memheap.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518
  1. /*
  2. * File : memheap.c
  3. * This file is part of RT-Thread RTOS
  4. * COPYRIGHT (C) 2012, RT-Thread Development Team
  5. *
  6. * The license and distribution terms for this file may be
  7. * found in the file LICENSE in this distribution or at
  8. * http://www.rt-thread.org/license/LICENSE
  9. *
  10. * Change Logs:
  11. * Date Author Notes
  12. * 2012-04-10 Bernard first implementation
  13. * 2012-10-16 Bernard add the mutex lock for heap object.
  14. * 2012-12-29 Bernard memheap can be used as system heap.
  15. * change mutex lock to semaphore lock.
  16. * 2013-04-10 Bernard add rt_memheap_realloc function.
  17. */
  18. #include <rthw.h>
  19. #include <rtthread.h>
  20. #ifdef RT_USING_MEMHEAP
  21. /* dynamic pool magic and mask */
  22. #define RT_MEMHEAP_MAGIC 0x1ea01ea0
  23. #define RT_MEMHEAP_MASK 0xfffffffe
  24. #define RT_MEMHEAP_USED 0x01
  25. #define RT_MEMHEAP_FREED 0x00
  26. #define RT_MEMHEAP_IS_USED(i) ((i)->magic & RT_MEMHEAP_USED)
  27. #define RT_MEMHEAP_MINIALLOC 12
  28. #define RT_MEMHEAP_SIZE RT_ALIGN(sizeof(struct rt_memheap_item), RT_ALIGN_SIZE)
  29. #define MEMITEM_SIZE(item) ((rt_uint32_t)item->next - (rt_uint32_t)item - RT_MEMHEAP_SIZE)
  30. /*
  31. * The initialized memory pool will be:
  32. * +-----------------------------------+--------------------------+
  33. * | whole freed memory block | Used Memory Block Tailer |
  34. * +-----------------------------------+--------------------------+
  35. *
  36. * block_list --> whole freed memory block
  37. *
  38. * The length of Used Memory Block Tailer is 0,
  39. * which is prevents block merging across list
  40. */
  41. rt_err_t rt_memheap_init(struct rt_memheap *memheap,
  42. const char *name,
  43. void *start_addr,
  44. rt_uint32_t size)
  45. {
  46. struct rt_memheap_item *item;
  47. RT_ASSERT(memheap != RT_NULL);
  48. /* initialize pool object */
  49. rt_object_init(&(memheap->parent), RT_Object_Class_MemHeap, name);
  50. memheap->start_addr = start_addr;
  51. memheap->pool_size = RT_ALIGN_DOWN(size, RT_ALIGN_SIZE);
  52. memheap->available_size = memheap->pool_size - (2 * RT_MEMHEAP_SIZE);
  53. memheap->max_used_size = memheap->pool_size - memheap->available_size;
  54. /* initialize the free list header */
  55. item = &(memheap->free_header);
  56. item->magic = RT_MEMHEAP_MAGIC;
  57. item->pool_ptr = memheap;
  58. item->next = RT_NULL;
  59. item->prev = RT_NULL;
  60. item->next_free = item;
  61. item->prev_free = item;
  62. /* set the free list to free list header */
  63. memheap->free_list = item;
  64. /* initialize the first big memory block */
  65. item = (struct rt_memheap_item *)start_addr;
  66. item->magic = RT_MEMHEAP_MAGIC;
  67. item->pool_ptr = memheap;
  68. item->next = RT_NULL;
  69. item->prev = RT_NULL;
  70. item->next_free = item;
  71. item->prev_free = item;
  72. item->next = (struct rt_memheap_item *)
  73. ((rt_uint8_t *)item + memheap->available_size + RT_MEMHEAP_SIZE);
  74. item->prev = item->next;
  75. /* block list header */
  76. memheap->block_list = item;
  77. /* place the big memory block to free list */
  78. item->next_free = memheap->free_list->next_free;
  79. item->prev_free = memheap->free_list;
  80. memheap->free_list->next_free->prev_free = item;
  81. memheap->free_list->next_free = item;
  82. /* move to the end of memory pool to build a small tailer block,
  83. * which prevents block merging
  84. */
  85. item = item->next;
  86. /* it's a used memory block */
  87. item->magic = RT_MEMHEAP_MAGIC | RT_MEMHEAP_USED;
  88. item->pool_ptr = memheap;
  89. item->next = (struct rt_memheap_item *)start_addr;
  90. item->prev = (struct rt_memheap_item *)start_addr;
  91. /* not in free list */
  92. item->next_free = item->prev_free = RT_NULL;
  93. /* initialize semaphore lock */
  94. rt_sem_init(&(memheap->lock), name, 1, RT_IPC_FLAG_FIFO);
  95. RT_DEBUG_LOG(RT_DEBUG_MEMHEAP,
  96. ("memory heap: start addr 0x%08x, size %d, free list header 0x%08x",
  97. start_addr, size, &(memheap->free_header)));
  98. return RT_EOK;
  99. }
  100. RTM_EXPORT(rt_memheap_init);
  101. rt_err_t rt_memheap_detach(struct rt_memheap *heap)
  102. {
  103. RT_ASSERT(heap);
  104. rt_object_detach(&(heap->lock.parent.parent));
  105. rt_object_detach(&(heap->parent));
  106. /* Return a successful completion. */
  107. return RT_EOK;
  108. }
  109. RTM_EXPORT(rt_memheap_detach);
  110. void *rt_memheap_alloc(struct rt_memheap *heap, rt_uint32_t size)
  111. {
  112. rt_err_t result;
  113. rt_uint32_t free_size;
  114. struct rt_memheap_item *header_ptr;
  115. RT_ASSERT(heap != RT_NULL);
  116. /* align allocated size */
  117. size = RT_ALIGN(size, RT_ALIGN_SIZE);
  118. if (size < RT_MEMHEAP_MINIALLOC)
  119. size = RT_MEMHEAP_MINIALLOC;
  120. RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("allocate %d on heap:%8.*s",
  121. size, RT_NAME_MAX, heap->parent.name));
  122. if (size < heap->available_size)
  123. {
  124. /* search on free list */
  125. free_size = 0;
  126. /* lock memheap */
  127. result = rt_sem_take(&(heap->lock), RT_WAITING_FOREVER);
  128. if (result != RT_EOK)
  129. {
  130. rt_set_errno(result);
  131. return RT_NULL;
  132. }
  133. /* get the first free memory block */
  134. header_ptr = heap->free_list->next_free;
  135. while (header_ptr != heap->free_list && free_size < size)
  136. {
  137. /* get current freed memory block size */
  138. free_size = (rt_uint32_t)(header_ptr->next) -
  139. (rt_uint32_t)header_ptr -
  140. RT_MEMHEAP_SIZE;
  141. if (free_size < size)
  142. {
  143. /* move to next free memory block */
  144. header_ptr = header_ptr->next_free;
  145. }
  146. }
  147. /* determine if the memory is available. */
  148. if (free_size >= size)
  149. {
  150. /* a block that satisfies the request has been found. */
  151. /* determine if the block needs to be split. */
  152. if (free_size >= (size + RT_MEMHEAP_SIZE + RT_MEMHEAP_MINIALLOC))
  153. {
  154. struct rt_memheap_item *new_ptr;
  155. /* split the block. */
  156. new_ptr = (struct rt_memheap_item *)
  157. (((rt_uint8_t *)header_ptr) + size + RT_MEMHEAP_SIZE);
  158. RT_DEBUG_LOG(RT_DEBUG_MEMHEAP,
  159. ("split: block[0x%08x] nextm[0x%08x] prevm[0x%08x] to new[0x%08x]",
  160. header_ptr,
  161. header_ptr->next,
  162. header_ptr->prev,
  163. new_ptr));
  164. /* mark the new block as a memory block and freed. */
  165. new_ptr->magic = RT_MEMHEAP_MAGIC;
  166. /* put the pool pointer into the new block. */
  167. new_ptr->pool_ptr = heap;
  168. /* break down the block list */
  169. new_ptr->prev = header_ptr;
  170. new_ptr->next = header_ptr->next;
  171. header_ptr->next->prev = new_ptr;
  172. header_ptr->next = new_ptr;
  173. /* remove header ptr from free list */
  174. header_ptr->next_free->prev_free = header_ptr->prev_free;
  175. header_ptr->prev_free->next_free = header_ptr->next_free;
  176. header_ptr->next_free = RT_NULL;
  177. header_ptr->prev_free = RT_NULL;
  178. /* insert new_ptr to free list */
  179. new_ptr->next_free = heap->free_list->next_free;
  180. new_ptr->prev_free = heap->free_list;
  181. heap->free_list->next_free->prev_free = new_ptr;
  182. heap->free_list->next_free = new_ptr;
  183. RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("new ptr: next_free 0x%08x, prev_free 0x%08x",
  184. new_ptr->next_free,
  185. new_ptr->prev_free));
  186. /* decrement the available byte count. */
  187. heap->available_size = heap->available_size -
  188. size -
  189. RT_MEMHEAP_SIZE;
  190. if (heap->pool_size - heap->available_size > heap->max_used_size)
  191. heap->max_used_size = heap->pool_size - heap->available_size;
  192. }
  193. else
  194. {
  195. /* decrement the entire free size from the available bytes count. */
  196. heap->available_size = heap->available_size - free_size;
  197. if (heap->pool_size - heap->available_size > heap->max_used_size)
  198. heap->max_used_size = heap->pool_size - heap->available_size;
  199. /* remove header_ptr from free list */
  200. RT_DEBUG_LOG(RT_DEBUG_MEMHEAP,
  201. ("one block: block[0x%08x], next_free 0x%08x, prev_free 0x%08x",
  202. header_ptr,
  203. header_ptr->next_free,
  204. header_ptr->prev_free));
  205. header_ptr->next_free->prev_free = header_ptr->prev_free;
  206. header_ptr->prev_free->next_free = header_ptr->next_free;
  207. header_ptr->next_free = RT_NULL;
  208. header_ptr->prev_free = RT_NULL;
  209. }
  210. /* Mark the allocated block as not available. */
  211. header_ptr->magic |= RT_MEMHEAP_USED;
  212. /* release lock */
  213. rt_sem_release(&(heap->lock));
  214. /* Return a memory address to the caller. */
  215. RT_DEBUG_LOG(RT_DEBUG_MEMHEAP,
  216. ("alloc mem: memory[0x%08x], heap[0x%08x], size: %d",
  217. (void *)((rt_uint8_t *)header_ptr + RT_MEMHEAP_SIZE),
  218. header_ptr,
  219. size);
  220. return (void *)((rt_uint8_t *)header_ptr + RT_MEMHEAP_SIZE));
  221. }
  222. /* release lock */
  223. rt_sem_release(&(heap->lock));
  224. }
  225. RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("allocate memory: failed\n"));
  226. /* Return the completion status. */
  227. return RT_NULL;
  228. }
  229. RTM_EXPORT(rt_memheap_alloc);
  230. void *rt_memheap_realloc(struct rt_memheap* heap, void* ptr, rt_size_t newsize)
  231. {
  232. void* new_ptr;
  233. if (newsize == 0)
  234. {
  235. rt_memheap_free(ptr);
  236. }
  237. if (ptr == RT_NULL)
  238. {
  239. return rt_memheap_alloc(heap, newsize);
  240. }
  241. new_ptr = rt_memheap_alloc(heap, newsize);
  242. if (new_ptr == RT_NULL) return RT_NULL;
  243. rt_memcpy(new_ptr, ptr, newsize);
  244. return new_ptr;
  245. }
  246. RTM_EXPORT(rt_memheap_realloc);
  247. void rt_memheap_free(void *ptr)
  248. {
  249. rt_err_t result;
  250. struct rt_memheap *heap;
  251. struct rt_memheap_item *header_ptr, *new_ptr;
  252. rt_uint32_t insert_header;
  253. /* set initial status as OK */
  254. insert_header = 1;
  255. new_ptr = RT_NULL;
  256. header_ptr = (struct rt_memheap_item *)((rt_uint8_t *)ptr -
  257. RT_MEMHEAP_SIZE);
  258. RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("free memory: memory[0x%08x], block[0x%08x]",
  259. ptr, header_ptr));
  260. /* check magic */
  261. RT_ASSERT((header_ptr->magic & RT_MEMHEAP_MASK) == RT_MEMHEAP_MAGIC);
  262. /* get pool ptr */
  263. heap = header_ptr->pool_ptr;
  264. /* lock memheap */
  265. result = rt_sem_take(&(heap->lock), RT_WAITING_FOREVER);
  266. if (result != RT_EOK)
  267. {
  268. rt_set_errno(result);
  269. return ;
  270. }
  271. /* Mark the memory as available. */
  272. header_ptr->magic &= ~RT_MEMHEAP_USED;
  273. /* Adjust the available number of bytes. */
  274. heap->available_size = heap->available_size + MEMITEM_SIZE(header_ptr);
  275. /* Determine if the block can be merged with the previous neighbor. */
  276. if (!RT_MEMHEAP_IS_USED(header_ptr->prev))
  277. {
  278. RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("merge: left node 0x%08x",
  279. header_ptr->prev));
  280. /* adjust the available number of bytes. */
  281. heap->available_size = heap->available_size + RT_MEMHEAP_SIZE;
  282. /* yes, merge block with previous neighbor. */
  283. (header_ptr->prev)->next = header_ptr->next;
  284. (header_ptr->next)->prev = header_ptr->prev;
  285. /* move header pointer to previous. */
  286. header_ptr = header_ptr->prev;
  287. /* don't insert header to free list */
  288. insert_header = 0;
  289. }
  290. /* determine if the block can be merged with the next neighbor. */
  291. if (!RT_MEMHEAP_IS_USED(header_ptr->next))
  292. {
  293. /* adjust the available number of bytes. */
  294. heap->available_size = heap->available_size + RT_MEMHEAP_SIZE;
  295. /* merge block with next neighbor. */
  296. new_ptr = header_ptr->next;
  297. RT_DEBUG_LOG(RT_DEBUG_MEMHEAP,
  298. ("merge: right node 0x%08x, next_free 0x%08x, prev_free 0x%08x",
  299. new_ptr, new_ptr->next_free, new_ptr->prev_free));
  300. new_ptr->next->prev = header_ptr;
  301. header_ptr->next = new_ptr->next;
  302. /* remove new ptr from free list */
  303. new_ptr->next_free->prev_free = new_ptr->prev_free;
  304. new_ptr->prev_free->next_free = new_ptr->next_free;
  305. }
  306. if (insert_header)
  307. {
  308. /* no left merge, insert to free list */
  309. header_ptr->next_free = heap->free_list->next_free;
  310. header_ptr->prev_free = heap->free_list;
  311. heap->free_list->next_free->prev_free = header_ptr;
  312. heap->free_list->next_free = header_ptr;
  313. RT_DEBUG_LOG(RT_DEBUG_MEMHEAP,
  314. ("insert to free list: next_free 0x%08x, prev_free 0x%08x",
  315. header_ptr->next_free, header_ptr->prev_free));
  316. }
  317. /* release lock */
  318. rt_sem_release(&(heap->lock));
  319. }
  320. RTM_EXPORT(rt_memheap_free);
  321. #ifdef RT_USING_MEMHEAP_AS_HEAP
  322. static struct rt_memheap _heap;
  323. void rt_system_heap_init(void *begin_addr, void *end_addr)
  324. {
  325. /* initialize a default heap in the system */
  326. rt_memheap_init(&_heap,
  327. "heap",
  328. begin_addr,
  329. (rt_uint32_t)end_addr - (rt_uint32_t)begin_addr);
  330. }
  331. void *rt_malloc(rt_size_t size)
  332. {
  333. void* ptr;
  334. /* try to allocate in system heap */
  335. ptr = rt_memheap_alloc(&_heap, size);
  336. if (ptr == RT_NULL)
  337. {
  338. struct rt_object *object;
  339. struct rt_list_node *node;
  340. struct rt_memheap *heap;
  341. struct rt_object_information *information;
  342. extern struct rt_object_information rt_object_container[];
  343. /* try to allocate on other memory heap */
  344. information = &rt_object_container[RT_Object_Class_MemHeap];
  345. for (node = information->object_list.next;
  346. node != &(information->object_list);
  347. node = node->next)
  348. {
  349. object = rt_list_entry(node, struct rt_object, list);
  350. heap = (struct rt_memheap *)object;
  351. /* not allocate in the default system heap */
  352. if (heap == &_heap)
  353. continue;
  354. ptr = rt_memheap_alloc(heap, size);
  355. if (ptr != RT_NULL)
  356. break;
  357. }
  358. }
  359. return ptr;
  360. }
  361. RTM_EXPORT(rt_malloc);
  362. void rt_free(void *rmem)
  363. {
  364. rt_memheap_free(rmem);
  365. }
  366. RTM_EXPORT(rt_free);
  367. void *rt_realloc(void *rmem, rt_size_t newsize)
  368. {
  369. rt_size_t size;
  370. void *nmem = RT_NULL;
  371. struct rt_memheap_item *header_ptr;
  372. RT_DEBUG_NOT_IN_INTERRUPT;
  373. /* alignment size */
  374. newsize = RT_ALIGN(newsize, RT_ALIGN_SIZE);
  375. /* allocate a memory */
  376. if (rmem == RT_NULL)
  377. {
  378. return rt_malloc(newsize);
  379. }
  380. /* release memory */
  381. if (newsize == 0)
  382. {
  383. rt_free(rmem);
  384. return RT_NULL;
  385. }
  386. /* get old memory item */
  387. header_ptr = (struct rt_memheap_item *)((rt_uint8_t *)rmem - RT_MEMHEAP_SIZE);
  388. size = MEMITEM_SIZE(header_ptr);
  389. /* re-allocate memory */
  390. if (newsize > size || newsize < size - RT_MEMHEAP_SIZE)
  391. {
  392. /* re-allocate a memory block */
  393. nmem = (void*)rt_malloc(newsize);
  394. if (nmem != RT_NULL)
  395. {
  396. rt_memcpy(nmem, rmem, size < newsize ? size : newsize);
  397. rt_free(rmem);
  398. }
  399. return nmem;
  400. }
  401. /* use the old memory block */
  402. return rmem;
  403. }
  404. RTM_EXPORT(rt_realloc);
  405. void *rt_calloc(rt_size_t count, rt_size_t size)
  406. {
  407. void *ptr;
  408. rt_size_t total_size;
  409. total_size = count * size;
  410. ptr = rt_malloc(total_size);
  411. if (ptr != RT_NULL)
  412. {
  413. /* clean memory */
  414. rt_memset(ptr, 0, total_size);
  415. }
  416. return ptr;
  417. }
  418. RTM_EXPORT(rt_calloc);
  419. #endif
  420. #endif