drv_pwm.c 9.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335
  1. /*
  2. * Copyright (c) 2006-2021, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2021-11-11 breo.com first version
  9. */
  10. #include <board.h>
  11. #include "drv_pwm.h"
  12. #ifdef RT_USING_PWM
  13. #if !defined(BSP_USING_TIM1_CH1) && !defined(BSP_USING_TIM1_CH2) && \
  14. !defined(BSP_USING_TIM1_CH3) && !defined(BSP_USING_TIM1_CH4) && \
  15. !defined(BSP_USING_TIM2_CH1) && !defined(BSP_USING_TIM2_CH2) && \
  16. !defined(BSP_USING_TIM2_CH3) && !defined(BSP_USING_TIM2_CH4) && \
  17. !defined(BSP_USING_TIM3_CH1) && !defined(BSP_USING_TIM3_CH2) && \
  18. !defined(BSP_USING_TIM3_CH3) && !defined(BSP_USING_TIM3_CH4) && \
  19. !defined(BSP_USING_TIM4_CH1) && !defined(BSP_USING_TIM4_CH2) && \
  20. !defined(BSP_USING_TIM4_CH3) && !defined(BSP_USING_TIM4_CH4) && \
  21. !defined(BSP_USING_TIM5_CH1) && !defined(BSP_USING_TIM5_CH2) && \
  22. !defined(BSP_USING_TIM5_CH3) && !defined(BSP_USING_TIM5_CH4) && \
  23. !defined(BSP_USING_TIM8_CH1) && !defined(BSP_USING_TIM8_CH2) && \
  24. !defined(BSP_USING_TIM8_CH3) && !defined(BSP_USING_TIM8_CH4)
  25. #error "Please define at least one BSP_USING_TIMx_CHx"
  26. #endif
  27. #endif /* RT_USING_PWM */
  28. #define MAX_PERIOD 65535
  29. #ifdef BSP_USING_PWM
  30. struct n32_pwm
  31. {
  32. TIM_Module *tim_handle;
  33. const char *name;
  34. struct rt_device_pwm pwm_device;
  35. int8_t tim_en;
  36. uint8_t ch_en;
  37. uint32_t period;
  38. uint32_t psc;
  39. };
  40. static struct n32_pwm n32_pwm_obj[] =
  41. {
  42. #if defined(BSP_USING_TIM1_CH1) || defined(BSP_USING_TIM1_CH2) || \
  43. defined(BSP_USING_TIM1_CH3) || defined(BSP_USING_TIM1_CH4)
  44. {
  45. .tim_handle = TIM1,
  46. .name = "tim1pwm",
  47. },
  48. #endif
  49. #if defined(BSP_USING_TIM2_CH1) || defined(BSP_USING_TIM2_CH2) || \
  50. defined(BSP_USING_TIM2_CH3) || defined(BSP_USING_TIM2_CH4)
  51. {
  52. .tim_handle = TIM2,
  53. .name = "tim2pwm",
  54. },
  55. #endif
  56. #if defined(BSP_USING_TIM3_CH1) || defined(BSP_USING_TIM3_CH2) || \
  57. defined(BSP_USING_TIM3_CH3) || defined(BSP_USING_TIM3_CH4)
  58. {
  59. .tim_handle = TIM3,
  60. .name = "tim3pwm",
  61. },
  62. #endif
  63. #if defined(BSP_USING_TIM4_CH1) || defined(BSP_USING_TIM4_CH2) || \
  64. defined(BSP_USING_TIM4_CH3) || defined(BSP_USING_TIM4_CH4)
  65. {
  66. .tim_handle = TIM4,
  67. .name = "tim4pwm",
  68. },
  69. #endif
  70. #if defined(BSP_USING_TIM5_CH1) || defined(BSP_USING_TIM5_CH2) || \
  71. defined(BSP_USING_TIM5_CH3) || defined(BSP_USING_TIM5_CH4)
  72. {
  73. .tim_handle = TIM5,
  74. .name = "tim5pwm",
  75. },
  76. #endif
  77. #if defined(BSP_USING_TIM8_CH1) || defined(BSP_USING_TIM8_CH2) || \
  78. defined(BSP_USING_TIM8_CH3) || defined(BSP_USING_TIM8_CH4)
  79. {
  80. .tim_handle = TIM8,
  81. .name = "tim8pwm",
  82. }
  83. #endif
  84. };
  85. static rt_err_t drv_pwm_control(struct rt_device_pwm *device, int cmd, void *arg);
  86. static struct rt_pwm_ops drv_ops =
  87. {
  88. drv_pwm_control
  89. };
  90. static rt_err_t drv_pwm_enable(struct n32_pwm *pwm_dev, struct rt_pwm_configuration *configuration, rt_bool_t enable)
  91. {
  92. /* Get the value of channel */
  93. rt_uint32_t channel = configuration->channel;
  94. TIM_Module *TIMx = pwm_dev->tim_handle;
  95. if (enable)
  96. {
  97. pwm_dev->ch_en |= 0x1 << channel;
  98. }
  99. else
  100. {
  101. pwm_dev->ch_en &= ~(0x1 << channel);
  102. }
  103. if (enable)
  104. {
  105. if (channel == 1)
  106. {
  107. TIM_EnableCapCmpCh(TIMx, TIM_CH_1, TIM_CAP_CMP_ENABLE);
  108. }
  109. else if (channel == 2)
  110. {
  111. TIM_EnableCapCmpCh(TIMx, TIM_CH_2, TIM_CAP_CMP_ENABLE);
  112. }
  113. else if (channel == 3)
  114. {
  115. TIM_EnableCapCmpCh(TIMx, TIM_CH_3, TIM_CAP_CMP_ENABLE);
  116. }
  117. else if (channel == 4)
  118. {
  119. TIM_EnableCapCmpCh(TIMx, TIM_CH_4, TIM_CAP_CMP_ENABLE);
  120. }
  121. }
  122. else
  123. {
  124. if (channel == 1)
  125. {
  126. TIM_EnableCapCmpCh(TIMx, TIM_CH_1, TIM_CAP_CMP_DISABLE);
  127. }
  128. else if (channel == 2)
  129. {
  130. TIM_EnableCapCmpCh(TIMx, TIM_CH_2, TIM_CAP_CMP_DISABLE);
  131. }
  132. else if (channel == 3)
  133. {
  134. TIM_EnableCapCmpCh(TIMx, TIM_CH_3, TIM_CAP_CMP_DISABLE);
  135. }
  136. else if (channel == 4)
  137. {
  138. TIM_EnableCapCmpCh(TIMx, TIM_CH_4, TIM_CAP_CMP_DISABLE);
  139. }
  140. }
  141. if (pwm_dev->ch_en)
  142. {
  143. pwm_dev->tim_en = 0x1;
  144. TIM_Enable(TIMx, ENABLE);
  145. }
  146. else
  147. {
  148. pwm_dev->tim_en = 0x0;
  149. TIM_Enable(TIMx, DISABLE);
  150. }
  151. return RT_EOK;
  152. }
  153. static rt_err_t drv_pwm_get(struct n32_pwm *pwm_dev, struct rt_pwm_configuration *configuration)
  154. {
  155. RCC_ClocksType RCC_Clockstruct;
  156. rt_uint32_t ar, div, cc1, cc2, cc3, cc4;
  157. rt_uint64_t tim_clock;
  158. rt_uint32_t channel = configuration->channel;
  159. TIM_Module *TIMx = pwm_dev->tim_handle;
  160. ar = TIMx->AR;
  161. div = TIMx->PSC;
  162. cc1 = TIMx->CCDAT1;
  163. cc2 = TIMx->CCDAT2;
  164. cc3 = TIMx->CCDAT3;
  165. cc4 = TIMx->CCDAT4;
  166. RCC_GetClocksFreqValue(&RCC_Clockstruct);
  167. tim_clock = RCC_Clockstruct.Pclk2Freq;
  168. /* Convert nanosecond to frequency and duty cycle. */
  169. tim_clock /= 1000000UL;
  170. configuration->period = (ar + 1) * (div + 1) * 1000UL / tim_clock;
  171. if (channel == 1)
  172. configuration->pulse = (cc1 + 1) * (div + 1) * 1000UL / tim_clock;
  173. if (channel == 2)
  174. configuration->pulse = (cc2 + 1) * (div + 1) * 1000UL / tim_clock;
  175. if (channel == 3)
  176. configuration->pulse = (cc3 + 1) * (div + 1) * 1000UL / tim_clock;
  177. if (channel == 4)
  178. configuration->pulse = (cc4 + 1) * (div + 1) * 1000UL / tim_clock;
  179. return RT_EOK;
  180. }
  181. static rt_err_t drv_pwm_set(struct n32_pwm *pwm_dev, struct rt_pwm_configuration *configuration)
  182. {
  183. TIM_Module *TIMx = pwm_dev->tim_handle;
  184. rt_uint32_t channel = configuration->channel;
  185. /* Init timer pin and enable clock */
  186. void n32_msp_tim_init(void *Instance);
  187. n32_msp_tim_init(TIMx);
  188. RCC_ClocksType RCC_Clock;
  189. RCC_GetClocksFreqValue(&RCC_Clock);
  190. rt_uint64_t input_clock;
  191. if ((TIM1 == TIMx) || (TIM8 == TIMx))
  192. {
  193. RCC_ConfigTim18Clk(RCC_TIM18CLK_SRC_SYSCLK);
  194. input_clock = RCC_Clock.SysclkFreq;
  195. }
  196. else
  197. {
  198. if (1 == (RCC_Clock.HclkFreq / RCC_Clock.Pclk1Freq))
  199. input_clock = RCC_Clock.Pclk1Freq;
  200. else
  201. input_clock = RCC_Clock.Pclk1Freq * 2;
  202. }
  203. /* Convert nanosecond to frequency and duty cycle. */
  204. rt_uint32_t period = (unsigned long long)configuration->period ;
  205. rt_uint64_t psc = period / MAX_PERIOD + 1;
  206. period = period / psc;
  207. psc = psc * (input_clock / 1000000);
  208. if ((pwm_dev->period != period) || (pwm_dev->psc != psc))
  209. {
  210. /* TIMe base configuration */
  211. TIM_TimeBaseInitType TIM_TIMeBaseStructure;
  212. TIM_InitTimBaseStruct(&TIM_TIMeBaseStructure);
  213. TIM_TIMeBaseStructure.Period = period;
  214. TIM_TIMeBaseStructure.Prescaler = psc - 1;
  215. TIM_TIMeBaseStructure.ClkDiv = 0;
  216. TIM_TIMeBaseStructure.CntMode = TIM_CNT_MODE_UP;
  217. TIM_InitTimeBase(TIMx, &TIM_TIMeBaseStructure);
  218. }
  219. rt_uint32_t pulse = (unsigned long long)configuration->pulse;
  220. /* PWM1 Mode configuration: Channel1 */
  221. OCInitType TIM_OCInitStructure;
  222. TIM_InitOcStruct(&TIM_OCInitStructure);
  223. TIM_OCInitStructure.OcMode = TIM_OCMODE_PWM1;
  224. TIM_OCInitStructure.OutputState = TIM_OUTPUT_STATE_ENABLE;
  225. TIM_OCInitStructure.Pulse = pulse;
  226. TIM_OCInitStructure.OcPolarity = TIM_OC_POLARITY_HIGH;
  227. if (channel == 1)
  228. {
  229. TIM_InitOc1(TIMx, &TIM_OCInitStructure);
  230. TIM_ConfigOc1Preload(TIMx, TIM_OC_PRE_LOAD_ENABLE);
  231. if (!(pwm_dev->ch_en & (0x1 << channel)))
  232. TIM_EnableCapCmpCh(TIMx, TIM_CH_1, TIM_CAP_CMP_DISABLE);
  233. }
  234. else if (channel == 2)
  235. {
  236. TIM_InitOc2(TIMx, &TIM_OCInitStructure);
  237. TIM_ConfigOc2Preload(TIMx, TIM_OC_PRE_LOAD_ENABLE);
  238. if (!(pwm_dev->ch_en & (0x1 << channel)))
  239. TIM_EnableCapCmpCh(TIMx, TIM_CH_2, TIM_CAP_CMP_DISABLE);
  240. }
  241. else if (channel == 3)
  242. {
  243. TIM_InitOc3(TIMx, &TIM_OCInitStructure);
  244. TIM_ConfigOc3Preload(TIMx, TIM_OC_PRE_LOAD_ENABLE);
  245. if (!(pwm_dev->ch_en & (0x1 << channel)))
  246. TIM_EnableCapCmpCh(TIMx, TIM_CH_3, TIM_CAP_CMP_DISABLE);
  247. }
  248. else if (channel == 4)
  249. {
  250. TIM_InitOc4(TIMx, &TIM_OCInitStructure);
  251. TIM_ConfigOc4Preload(TIMx, TIM_OC_PRE_LOAD_ENABLE);
  252. if (!(pwm_dev->ch_en & (0x1 << channel)))
  253. TIM_EnableCapCmpCh(TIMx, TIM_CH_4, TIM_CAP_CMP_DISABLE);
  254. }
  255. TIM_ConfigArPreload(TIMx, ENABLE);
  256. TIM_EnableCtrlPwmOutputs(TIMx, ENABLE);
  257. return RT_EOK;
  258. }
  259. static rt_err_t drv_pwm_control(struct rt_device_pwm *device, int cmd, void *arg)
  260. {
  261. struct rt_pwm_configuration *configuration = (struct rt_pwm_configuration *)arg;
  262. struct n32_pwm *pwm_dev = (struct n32_pwm *)(device->parent.user_data);
  263. switch (cmd)
  264. {
  265. case PWM_CMD_ENABLE:
  266. return drv_pwm_enable(pwm_dev, configuration, RT_TRUE);
  267. case PWM_CMD_DISABLE:
  268. return drv_pwm_enable(pwm_dev, configuration, RT_FALSE);
  269. case PWM_CMD_SET:
  270. return drv_pwm_set(pwm_dev, configuration);
  271. case PWM_CMD_GET:
  272. return drv_pwm_get(pwm_dev, configuration);
  273. default:
  274. return RT_EINVAL;
  275. }
  276. }
  277. static int rt_hw_pwm_init(void)
  278. {
  279. int i = 0;
  280. int result = RT_EOK;
  281. for (i = 0; i < sizeof(n32_pwm_obj) / sizeof(n32_pwm_obj[0]); i++)
  282. {
  283. if (rt_device_pwm_register(&n32_pwm_obj[i].pwm_device,
  284. n32_pwm_obj[i].name, &drv_ops, &(n32_pwm_obj[i])) == RT_EOK)
  285. {
  286. }
  287. else
  288. {
  289. result = -RT_ERROR;
  290. }
  291. }
  292. return result;
  293. }
  294. INIT_BOARD_EXPORT(rt_hw_pwm_init);
  295. #endif