dm9000.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677
  1. #include <rtthread.h>
  2. #include "dm9000.h"
  3. #include <netif/ethernetif.h>
  4. #include "lwipopts.h"
  5. #include "stm32f10x.h"
  6. // #define DM9000_DEBUG 1
  7. #if ( DM9000_DEBUG == 1 )
  8. #define DM9000_TRACE rt_kprintf
  9. #else
  10. #define DM9000_TRACE(...)
  11. #endif
  12. /*
  13. * DM9000 interrupt line is connected to PF7
  14. */
  15. //--------------------------------------------------------
  16. #define DM9000_PHY 0x40 /* PHY address 0x01 */
  17. #define RST_1() GPIO_SetBits(GPIOE,GPIO_Pin_5)
  18. #define RST_0() GPIO_ResetBits(GPIOE,GPIO_Pin_5)
  19. #define MAX_ADDR_LEN 6
  20. enum DM9000_PHY_mode
  21. {
  22. DM9000_10MHD = 0, DM9000_100MHD = 1,
  23. DM9000_10MFD = 4, DM9000_100MFD = 5,
  24. DM9000_AUTO = 8, DM9000_1M_HPNA = 0x10
  25. };
  26. enum DM9000_TYPE
  27. {
  28. TYPE_DM9000E,
  29. TYPE_DM9000A,
  30. TYPE_DM9000B
  31. };
  32. struct rt_dm9000_eth
  33. {
  34. /* inherit from ethernet device */
  35. struct eth_device parent;
  36. enum DM9000_TYPE type;
  37. enum DM9000_PHY_mode mode;
  38. rt_uint8_t imr_all;
  39. rt_uint8_t packet_cnt; /* packet I or II */
  40. rt_uint16_t queue_packet_len; /* queued packet (packet II) */
  41. /* interface address info. */
  42. rt_uint8_t dev_addr[MAX_ADDR_LEN]; /* hw address */
  43. };
  44. static struct rt_dm9000_eth dm9000_device;
  45. static struct rt_semaphore sem_ack, sem_lock;
  46. void rt_dm9000_isr(void);
  47. static void delay_ms(rt_uint32_t ms)
  48. {
  49. rt_uint32_t len;
  50. for (; ms > 0; ms --)
  51. for (len = 0; len < 100; len++ );
  52. }
  53. /* Read a byte from I/O port */
  54. rt_inline rt_uint8_t dm9000_io_read(rt_uint16_t reg)
  55. {
  56. DM9000_IO = reg;
  57. return (rt_uint8_t) DM9000_DATA;
  58. }
  59. /* Write a byte to I/O port */
  60. rt_inline void dm9000_io_write(rt_uint16_t reg, rt_uint16_t value)
  61. {
  62. DM9000_IO = reg;
  63. DM9000_DATA = value;
  64. }
  65. /* Read a word from phyxcer */
  66. rt_inline rt_uint16_t phy_read(rt_uint16_t reg)
  67. {
  68. rt_uint16_t val;
  69. /* Fill the phyxcer register into REG_0C */
  70. dm9000_io_write(DM9000_EPAR, DM9000_PHY | reg);
  71. dm9000_io_write(DM9000_EPCR, 0xc); /* Issue phyxcer read command */
  72. delay_ms(100); /* Wait read complete */
  73. dm9000_io_write(DM9000_EPCR, 0x0); /* Clear phyxcer read command */
  74. val = (dm9000_io_read(DM9000_EPDRH) << 8) | dm9000_io_read(DM9000_EPDRL);
  75. return val;
  76. }
  77. /* Write a word to phyxcer */
  78. rt_inline void phy_write(rt_uint16_t reg, rt_uint16_t value)
  79. {
  80. /* Fill the phyxcer register into REG_0C */
  81. dm9000_io_write(DM9000_EPAR, DM9000_PHY | reg);
  82. /* Fill the written data into REG_0D & REG_0E */
  83. dm9000_io_write(DM9000_EPDRL, (value & 0xff));
  84. dm9000_io_write(DM9000_EPDRH, ((value >> 8) & 0xff));
  85. dm9000_io_write(DM9000_EPCR, 0xa); /* Issue phyxcer write command */
  86. delay_ms(500); /* Wait write complete */
  87. dm9000_io_write(DM9000_EPCR, 0x0); /* Clear phyxcer write command */
  88. }
  89. /* Set PHY operationg mode */
  90. rt_inline void phy_mode_set(rt_uint32_t media_mode)
  91. {
  92. rt_uint16_t phy_reg4 = 0x01e1, phy_reg0 = 0x1000;
  93. if (!(media_mode & DM9000_AUTO))
  94. {
  95. switch (media_mode)
  96. {
  97. case DM9000_10MHD:
  98. phy_reg4 = 0x21;
  99. phy_reg0 = 0x0000;
  100. break;
  101. case DM9000_10MFD:
  102. phy_reg4 = 0x41;
  103. phy_reg0 = 0x1100;
  104. break;
  105. case DM9000_100MHD:
  106. phy_reg4 = 0x81;
  107. phy_reg0 = 0x2000;
  108. break;
  109. case DM9000_100MFD:
  110. phy_reg4 = 0x101;
  111. phy_reg0 = 0x3100;
  112. break;
  113. }
  114. phy_write(4, phy_reg4); /* Set PHY media mode */
  115. phy_write(0, phy_reg0); /* Tmp */
  116. }
  117. dm9000_io_write(DM9000_GPCR, 0x01); /* Let GPIO0 output */
  118. dm9000_io_write(DM9000_GPR, 0x00); /* Enable PHY */
  119. }
  120. /* interrupt service routine */
  121. void rt_dm9000_isr()
  122. {
  123. rt_uint16_t int_status;
  124. rt_uint16_t last_io;
  125. last_io = DM9000_IO;
  126. /* Disable all interrupts */
  127. dm9000_io_write(DM9000_IMR, IMR_PAR);
  128. /* Got DM9000 interrupt status */
  129. int_status = dm9000_io_read(DM9000_ISR); /* Got ISR */
  130. dm9000_io_write(DM9000_ISR, int_status); /* Clear ISR status */
  131. DM9000_TRACE("dm9000 isr: int status %04x\n", int_status);
  132. /* receive overflow */
  133. if (int_status & ISR_ROS)
  134. {
  135. rt_kprintf("overflow\n");
  136. }
  137. if (int_status & ISR_ROOS)
  138. {
  139. rt_kprintf("overflow counter overflow\n");
  140. }
  141. /* Received the coming packet */
  142. if (int_status & ISR_PRS)
  143. {
  144. /* disable receive interrupt */
  145. dm9000_device.imr_all = IMR_PAR | IMR_PTM;
  146. /* a frame has been received */
  147. eth_device_ready(&(dm9000_device.parent));
  148. }
  149. /* Transmit Interrupt check */
  150. if (int_status & ISR_PTS)
  151. {
  152. /* transmit done */
  153. int tx_status = dm9000_io_read(DM9000_NSR); /* Got TX status */
  154. if (tx_status & (NSR_TX2END | NSR_TX1END))
  155. {
  156. dm9000_device.packet_cnt --;
  157. if (dm9000_device.packet_cnt > 0)
  158. {
  159. DM9000_TRACE("dm9000 isr: tx second packet\n");
  160. /* transmit packet II */
  161. /* Set TX length to DM9000 */
  162. dm9000_io_write(DM9000_TXPLL, dm9000_device.queue_packet_len & 0xff);
  163. dm9000_io_write(DM9000_TXPLH, (dm9000_device.queue_packet_len >> 8) & 0xff);
  164. /* Issue TX polling command */
  165. dm9000_io_write(DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */
  166. }
  167. /* One packet sent complete */
  168. rt_sem_release(&sem_ack);
  169. }
  170. }
  171. /* Re-enable interrupt mask */
  172. dm9000_io_write(DM9000_IMR, dm9000_device.imr_all);
  173. DM9000_IO = last_io;
  174. }
  175. /* RT-Thread Device Interface */
  176. /* initialize the interface */
  177. static rt_err_t rt_dm9000_init(rt_device_t dev)
  178. {
  179. int i, oft, lnk;
  180. rt_uint32_t value;
  181. /* RESET device */
  182. dm9000_io_write(DM9000_NCR, NCR_RST);
  183. delay_ms(1000); /* delay 1ms */
  184. /* identfy DM9000 */
  185. value = dm9000_io_read(DM9000_VIDL);
  186. value |= dm9000_io_read(DM9000_VIDH) << 8;
  187. value |= dm9000_io_read(DM9000_PIDL) << 16;
  188. value |= dm9000_io_read(DM9000_PIDH) << 24;
  189. if (value == DM9000_ID)
  190. {
  191. rt_kprintf("dm9000 id: 0x%x\n", value);
  192. }
  193. else
  194. {
  195. return -RT_ERROR;
  196. }
  197. /* GPIO0 on pre-activate PHY */
  198. dm9000_io_write(DM9000_GPR, 0x00); /* REG_1F bit0 activate phyxcer */
  199. dm9000_io_write(DM9000_GPCR, GPCR_GEP_CNTL); /* Let GPIO0 output */
  200. dm9000_io_write(DM9000_GPR, 0x00); /* Enable PHY */
  201. /* Set PHY */
  202. phy_mode_set(dm9000_device.mode);
  203. /* Program operating register */
  204. dm9000_io_write(DM9000_NCR, 0x0); /* only intern phy supported by now */
  205. dm9000_io_write(DM9000_TCR, 0); /* TX Polling clear */
  206. dm9000_io_write(DM9000_BPTR, 0x3f); /* Less 3Kb, 200us */
  207. dm9000_io_write(DM9000_FCTR, FCTR_HWOT(3) | FCTR_LWOT(8)); /* Flow Control : High/Low Water */
  208. dm9000_io_write(DM9000_FCR, 0x0); /* SH FIXME: This looks strange! Flow Control */
  209. dm9000_io_write(DM9000_SMCR, 0); /* Special Mode */
  210. dm9000_io_write(DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END); /* clear TX status */
  211. dm9000_io_write(DM9000_ISR, 0x0f); /* Clear interrupt status */
  212. dm9000_io_write(DM9000_TCR2, 0x80); /* Switch LED to mode 1 */
  213. /* set mac address */
  214. for (i = 0, oft = 0x10; i < 6; i++, oft++)
  215. dm9000_io_write(oft, dm9000_device.dev_addr[i]);
  216. /* set multicast address */
  217. for (i = 0, oft = 0x16; i < 8; i++, oft++)
  218. dm9000_io_write(oft, 0xff);
  219. /* Activate DM9000 */
  220. dm9000_io_write(DM9000_RCR, RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN); /* RX enable */
  221. dm9000_io_write(DM9000_IMR, IMR_PAR);
  222. if (dm9000_device.mode == DM9000_AUTO)
  223. {
  224. while (!(phy_read(1) & 0x20))
  225. {
  226. /* autonegation complete bit */
  227. rt_thread_delay(10);
  228. i++;
  229. if (i == 10000)
  230. {
  231. rt_kprintf("could not establish link\n");
  232. return 0;
  233. }
  234. }
  235. }
  236. /* see what we've got */
  237. lnk = phy_read(17) >> 12;
  238. rt_kprintf("operating at ");
  239. switch (lnk)
  240. {
  241. case 1:
  242. rt_kprintf("10M half duplex ");
  243. break;
  244. case 2:
  245. rt_kprintf("10M full duplex ");
  246. break;
  247. case 4:
  248. rt_kprintf("100M half duplex ");
  249. break;
  250. case 8:
  251. rt_kprintf("100M full duplex ");
  252. break;
  253. default:
  254. rt_kprintf("unknown: %d ", lnk);
  255. break;
  256. }
  257. rt_kprintf("mode\n");
  258. dm9000_io_write(DM9000_IMR, dm9000_device.imr_all); /* Enable TX/RX interrupt mask */
  259. return RT_EOK;
  260. }
  261. static rt_err_t rt_dm9000_open(rt_device_t dev, rt_uint16_t oflag)
  262. {
  263. return RT_EOK;
  264. }
  265. static rt_err_t rt_dm9000_close(rt_device_t dev)
  266. {
  267. /* RESET devie */
  268. phy_write(0, 0x8000); /* PHY RESET */
  269. dm9000_io_write(DM9000_GPR, 0x01); /* Power-Down PHY */
  270. dm9000_io_write(DM9000_IMR, 0x80); /* Disable all interrupt */
  271. dm9000_io_write(DM9000_RCR, 0x00); /* Disable RX */
  272. return RT_EOK;
  273. }
  274. static rt_size_t rt_dm9000_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size)
  275. {
  276. rt_set_errno(-RT_ENOSYS);
  277. return 0;
  278. }
  279. static rt_size_t rt_dm9000_write (rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size)
  280. {
  281. rt_set_errno(-RT_ENOSYS);
  282. return 0;
  283. }
  284. static rt_err_t rt_dm9000_control(rt_device_t dev, rt_uint8_t cmd, void *args)
  285. {
  286. switch (cmd)
  287. {
  288. case NIOCTL_GADDR:
  289. /* get mac address */
  290. if (args) rt_memcpy(args, dm9000_device.dev_addr, 6);
  291. else return -RT_ERROR;
  292. break;
  293. default :
  294. break;
  295. }
  296. return RT_EOK;
  297. }
  298. /* ethernet device interface */
  299. /* transmit packet. */
  300. rt_err_t rt_dm9000_tx( rt_device_t dev, struct pbuf* p)
  301. {
  302. DM9000_TRACE("dm9000 tx: %d\n", p->tot_len);
  303. /* lock DM9000 device */
  304. rt_sem_take(&sem_lock, RT_WAITING_FOREVER);
  305. /* disable dm9000a interrupt */
  306. dm9000_io_write(DM9000_IMR, IMR_PAR);
  307. /* Move data to DM9000 TX RAM */
  308. DM9000_outb(DM9000_IO_BASE, DM9000_MWCMD);
  309. {
  310. /* q traverses through linked list of pbuf's
  311. * This list MUST consist of a single packet ONLY */
  312. struct pbuf *q;
  313. rt_uint16_t pbuf_index = 0;
  314. rt_uint8_t word[2], word_index = 0;
  315. q = p;
  316. /* Write data into dm9000a, two bytes at a time
  317. * Handling pbuf's with odd number of bytes correctly
  318. * No attempt to optimize for speed has been made */
  319. while (q)
  320. {
  321. if (pbuf_index < q->len)
  322. {
  323. word[word_index++] = ((u8_t*)q->payload)[pbuf_index++];
  324. if (word_index == 2)
  325. {
  326. DM9000_outw(DM9000_DATA_BASE, (word[1] << 8) | word[0]);
  327. word_index = 0;
  328. }
  329. }
  330. else
  331. {
  332. q = q->next;
  333. pbuf_index = 0;
  334. }
  335. }
  336. /* One byte could still be unsent */
  337. if (word_index == 1)
  338. {
  339. DM9000_outw(DM9000_DATA_BASE, word[0]);
  340. }
  341. }
  342. if (dm9000_device.packet_cnt == 0)
  343. {
  344. DM9000_TRACE("dm9000 tx: first packet\n");
  345. dm9000_device.packet_cnt ++;
  346. /* Set TX length to DM9000 */
  347. dm9000_io_write(DM9000_TXPLL, p->tot_len & 0xff);
  348. dm9000_io_write(DM9000_TXPLH, (p->tot_len >> 8) & 0xff);
  349. /* Issue TX polling command */
  350. dm9000_io_write(DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */
  351. }
  352. else
  353. {
  354. DM9000_TRACE("dm9000 tx: second packet\n");
  355. dm9000_device.packet_cnt ++;
  356. dm9000_device.queue_packet_len = p->tot_len;
  357. }
  358. /* enable dm9000a interrupt */
  359. dm9000_io_write(DM9000_IMR, dm9000_device.imr_all);
  360. /* unlock DM9000 device */
  361. rt_sem_release(&sem_lock);
  362. /* wait ack */
  363. rt_sem_take(&sem_ack, RT_WAITING_FOREVER);
  364. DM9000_TRACE("dm9000 tx done\n");
  365. return RT_EOK;
  366. }
  367. /* reception packet. */
  368. struct pbuf *rt_dm9000_rx(rt_device_t dev)
  369. {
  370. struct pbuf* p;
  371. rt_uint32_t rxbyte;
  372. /* init p pointer */
  373. p = RT_NULL;
  374. /* lock DM9000 device */
  375. rt_sem_take(&sem_lock, RT_WAITING_FOREVER);
  376. /* Check packet ready or not */
  377. dm9000_io_read(DM9000_MRCMDX); /* Dummy read */
  378. rxbyte = DM9000_inb(DM9000_DATA_BASE); /* Got most updated data */
  379. if (rxbyte)
  380. {
  381. rt_uint16_t rx_status, rx_len;
  382. rt_uint16_t* data;
  383. if (rxbyte > 1)
  384. {
  385. DM9000_TRACE("dm9000 rx: rx error, stop device\n");
  386. dm9000_io_write(DM9000_RCR, 0x00); /* Stop Device */
  387. dm9000_io_write(DM9000_ISR, 0x80); /* Stop INT request */
  388. }
  389. /* A packet ready now & Get status/length */
  390. DM9000_outb(DM9000_IO_BASE, DM9000_MRCMD);
  391. rx_status = DM9000_inw(DM9000_DATA_BASE);
  392. rx_len = DM9000_inw(DM9000_DATA_BASE);
  393. DM9000_TRACE("dm9000 rx: status %04x len %d\n", rx_status, rx_len);
  394. /* allocate buffer */
  395. p = pbuf_alloc(PBUF_LINK, rx_len, PBUF_RAM);
  396. if (p != RT_NULL)
  397. {
  398. struct pbuf* q;
  399. rt_int32_t len;
  400. for (q = p; q != RT_NULL; q= q->next)
  401. {
  402. data = (rt_uint16_t*)q->payload;
  403. len = q->len;
  404. while (len > 0)
  405. {
  406. *data = DM9000_inw(DM9000_DATA_BASE);
  407. data ++;
  408. len -= 2;
  409. }
  410. }
  411. DM9000_TRACE("\n");
  412. }
  413. else
  414. {
  415. rt_uint16_t dummy;
  416. DM9000_TRACE("dm9000 rx: no pbuf\n");
  417. /* no pbuf, discard data from DM9000 */
  418. data = &dummy;
  419. while (rx_len)
  420. {
  421. *data = DM9000_inw(DM9000_DATA_BASE);
  422. rx_len -= 2;
  423. }
  424. }
  425. if ((rx_status & 0xbf00) || (rx_len < 0x40)
  426. || (rx_len > DM9000_PKT_MAX))
  427. {
  428. rt_kprintf("rx error: status %04x\n", rx_status);
  429. if (rx_status & 0x100)
  430. {
  431. rt_kprintf("rx fifo error\n");
  432. }
  433. if (rx_status & 0x200)
  434. {
  435. rt_kprintf("rx crc error\n");
  436. }
  437. if (rx_status & 0x8000)
  438. {
  439. rt_kprintf("rx length error\n");
  440. }
  441. if (rx_len > DM9000_PKT_MAX)
  442. {
  443. rt_kprintf("rx length too big\n");
  444. /* RESET device */
  445. dm9000_io_write(DM9000_NCR, NCR_RST);
  446. rt_thread_delay(1); /* delay 5ms */
  447. }
  448. /* it issues an error, release pbuf */
  449. pbuf_free(p);
  450. p = RT_NULL;
  451. }
  452. }
  453. else
  454. {
  455. /* restore receive interrupt */
  456. dm9000_device.imr_all = IMR_PAR | IMR_PTM | IMR_PRM;
  457. dm9000_io_write(DM9000_IMR, dm9000_device.imr_all);
  458. }
  459. /* unlock DM9000 device */
  460. rt_sem_release(&sem_lock);
  461. return p;
  462. }
  463. static void RCC_Configuration(void)
  464. {
  465. /* enable gpiob port clock */
  466. RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOF | RCC_APB2Periph_GPIOE | RCC_APB2Periph_AFIO, ENABLE);
  467. }
  468. static void NVIC_Configuration(void)
  469. {
  470. NVIC_InitTypeDef NVIC_InitStructure;
  471. /* Enable the EXTI0 Interrupt */
  472. NVIC_InitStructure.NVIC_IRQChannel = EXTI4_IRQn;
  473. NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;
  474. NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
  475. NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
  476. NVIC_Init(&NVIC_InitStructure);
  477. }
  478. static void GPIO_Configuration()
  479. {
  480. GPIO_InitTypeDef GPIO_InitStructure;
  481. EXTI_InitTypeDef EXTI_InitStructure;
  482. /* configure PE5 as eth RST */
  483. GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5;
  484. GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
  485. GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
  486. GPIO_Init(GPIOE,&GPIO_InitStructure);
  487. GPIO_SetBits(GPIOE,GPIO_Pin_5);
  488. //RST_1();
  489. /* configure PE4 as external interrupt */
  490. GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4;
  491. GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
  492. GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPD;
  493. GPIO_Init(GPIOE, &GPIO_InitStructure);
  494. /* Connect DM9000 EXTI Line to GPIOE Pin 4 */
  495. GPIO_EXTILineConfig(GPIO_PortSourceGPIOE, GPIO_PinSource4);
  496. /* Configure DM9000 EXTI Line to generate an interrupt on falling edge */
  497. EXTI_InitStructure.EXTI_Line = EXTI_Line4;
  498. EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt;
  499. EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Rising;
  500. EXTI_InitStructure.EXTI_LineCmd = ENABLE;
  501. EXTI_Init(&EXTI_InitStructure);
  502. /* Clear DM9000A EXTI line pending bit */
  503. EXTI_ClearITPendingBit(EXTI_Line4);
  504. }
  505. void rt_hw_dm9000_init(void)
  506. {
  507. RCC_Configuration();
  508. NVIC_Configuration();
  509. GPIO_Configuration();
  510. rt_sem_init(&sem_ack, "tx_ack", 1, RT_IPC_FLAG_FIFO);
  511. rt_sem_init(&sem_lock, "eth_lock", 1, RT_IPC_FLAG_FIFO);
  512. dm9000_device.type = TYPE_DM9000A;
  513. dm9000_device.mode = DM9000_AUTO;
  514. dm9000_device.packet_cnt = 0;
  515. dm9000_device.queue_packet_len = 0;
  516. /*
  517. * SRAM Tx/Rx pointer automatically return to start address,
  518. * Packet Transmitted, Packet Received
  519. */
  520. dm9000_device.imr_all = IMR_PAR | IMR_PTM | IMR_PRM;
  521. /* set mac address: (only for test) */
  522. /* oui 00-60-6E DAVICOM SEMICONDUCTOR, INC.*/
  523. dm9000_device.dev_addr[0] = 0x00;
  524. dm9000_device.dev_addr[1] = 0x60;
  525. dm9000_device.dev_addr[2] = 0x6E;
  526. dm9000_device.dev_addr[3] = 0x11;
  527. dm9000_device.dev_addr[4] = 0x22;
  528. dm9000_device.dev_addr[5] = 0x33;
  529. dm9000_device.parent.parent.init = rt_dm9000_init;
  530. dm9000_device.parent.parent.open = rt_dm9000_open;
  531. dm9000_device.parent.parent.close = rt_dm9000_close;
  532. dm9000_device.parent.parent.read = rt_dm9000_read;
  533. dm9000_device.parent.parent.write = rt_dm9000_write;
  534. dm9000_device.parent.parent.control = rt_dm9000_control;
  535. dm9000_device.parent.parent.private = RT_NULL;
  536. dm9000_device.parent.eth_rx = rt_dm9000_rx;
  537. dm9000_device.parent.eth_tx = rt_dm9000_tx;
  538. eth_device_init(&(dm9000_device.parent), "e0");
  539. }
  540. void dm9000(void)
  541. {
  542. rt_kprintf("\n");
  543. rt_kprintf("NCR (0x00): %02x\n", dm9000_io_read(DM9000_NCR));
  544. rt_kprintf("NSR (0x01): %02x\n", dm9000_io_read(DM9000_NSR));
  545. rt_kprintf("TCR (0x02): %02x\n", dm9000_io_read(DM9000_TCR));
  546. rt_kprintf("TSRI (0x03): %02x\n", dm9000_io_read(DM9000_TSR1));
  547. rt_kprintf("TSRII (0x04): %02x\n", dm9000_io_read(DM9000_TSR2));
  548. rt_kprintf("RCR (0x05): %02x\n", dm9000_io_read(DM9000_RCR));
  549. rt_kprintf("RSR (0x06): %02x\n", dm9000_io_read(DM9000_RSR));
  550. rt_kprintf("ORCR (0x07): %02x\n", dm9000_io_read(DM9000_ROCR));
  551. rt_kprintf("CRR (0x2C): %02x\n", dm9000_io_read(DM9000_CHIPR));
  552. rt_kprintf("CSCR (0x31): %02x\n", dm9000_io_read(DM9000_CSCR));
  553. rt_kprintf("RCSSR (0x32): %02x\n", dm9000_io_read(DM9000_RCSSR));
  554. rt_kprintf("ISR (0xFE): %02x\n", dm9000_io_read(DM9000_ISR));
  555. rt_kprintf("IMR (0xFF): %02x\n", dm9000_io_read(DM9000_IMR));
  556. rt_kprintf("\n");
  557. }
  558. #ifdef RT_USING_FINSH
  559. #include <finsh.h>
  560. FINSH_FUNCTION_EXPORT(dm9000, dm9000 register dump);
  561. #endif