC_SERIES_STM32G4) || defined(SOC_SERIES_STM32WB)) && defined(DMAMUX1)
  864. /* enable DMAMUX clock for L4+ and G4 */
  865. __HAL_RCC_DMAMUX1_CLK_ENABLE();
  866. #elif defined(SOC_SERIES_STM32MP1)
  867. __HAL_RCC_DMAMUX_CLK_ENABLE();
  868. #endif
  869. UNUSED(tmpreg); /* To avoid compiler warnings */
  870. }
  871. if (RT_DEVICE_FLAG_DMA_RX == flag)
  872. {
  873. __HAL_LINKDMA(&(uart->handle), hdmarx, uart->dma_rx.handle);
  874. }
  875. else if (RT_DEVICE_FLAG_DMA_TX == flag)
  876. {
  877. __HAL_LINKDMA(&(uart->handle), hdmatx, uart->dma_tx.handle);
  878. }
  879. #if defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32L0)|| defined(SOC_SERIES_STM32F3) || defined(SOC_SERIES_STM32L1) || defined(SOC_SERIES_STM32U5)
  880. DMA_Handle->Instance = dma_config->Instance;
  881. #elif defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7)
  882. DMA_Handle->Instance = dma_config->Instance;
  883. DMA_Handle->Init.Channel = dma_config->channel;
  884. #elif defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32WL) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32G4) || defined(SOC_SERIES_STM32WB)\
  885. || defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32MP1)
  886. DMA_Handle->Instance = dma_config->Instance;
  887. DMA_Handle->Init.Request = dma_config->request;
  888. #endif
  889. DMA_Handle->Init.PeriphInc = DMA_PINC_DISABLE;
  890. DMA_Handle->Init.MemInc = DMA_MINC_ENABLE;
  891. DMA_Handle->Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
  892. DMA_Handle->Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
  893. if (RT_DEVICE_FLAG_DMA_RX == flag)
  894. {
  895. DMA_Handle->Init.Direction = DMA_PERIPH_TO_MEMORY;
  896. DMA_Handle->Init.Mode = DMA_CIRCULAR;
  897. }
  898. else if (RT_DEVICE_FLAG_DMA_TX == flag)
  899. {
  900. DMA_Handle->Init.Direction = DMA_MEMORY_TO_PERIPH;
  901. DMA_Handle->Init.Mode = DMA_NORMAL;
  902. }
  903. DMA_Handle->Init.Priority = DMA_PRIORITY_MEDIUM;
  904. #if defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32MP1)
  905. DMA_Handle->Init.FIFOMode = DMA_FIFOMODE_DISABLE;
  906. #endif
  907. if (HAL_DMA_DeInit(DMA_Handle) != HAL_OK)
  908. {
  909. RT_ASSERT(0);
  910. }
  911. if (HAL_DMA_Init(DMA_Handle) != HAL_OK)
  912. {
  913. RT_ASSERT(0);
  914. }
  915. /* enable interrupt */
  916. if (flag == RT_DEVICE_FLAG_DMA_RX)
  917. {
  918. rx_fifo = (struct rt_serial_rx_fifo *)serial->serial_rx;
  919. /* Start DMA transfer */
  920. if (HAL_UART_Receive_DMA(&(uart->handle), rx_fifo->buffer, serial->config.bufsz) != HAL_OK)
  921. {
  922. /* Transfer error in reception process */
  923. RT_ASSERT(0);
  924. }
  925. CLEAR_BIT(uart->handle.Instance->CR3, USART_CR3_EIE);
  926. __HAL_UART_ENABLE_IT(&(uart->handle), UART_IT_IDLE);
  927. }
  928. /* DMA irq should set in DMA TX mode, or HAL_UART_TxCpltCallback function will not be called */
  929. HAL_NVIC_SetPriority(dma_config->dma_irq, 0, 0);
  930. HAL_NVIC_EnableIRQ(dma_config->dma_irq);
  931. HAL_NVIC_SetPriority(uart->config->irq_type, 1, 0);
  932. HAL_NVIC_EnableIRQ(uart->config->irq_type);
  933. LOG_D("%s dma %s instance: %x", uart->config->name, flag == RT_DEVICE_FLAG_DMA_RX ? "RX" : "TX", DMA_Handle->Instance);
  934. LOG_D("%s dma config done", uart->config->name);
  935. }
  936. /**
  937. * @brief UART error callbacks
  938. * @param huart: UART handle
  939. * @note This example shows a simple way to report transfer error, and you can
  940. * add your own implementation.
  941. * @retval None
  942. */
  943. void HAL_UART_ErrorCallback(UART_HandleTypeDef *huart)
  944. {
  945. RT_ASSERT(huart != NULL);
  946. struct stm32_uart *uart = (struct stm32_uart *)huart;
  947. LOG_D("%s: %s %d\n", __FUNCTION__, uart->config->name, huart->ErrorCode);
  948. UNUSED(uart);
  949. }
  950. /**
  951. * @brief Rx Transfer completed callback
  952. * @param huart: UART handle
  953. * @note This example shows a simple way to report end of DMA Rx transfer, and
  954. * you can add your own implementation.
  955. * @retval None
  956. */
  957. void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
  958. {
  959. struct stm32_uart *uart;
  960. RT_ASSERT(huart != NULL);
  961. uart = (struct stm32_uart *)huart;
  962. dma_isr(&uart->serial);
  963. }
  964. /**
  965. * @brief Rx Half transfer completed callback
  966. * @param huart: UART handle
  967. * @note This example shows a simple way to report end of DMA Rx Half transfer,
  968. * and you can add your own implementation.
  969. * @retval None
  970. */
  971. void HAL_UART_RxHalfCpltCallback(UART_HandleTypeDef *huart)
  972. {
  973. struct stm32_uart *uart;
  974. RT_ASSERT(huart != NULL);
  975. uart = (struct stm32_uart *)huart;
  976. dma_isr(&uart->serial);
  977. }
  978. static void _dma_tx_complete(struct rt_serial_device *serial)
  979. {
  980. struct stm32_uart *uart;
  981. rt_size_t trans_total_index;
  982. rt_base_t level;
  983. RT_ASSERT(serial != RT_NULL);
  984. uart = rt_container_of(serial, struct stm32_uart, serial);
  985. level = rt_hw_interrupt_disable();
  986. trans_total_index = __HAL_DMA_GET_COUNTER(&(uart->dma_tx.handle));
  987. rt_hw_interrupt_enable(level);
  988. if (trans_total_index == 0)
  989. {
  990. rt_hw_serial_isr(serial, RT_SERIAL_EVENT_TX_DMADONE);
  991. }
  992. }
  993. /**
  994. * @brief HAL_UART_TxCpltCallback
  995. * @param huart: UART handle
  996. * @note This callback can be called by two functions, first in UART_EndTransmit_IT when
  997. * UART Tx complete and second in UART_DMATransmitCplt function in DMA Circular mode.
  998. * @retval None
  999. */
  1000. void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart)
  1001. {
  1002. struct stm32_uart *uart;
  1003. RT_ASSERT(huart != NULL);
  1004. uart = (struct stm32_uart *)huart;
  1005. _dma_tx_complete(&uart->serial);
  1006. }
  1007. #endif /* RT_SERIAL_USING_DMA */
  1008. static const struct rt_uart_ops stm32_uart_ops =
  1009. {
  1010. .configure = stm32_configure,
  1011. .control = stm32_control,
  1012. .putc = stm32_putc,
  1013. .getc = stm32_getc,
  1014. .dma_transmit = stm32_dma_transmit
  1015. };
  1016. int rt_hw_usart_init(void)
  1017. {
  1018. struct serial_configure config = RT_SERIAL_CONFIG_DEFAULT;
  1019. rt_err_t result = 0;
  1020. stm32_uart_get_dma_config();
  1021. for (rt_size_t i = 0; i < sizeof(uart_obj) / sizeof(struct stm32_uart); i++)
  1022. {
  1023. /* init UART object */
  1024. uart_obj[i].config = &uart_config[i];
  1025. uart_obj[i].serial.ops = &stm32_uart_ops;
  1026. uart_obj[i].serial.config = config;
  1027. /* register UART device */
  1028. result = rt_hw_serial_register(&uart_obj[i].serial, uart_obj[i].config->name,
  1029. RT_DEVICE_FLAG_RDWR
  1030. | RT_DEVICE_FLAG_INT_RX
  1031. | RT_DEVICE_FLAG_INT_TX
  1032. | uart_obj[i].uart_dma_flag
  1033. , NULL);
  1034. RT_ASSERT(result == RT_EOK);
  1035. }
  1036. return result;
  1037. }
  1038. #endif /* RT_USING_SERIAL */