wmadeci.c 47 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586
  1. /*
  2. * WMA compatible decoder
  3. * Copyright (c) 2002 The FFmpeg Project.
  4. *
  5. * This library is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU Lesser General Public
  7. * License as published by the Free Software Foundation; either
  8. * version 2 of the License, or (at your option) any later version.
  9. *
  10. * This library is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  13. * Lesser General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU Lesser General Public
  16. * License along with this library; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. /**
  20. * @file wmadec.c
  21. * WMA compatible decoder.
  22. */
  23. //#include <codecs.h>
  24. #include "codeclib.h"
  25. #include "asf.h"
  26. #include "wmadec.h"
  27. #include "wmafixed.h"
  28. #include "wmabitstream.h"
  29. #define VLCBITS 7 /*7 is the lowest without glitching*/
  30. #define VLCMAX ((22+VLCBITS-1)/VLCBITS)
  31. #define EXPVLCBITS 7
  32. #define EXPMAX ((19+EXPVLCBITS-1)/EXPVLCBITS)
  33. #define HGAINVLCBITS 9
  34. #define HGAINMAX ((13+HGAINVLCBITS-1)/HGAINVLCBITS)
  35. typedef struct CoefVLCTable
  36. {
  37. int n; /* total number of codes */
  38. const uint32_t *huffcodes; /* VLC bit values */
  39. const uint8_t *huffbits; /* VLC bit size */
  40. const uint16_t *levels; /* table to build run/level tables */
  41. } CoefVLCTable;
  42. static void wma_lsp_to_curve_init(WMADecodeContext *s, int frame_len);
  43. fixed32 coefsarray[MAX_CHANNELS][BLOCK_MAX_SIZE] ;
  44. /*decode and window into IRAM on targets with at least 80KB of codec IRAM*/
  45. fixed32 frame_out_buf[MAX_CHANNELS][BLOCK_MAX_SIZE * 2] ;
  46. //static variables that replace malloced stuff
  47. fixed32 stat0[2048], stat1[1024], stat2[512], stat3[256], stat4[128]; //these are the MDCT reconstruction windows
  48. uint16_t *runtabarray[2], *levtabarray[2]; //these are VLC lookup tables
  49. uint16_t runtab0[1336], runtab1[1336], levtab0[1336], levtab1[1336]; //these could be made smaller since only one can be 1336
  50. #define VLCBUF1SIZE 4598
  51. #define VLCBUF2SIZE 3574
  52. #define VLCBUF3SIZE 360
  53. #define VLCBUF4SIZE 540
  54. /*putting these in IRAM actually makes PP slower*/
  55. VLC_TYPE vlcbuf1[VLCBUF1SIZE][2];
  56. VLC_TYPE vlcbuf2[VLCBUF2SIZE][2];
  57. VLC_TYPE vlcbuf3[VLCBUF3SIZE][2];
  58. VLC_TYPE vlcbuf4[VLCBUF4SIZE][2];
  59. #include "wmadata.h"
  60. /*
  61. * Helper functions for wma_window.
  62. *
  63. *
  64. */
  65. #ifdef CPU_ARM
  66. static inline
  67. void vector_fmul_add_add(fixed32 *dst, const fixed32 *data,
  68. const fixed32 *window, int n)
  69. {
  70. /* Block sizes are always power of two */
  71. asm volatile (
  72. "0:"
  73. "ldmia %[d]!, {r0, r1};"
  74. "ldmia %[w]!, {r4, r5};"
  75. /* consume the first data and window value so we can use those
  76. * registers again */
  77. "smull r8, r9, r0, r4;"
  78. "ldmia %[dst], {r0, r4};"
  79. "add r0, r0, r9, lsl #1;" /* *dst=*dst+(r9<<1)*/
  80. "smull r8, r9, r1, r5;"
  81. "add r1, r4, r9, lsl #1;"
  82. "stmia %[dst]!, {r0, r1};"
  83. "subs %[n], %[n], #2;"
  84. "bne 0b;"
  85. : [d] "+r" (data), [w] "+r" (window), [dst] "+r" (dst), [n] "+r" (n)
  86. : : "r0", "r1", "r4", "r5", "r8", "r9", "memory", "cc");
  87. }
  88. static inline
  89. void vector_fmul_reverse(fixed32 *dst, const fixed32 *src0, const fixed32 *src1,
  90. int len)
  91. {
  92. /* Block sizes are always power of two */
  93. asm volatile (
  94. "add %[s1], %[s1], %[n], lsl #2;"
  95. "0:"
  96. "ldmia %[s0]!, {r0, r1};"
  97. "ldmdb %[s1]!, {r4, r5};"
  98. "smull r8, r9, r0, r5;"
  99. "mov r0, r9, lsl #1;"
  100. "smull r8, r9, r1, r4;"
  101. "mov r1, r9, lsl #1;"
  102. "stmia %[dst]!, {r0, r1};"
  103. "subs %[n], %[n], #2;"
  104. "bne 0b;"
  105. : [s0] "+r" (src0), [s1] "+r" (src1), [dst] "+r" (dst), [n] "+r" (len)
  106. : : "r0", "r1", "r4", "r5", "r8", "r9", "memory", "cc");
  107. }
  108. #elif defined(CPU_COLDFIRE)
  109. static inline
  110. void vector_fmul_add_add(fixed32 *dst, const fixed32 *data,
  111. const fixed32 *window, int n)
  112. {
  113. /* Block sizes are always power of two. Smallest block is always way bigger
  114. * than four too.*/
  115. asm volatile (
  116. "0:"
  117. "movem.l (%[d]), %%d0-%%d3;"
  118. "movem.l (%[w]), %%d4-%%d5/%%a0-%%a1;"
  119. "mac.l %%d0, %%d4, %%acc0;"
  120. "mac.l %%d1, %%d5, %%acc1;"
  121. "mac.l %%d2, %%a0, %%acc2;"
  122. "mac.l %%d3, %%a1, %%acc3;"
  123. "lea.l (16, %[d]), %[d];"
  124. "lea.l (16, %[w]), %[w];"
  125. "movclr.l %%acc0, %%d0;"
  126. "movclr.l %%acc1, %%d1;"
  127. "movclr.l %%acc2, %%d2;"
  128. "movclr.l %%acc3, %%d3;"
  129. "movem.l (%[dst]), %%d4-%%d5/%%a0-%%a1;"
  130. "add.l %%d4, %%d0;"
  131. "add.l %%d5, %%d1;"
  132. "add.l %%a0, %%d2;"
  133. "add.l %%a1, %%d3;"
  134. "movem.l %%d0-%%d3, (%[dst]);"
  135. "lea.l (16, %[dst]), %[dst];"
  136. "subq.l #4, %[n];"
  137. "jne 0b;"
  138. : [d] "+a" (data), [w] "+a" (window), [dst] "+a" (dst), [n] "+d" (n)
  139. : : "d0", "d1", "d2", "d3", "d4", "d5", "a0", "a1", "memory", "cc");
  140. }
  141. static inline
  142. void vector_fmul_reverse(fixed32 *dst, const fixed32 *src0, const fixed32 *src1,
  143. int len)
  144. {
  145. /* Block sizes are always power of two. Smallest block is always way bigger
  146. * than four too.*/
  147. asm volatile (
  148. "lea.l (-16, %[s1], %[n]*4), %[s1];"
  149. "0:"
  150. "movem.l (%[s0]), %%d0-%%d3;"
  151. "movem.l (%[s1]), %%d4-%%d5/%%a0-%%a1;"
  152. "mac.l %%d0, %%a1, %%acc0;"
  153. "mac.l %%d1, %%a0, %%acc1;"
  154. "mac.l %%d2, %%d5, %%acc2;"
  155. "mac.l %%d3, %%d4, %%acc3;"
  156. "lea.l (16, %[s0]), %[s0];"
  157. "lea.l (-16, %[s1]), %[s1];"
  158. "movclr.l %%acc0, %%d0;"
  159. "movclr.l %%acc1, %%d1;"
  160. "movclr.l %%acc2, %%d2;"
  161. "movclr.l %%acc3, %%d3;"
  162. "movem.l %%d0-%%d3, (%[dst]);"
  163. "lea.l (16, %[dst]), %[dst];"
  164. "subq.l #4, %[n];"
  165. "jne 0b;"
  166. : [s0] "+a" (src0), [s1] "+a" (src1), [dst] "+a" (dst), [n] "+d" (len)
  167. : : "d0", "d1", "d2", "d3", "d4", "d5", "a0", "a1", "memory", "cc");
  168. }
  169. #else
  170. static inline void vector_fmul_add_add(fixed32 *dst, const fixed32 *src0, const fixed32 *src1, int len){
  171. int i;
  172. for(i=0; i<len; i++)
  173. dst[i] = fixmul32b(src0[i], src1[i]) + dst[i];
  174. }
  175. static inline void vector_fmul_reverse(fixed32 *dst, const fixed32 *src0, const fixed32 *src1, int len){
  176. int i;
  177. src1 += len-1;
  178. for(i=0; i<len; i++)
  179. dst[i] = fixmul32b(src0[i], src1[-i]);
  180. }
  181. #endif
  182. /**
  183. * Apply MDCT window and add into output.
  184. *
  185. * We ensure that when the windows overlap their squared sum
  186. * is always 1 (MDCT reconstruction rule).
  187. *
  188. * The Vorbis I spec has a great diagram explaining this process.
  189. * See section 1.3.2.3 of http://xiph.org/vorbis/doc/Vorbis_I_spec.html
  190. */
  191. static void wma_window(WMADecodeContext *s, fixed32 *in, fixed32 *out)
  192. {
  193. //float *in = s->output;
  194. int block_len, bsize, n;
  195. /* left part */
  196. /*previous block was larger, so we'll use the size of the current block to set the window size*/
  197. if (s->block_len_bits <= s->prev_block_len_bits) {
  198. block_len = s->block_len;
  199. bsize = s->frame_len_bits - s->block_len_bits;
  200. vector_fmul_add_add(out, in, s->windows[bsize], block_len);
  201. } else {
  202. /*previous block was smaller or the same size, so use it's size to set the window length*/
  203. block_len = 1 << s->prev_block_len_bits;
  204. /*find the middle of the two overlapped blocks, this will be the first overlapped sample*/
  205. n = (s->block_len - block_len) / 2;
  206. bsize = s->frame_len_bits - s->prev_block_len_bits;
  207. vector_fmul_add_add(out+n, in+n, s->windows[bsize], block_len);
  208. memcpy(out+n+block_len, in+n+block_len, n*sizeof(fixed32));
  209. }
  210. /* Advance to the end of the current block and prepare to window it for the next block.
  211. * Since the window function needs to be reversed, we do it backwards starting with the
  212. * last sample and moving towards the first
  213. */
  214. out += s->block_len;
  215. in += s->block_len;
  216. /* right part */
  217. if (s->block_len_bits <= s->next_block_len_bits) {
  218. block_len = s->block_len;
  219. bsize = s->frame_len_bits - s->block_len_bits;
  220. vector_fmul_reverse(out, in, s->windows[bsize], block_len);
  221. } else {
  222. block_len = 1 << s->next_block_len_bits;
  223. n = (s->block_len - block_len) / 2;
  224. bsize = s->frame_len_bits - s->next_block_len_bits;
  225. memcpy(out, in, n*sizeof(fixed32));
  226. vector_fmul_reverse(out+n, in+n, s->windows[bsize], block_len);
  227. memset(out+n+block_len, 0, n*sizeof(fixed32));
  228. }
  229. }
  230. /* XXX: use same run/length optimization as mpeg decoders */
  231. static void init_coef_vlc(VLC *vlc,
  232. uint16_t **prun_table, uint16_t **plevel_table,
  233. const CoefVLCTable *vlc_table, int tab)
  234. {
  235. int n = vlc_table->n;
  236. const uint8_t *table_bits = vlc_table->huffbits;
  237. const uint32_t *table_codes = vlc_table->huffcodes;
  238. const uint16_t *levels_table = vlc_table->levels;
  239. uint16_t *run_table, *level_table;
  240. const uint16_t *p;
  241. int i, l, j, level;
  242. init_vlc(vlc, VLCBITS, n, table_bits, 1, 1, table_codes, 4, 4, 0);
  243. run_table = runtabarray[tab];
  244. level_table= levtabarray[tab];
  245. p = levels_table;
  246. i = 2;
  247. level = 1;
  248. while (i < n)
  249. {
  250. l = *p++;
  251. for(j=0;j<l;++j)
  252. {
  253. run_table[i] = j;
  254. level_table[i] = level;
  255. ++i;
  256. }
  257. ++level;
  258. }
  259. *prun_table = run_table;
  260. *plevel_table = level_table;
  261. }
  262. int wma_decode_init(WMADecodeContext* s, asf_waveformatex_t *wfx)
  263. {
  264. int i, flags1, flags2;
  265. fixed32 *window;
  266. uint8_t *extradata;
  267. fixed64 bps1;
  268. fixed32 high_freq;
  269. fixed64 bps;
  270. int sample_rate1;
  271. int coef_vlc_table;
  272. fixed32 *temp[5];
  273. /*clear stereo setting to avoid glitches when switching stereo->mono*/
  274. s->channel_coded[0]=0;
  275. s->channel_coded[1]=0;
  276. s->ms_stereo=0;
  277. s->sample_rate = wfx->rate;
  278. s->nb_channels = wfx->channels;
  279. s->bit_rate = wfx->bitrate;
  280. s->block_align = wfx->blockalign;
  281. s->coefs = &coefsarray;
  282. s->frame_out = &frame_out_buf;
  283. if (wfx->codec_id == ASF_CODEC_ID_WMAV1) {
  284. s->version = 1;
  285. } else if (wfx->codec_id == ASF_CODEC_ID_WMAV2 ) {
  286. s->version = 2;
  287. } else {
  288. /*one of those other wma flavors that don't have GPLed decoders */
  289. return -1;
  290. }
  291. /* extract flag infos */
  292. flags1 = 0;
  293. flags2 = 0;
  294. extradata = wfx->data;
  295. if (s->version == 1 && wfx->datalen >= 4) {
  296. flags1 = extradata[0] | (extradata[1] << 8);
  297. flags2 = extradata[2] | (extradata[3] << 8);
  298. }else if (s->version == 2 && wfx->datalen >= 6){
  299. flags1 = extradata[0] | (extradata[1] << 8) |
  300. (extradata[2] << 16) | (extradata[3] << 24);
  301. flags2 = extradata[4] | (extradata[5] << 8);
  302. }
  303. s->use_exp_vlc = flags2 & 0x0001;
  304. s->use_bit_reservoir = flags2 & 0x0002;
  305. s->use_variable_block_len = flags2 & 0x0004;
  306. /* compute MDCT block size */
  307. if (s->sample_rate <= 16000){
  308. s->frame_len_bits = 9;
  309. }else if (s->sample_rate <= 22050 ||
  310. (s->sample_rate <= 32000 && s->version == 1)){
  311. s->frame_len_bits = 10;
  312. }else{
  313. s->frame_len_bits = 11;
  314. }
  315. s->frame_len = 1 << s->frame_len_bits;
  316. if (s->use_variable_block_len)
  317. {
  318. int nb_max, nb;
  319. nb = ((flags2 >> 3) & 3) + 1;
  320. if ((s->bit_rate / s->nb_channels) >= 32000)
  321. {
  322. nb += 2;
  323. }
  324. nb_max = s->frame_len_bits - BLOCK_MIN_BITS; //max is 11-7
  325. if (nb > nb_max)
  326. nb = nb_max;
  327. s->nb_block_sizes = nb + 1;
  328. }
  329. else
  330. {
  331. s->nb_block_sizes = 1;
  332. }
  333. /* init rate dependant parameters */
  334. s->use_noise_coding = 1;
  335. high_freq = itofix64(s->sample_rate) >> 1;
  336. /* if version 2, then the rates are normalized */
  337. sample_rate1 = s->sample_rate;
  338. if (s->version == 2)
  339. {
  340. if (sample_rate1 >= 44100)
  341. sample_rate1 = 44100;
  342. else if (sample_rate1 >= 22050)
  343. sample_rate1 = 22050;
  344. else if (sample_rate1 >= 16000)
  345. sample_rate1 = 16000;
  346. else if (sample_rate1 >= 11025)
  347. sample_rate1 = 11025;
  348. else if (sample_rate1 >= 8000)
  349. sample_rate1 = 8000;
  350. }
  351. {
  352. fixed64 tmp, tmp2;
  353. fixed64 tim, tmpi;
  354. tmp = itofix64(s->bit_rate);
  355. tmp2 = itofix64(s->nb_channels * s->sample_rate);
  356. bps = fixdiv64(tmp, tmp2);
  357. tim = bps * s->frame_len;
  358. tmpi = fixdiv64(tim,itofix64(8));
  359. s->byte_offset_bits = av_log2(fixtoi64(tmpi+0x8000)) + 2;
  360. }
  361. /* compute high frequency value and choose if noise coding should
  362. be activated */
  363. bps1 = bps;
  364. if (s->nb_channels == 2)
  365. bps1 = fixmul32(bps,0x1999a);
  366. if (sample_rate1 == 44100)
  367. {
  368. if (bps1 >= 0x9c29)
  369. s->use_noise_coding = 0;
  370. else
  371. high_freq = fixmul32(high_freq,0x6666);
  372. }
  373. else if (sample_rate1 == 22050)
  374. {
  375. if (bps1 >= 0x128f6)
  376. s->use_noise_coding = 0;
  377. else if (bps1 >= 0xb852)
  378. high_freq = fixmul32(high_freq,0xb333);
  379. else
  380. high_freq = fixmul32(high_freq,0x999a);
  381. }
  382. else if (sample_rate1 == 16000)
  383. {
  384. if (bps > 0x8000)
  385. high_freq = fixmul32(high_freq,0x8000);
  386. else
  387. high_freq = fixmul32(high_freq,0x4ccd);
  388. }
  389. else if (sample_rate1 == 11025)
  390. {
  391. high_freq = fixmul32(high_freq,0xb333);
  392. }
  393. else if (sample_rate1 == 8000)
  394. {
  395. if (bps <= 0xa000)
  396. {
  397. high_freq = fixmul32(high_freq,0x8000);
  398. }
  399. else if (bps > 0xc000)
  400. {
  401. s->use_noise_coding = 0;
  402. }
  403. else
  404. {
  405. high_freq = fixmul32(high_freq,0xa666);
  406. }
  407. }
  408. else
  409. {
  410. if (bps >= 0xcccd)
  411. {
  412. high_freq = fixmul32(high_freq,0xc000);
  413. }
  414. else if (bps >= 0x999a)
  415. {
  416. high_freq = fixmul32(high_freq,0x999a);
  417. }
  418. else
  419. {
  420. high_freq = fixmul32(high_freq,0x8000);
  421. }
  422. }
  423. /* compute the scale factor band sizes for each MDCT block size */
  424. {
  425. int a, b, pos, lpos, k, block_len, i, j, n;
  426. const uint8_t *table;
  427. fixed32 tmp1, tmp2;
  428. if (s->version == 1)
  429. {
  430. s->coefs_start = 3;
  431. }
  432. else
  433. {
  434. s->coefs_start = 0;
  435. }
  436. for(k = 0; k < s->nb_block_sizes; ++k)
  437. {
  438. block_len = s->frame_len >> k;
  439. if (s->version == 1)
  440. {
  441. lpos = 0;
  442. for(i=0;i<25;++i)
  443. {
  444. a = wma_critical_freqs[i];
  445. b = s->sample_rate;
  446. pos = ((block_len * 2 * a) + (b >> 1)) / b;
  447. if (pos > block_len)
  448. pos = block_len;
  449. s->exponent_bands[0][i] = pos - lpos;
  450. if (pos >= block_len)
  451. {
  452. ++i;
  453. break;
  454. }
  455. lpos = pos;
  456. }
  457. s->exponent_sizes[0] = i;
  458. }
  459. else
  460. {
  461. /* hardcoded tables */
  462. table = NULL;
  463. a = s->frame_len_bits - BLOCK_MIN_BITS - k;
  464. if (a < 3)
  465. {
  466. if (s->sample_rate >= 44100)
  467. table = exponent_band_44100[a];
  468. else if (s->sample_rate >= 32000)
  469. table = exponent_band_32000[a];
  470. else if (s->sample_rate >= 22050)
  471. table = exponent_band_22050[a];
  472. }
  473. if (table)
  474. {
  475. n = *table++;
  476. for(i=0;i<n;++i)
  477. s->exponent_bands[k][i] = table[i];
  478. s->exponent_sizes[k] = n;
  479. }
  480. else
  481. {
  482. j = 0;
  483. lpos = 0;
  484. for(i=0;i<25;++i)
  485. {
  486. a = wma_critical_freqs[i];
  487. b = s->sample_rate;
  488. pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
  489. pos <<= 2;
  490. if (pos > block_len)
  491. pos = block_len;
  492. if (pos > lpos)
  493. s->exponent_bands[k][j++] = pos - lpos;
  494. if (pos >= block_len)
  495. break;
  496. lpos = pos;
  497. }
  498. s->exponent_sizes[k] = j;
  499. }
  500. }
  501. /* max number of coefs */
  502. s->coefs_end[k] = (s->frame_len - ((s->frame_len * 9) / 100)) >> k;
  503. /* high freq computation */
  504. tmp1 = high_freq*2; /* high_freq is a fixed32!*/
  505. tmp2 = itofix32(s->sample_rate>>1);
  506. s->high_band_start[k] = fixtoi32( fixdiv32(tmp1, tmp2) * (block_len>>1) +0x8000);
  507. /*
  508. s->high_band_start[k] = (int)((block_len * 2 * high_freq) /
  509. s->sample_rate + 0.5);*/
  510. n = s->exponent_sizes[k];
  511. j = 0;
  512. pos = 0;
  513. for(i=0;i<n;++i)
  514. {
  515. int start, end;
  516. start = pos;
  517. pos += s->exponent_bands[k][i];
  518. end = pos;
  519. if (start < s->high_band_start[k])
  520. start = s->high_band_start[k];
  521. if (end > s->coefs_end[k])
  522. end = s->coefs_end[k];
  523. if (end > start)
  524. s->exponent_high_bands[k][j++] = end - start;
  525. }
  526. s->exponent_high_sizes[k] = j;
  527. }
  528. }
  529. /*Not using the ffmpeg IMDCT anymore*/
  530. /* mdct_init_global();
  531. for(i = 0; i < s->nb_block_sizes; ++i)
  532. {
  533. ff_mdct_init(&s->mdct_ctx[i], s->frame_len_bits - i + 1, 1);
  534. }
  535. */
  536. /*ffmpeg uses malloc to only allocate as many window sizes as needed. However, we're really only interested in the worst case memory usage.
  537. * In the worst case you can have 5 window sizes, 128 doubling up 2048
  538. * Smaller windows are handled differently.
  539. * Since we don't have malloc, just statically allocate this
  540. */
  541. temp[0] = stat0;
  542. temp[1] = stat1;
  543. temp[2] = stat2;
  544. temp[3] = stat3;
  545. temp[4] = stat4;
  546. /* init MDCT windows : simple sinus window */
  547. for(i = 0; i < s->nb_block_sizes; i++)
  548. {
  549. int n, j;
  550. fixed32 alpha;
  551. n = 1 << (s->frame_len_bits - i);
  552. //window = av_malloc(sizeof(fixed32) * n);
  553. window = temp[i];
  554. //fixed32 n2 = itofix32(n<<1); //2x the window length
  555. //alpha = fixdiv32(M_PI_F, n2); //PI / (2x Window length) == PI<<(s->frame_len_bits - i+1)
  556. //alpha = M_PI_F>>(s->frame_len_bits - i+1);
  557. alpha = (1<<15)>>(s->frame_len_bits - i+1); /* this calculates 0.5/(2*n) */
  558. for(j=0;j<n;++j)
  559. {
  560. fixed32 j2 = itofix32(j) + 0x8000;
  561. window[j] = fsincos(fixmul32(j2,alpha)<<16, 0); //alpha between 0 and pi/2
  562. }
  563. s->windows[i] = window;
  564. }
  565. s->reset_block_lengths = 1;
  566. if (s->use_noise_coding)
  567. {
  568. /* init the noise generator */
  569. if (s->use_exp_vlc)
  570. {
  571. s->noise_mult = 0x51f;
  572. s->noise_table = noisetable_exp;
  573. }
  574. else
  575. {
  576. s->noise_mult = 0xa3d;
  577. /* LSP values are simply 2x the EXP values */
  578. for (i=0;i<NOISE_TAB_SIZE;++i)
  579. noisetable_exp[i] = noisetable_exp[i]<< 1;
  580. s->noise_table = noisetable_exp;
  581. }
  582. s->hgain_vlc.table = vlcbuf4;
  583. s->hgain_vlc.table_allocated = VLCBUF4SIZE;
  584. init_vlc(&s->hgain_vlc, HGAINVLCBITS, sizeof(hgain_huffbits),
  585. hgain_huffbits, 1, 1,
  586. hgain_huffcodes, 2, 2, 0);
  587. }
  588. if (s->use_exp_vlc)
  589. {
  590. s->exp_vlc.table = vlcbuf3;
  591. s->exp_vlc.table_allocated = VLCBUF3SIZE;
  592. init_vlc(&s->exp_vlc, EXPVLCBITS, sizeof(scale_huffbits),
  593. scale_huffbits, 1, 1,
  594. scale_huffcodes, 4, 4, 0);
  595. }
  596. else
  597. {
  598. wma_lsp_to_curve_init(s, s->frame_len);
  599. }
  600. /* choose the VLC tables for the coefficients */
  601. coef_vlc_table = 2;
  602. if (s->sample_rate >= 32000)
  603. {
  604. if (bps1 < 0xb852)
  605. coef_vlc_table = 0;
  606. else if (bps1 < 0x128f6)
  607. coef_vlc_table = 1;
  608. }
  609. runtabarray[0] = runtab0; runtabarray[1] = runtab1;
  610. levtabarray[0] = levtab0; levtabarray[1] = levtab1;
  611. s->coef_vlc[0].table = vlcbuf1;
  612. s->coef_vlc[0].table_allocated = VLCBUF1SIZE;
  613. s->coef_vlc[1].table = vlcbuf2;
  614. s->coef_vlc[1].table_allocated = VLCBUF2SIZE;
  615. init_coef_vlc(&s->coef_vlc[0], &s->run_table[0], &s->level_table[0],
  616. &coef_vlcs[coef_vlc_table * 2], 0);
  617. init_coef_vlc(&s->coef_vlc[1], &s->run_table[1], &s->level_table[1],
  618. &coef_vlcs[coef_vlc_table * 2 + 1], 1);
  619. s->last_superframe_len = 0;
  620. s->last_bitoffset = 0;
  621. return 0;
  622. }
  623. /* compute x^-0.25 with an exponent and mantissa table. We use linear
  624. interpolation to reduce the mantissa table size at a small speed
  625. expense (linear interpolation approximately doubles the number of
  626. bits of precision). */
  627. static inline fixed32 pow_m1_4(WMADecodeContext *s, fixed32 x)
  628. {
  629. union {
  630. float f;
  631. unsigned int v;
  632. } u, t;
  633. unsigned int e, m;
  634. fixed32 a, b;
  635. u.f = fixtof64(x);
  636. e = u.v >> 23;
  637. m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
  638. /* build interpolation scale: 1 <= t < 2. */
  639. t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
  640. a = s->lsp_pow_m_table1[m];
  641. b = s->lsp_pow_m_table2[m];
  642. /* lsp_pow_e_table contains 32.32 format */
  643. /* TODO: Since we're unlikely have value that cover the whole
  644. * IEEE754 range, we probably don't need to have all possible exponents */
  645. return (lsp_pow_e_table[e] * (a + fixmul32(b, ftofix32(t.f))) >>32);
  646. }
  647. static void wma_lsp_to_curve_init(WMADecodeContext *s, int frame_len)
  648. {
  649. fixed32 a, b, temp, temp2;
  650. int i, ix = 0;
  651. // wdel = fixdiv32(M_PI_F, itofix32(frame_len));
  652. temp = fixdiv32(itofix32(1), itofix32(frame_len));
  653. for (i=0; i<frame_len; ++i)
  654. {
  655. /* TODO: can probably reuse the trig_init values here */
  656. fsincos((temp*i)<<15, &temp2);
  657. /* get 3 bits headroom + 1 bit from not doubleing the values */
  658. s->lsp_cos_table[i] = temp2>>3;
  659. }
  660. /* NOTE: these two tables are needed to avoid two operations in
  661. pow_m1_4 */
  662. b = itofix32(1);
  663. /*double check this later*/
  664. for(i=(1 << LSP_POW_BITS) - 1;i>=0;i--)
  665. {
  666. // m = (1 << LSP_POW_BITS) + i;
  667. a = pow_a_table[ix++]<<4;
  668. s->lsp_pow_m_table1[i] = 2 * a - b;
  669. s->lsp_pow_m_table2[i] = b - a;
  670. b = a;
  671. }
  672. }
  673. /* NOTE: We use the same code as Vorbis here */
  674. /* XXX: optimize it further with SSE/3Dnow */
  675. static void wma_lsp_to_curve(WMADecodeContext *s,
  676. fixed32 *out,
  677. fixed32 *val_max_ptr,
  678. int n,
  679. fixed32 *lsp)
  680. {
  681. int i, j;
  682. fixed32 p, q, w, v, val_max, temp, temp2;
  683. val_max = 0;
  684. for(i=0;i<n;++i)
  685. {
  686. /* shift by 2 now to reduce rounding error,
  687. * we can renormalize right before pow_m1_4
  688. */
  689. p = 0x8000<<5;
  690. q = 0x8000<<5;
  691. w = s->lsp_cos_table[i];
  692. for (j=1;j<NB_LSP_COEFS;j+=2)
  693. {
  694. /* w is 5.27 format, lsp is in 16.16, temp2 becomes 5.27 format */
  695. temp2 = ((w - (lsp[j - 1]<<11)));
  696. temp = q;
  697. /* q is 16.16 format, temp2 is 5.27, q becomes 16.16 */
  698. q = fixmul32b(q, temp2 )<<4;
  699. p = fixmul32b(p, (w - (lsp[j]<<11)))<<4;
  700. }
  701. /* 2 in 5.27 format is 0x10000000 */
  702. p = fixmul32(p, fixmul32b(p, (0x10000000 - w)))<<3;
  703. q = fixmul32(q, fixmul32b(q, (0x10000000 + w)))<<3;
  704. v = (p + q) >>9; /* p/q end up as 16.16 */
  705. v = pow_m1_4(s, v);
  706. if (v > val_max)
  707. val_max = v;
  708. out[i] = v;
  709. }
  710. *val_max_ptr = val_max;
  711. }
  712. /* decode exponents coded with LSP coefficients (same idea as Vorbis) */
  713. static void decode_exp_lsp(WMADecodeContext *s, int ch)
  714. {
  715. fixed32 lsp_coefs[NB_LSP_COEFS];
  716. int val, i;
  717. for (i = 0; i < NB_LSP_COEFS; ++i)
  718. {
  719. if (i == 0 || i >= 8)
  720. val = get_bits(&s->gb, 3);
  721. else
  722. val = get_bits(&s->gb, 4);
  723. lsp_coefs[i] = lsp_codebook[i][val];
  724. }
  725. wma_lsp_to_curve(s,
  726. s->exponents[ch],
  727. &s->max_exponent[ch],
  728. s->block_len,
  729. lsp_coefs);
  730. }
  731. /* decode exponents coded with VLC codes */
  732. static int decode_exp_vlc(WMADecodeContext *s, int ch)
  733. {
  734. int last_exp, n, code;
  735. const uint16_t *ptr, *band_ptr;
  736. fixed32 v, max_scale;
  737. fixed32 *q,*q_end;
  738. /*accommodate the 60 negative indices */
  739. const fixed32 *pow_10_to_yover16_ptr = &pow_10_to_yover16[61];
  740. band_ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits];
  741. ptr = band_ptr;
  742. q = s->exponents[ch];
  743. q_end = q + s->block_len;
  744. max_scale = 0;
  745. if (s->version == 1) //wmav1 only
  746. {
  747. last_exp = get_bits(&s->gb, 5) + 10;
  748. /* XXX: use a table */
  749. v = pow_10_to_yover16_ptr[last_exp];
  750. max_scale = v;
  751. n = *ptr++;
  752. do
  753. {
  754. *q++ = v;
  755. }
  756. while (--n);
  757. } else {
  758. last_exp = 36;
  759. }
  760. while (q < q_end)
  761. {
  762. code = get_vlc2(&s->gb, s->exp_vlc.table, EXPVLCBITS, EXPMAX);
  763. if (code < 0)
  764. {
  765. return -1;
  766. }
  767. /* NOTE: this offset is the same as MPEG4 AAC ! */
  768. last_exp += code - 60;
  769. /* XXX: use a table */
  770. v = pow_10_to_yover16_ptr[last_exp];
  771. if (v > max_scale)
  772. {
  773. max_scale = v;
  774. }
  775. n = *ptr++;
  776. do
  777. {
  778. *q++ = v;
  779. }
  780. while (--n);
  781. }
  782. s->max_exponent[ch] = max_scale;
  783. return 0;
  784. }
  785. /* return 0 if OK. return 1 if last block of frame. return -1 if
  786. unrecorrable error. */
  787. static int wma_decode_block(WMADecodeContext *s, int32_t *scratch_buffer)
  788. {
  789. int n, v, a, ch, code, bsize;
  790. int coef_nb_bits, total_gain;
  791. int nb_coefs[MAX_CHANNELS];
  792. fixed32 mdct_norm;
  793. /*DEBUGF("***decode_block: %d (%d samples of %d in frame)\n", s->block_num, s->block_len, s->frame_len);*/
  794. /* compute current block length */
  795. if (s->use_variable_block_len)
  796. {
  797. n = av_log2(s->nb_block_sizes - 1) + 1;
  798. if (s->reset_block_lengths)
  799. {
  800. s->reset_block_lengths = 0;
  801. v = get_bits(&s->gb, n);
  802. if (v >= s->nb_block_sizes)
  803. {
  804. return -2;
  805. }
  806. s->prev_block_len_bits = s->frame_len_bits - v;
  807. v = get_bits(&s->gb, n);
  808. if (v >= s->nb_block_sizes)
  809. {
  810. return -3;
  811. }
  812. s->block_len_bits = s->frame_len_bits - v;
  813. }
  814. else
  815. {
  816. /* update block lengths */
  817. s->prev_block_len_bits = s->block_len_bits;
  818. s->block_len_bits = s->next_block_len_bits;
  819. }
  820. v = get_bits(&s->gb, n);
  821. if (v >= s->nb_block_sizes)
  822. {
  823. // rb->splash(HZ*4, "v was %d", v); //5, 7
  824. return -4; //this is it
  825. }
  826. else{
  827. //rb->splash(HZ, "passed v block (%d)!", v);
  828. }
  829. s->next_block_len_bits = s->frame_len_bits - v;
  830. }
  831. else
  832. {
  833. /* fixed block len */
  834. s->next_block_len_bits = s->frame_len_bits;
  835. s->prev_block_len_bits = s->frame_len_bits;
  836. s->block_len_bits = s->frame_len_bits;
  837. }
  838. /* now check if the block length is coherent with the frame length */
  839. s->block_len = 1 << s->block_len_bits;
  840. if ((s->block_pos + s->block_len) > s->frame_len)
  841. {
  842. return -5; //oddly 32k sample from tracker fails here
  843. }
  844. if (s->nb_channels == 2)
  845. {
  846. s->ms_stereo = get_bits1(&s->gb);
  847. }
  848. v = 0;
  849. for (ch = 0; ch < s->nb_channels; ++ch)
  850. {
  851. a = get_bits1(&s->gb);
  852. s->channel_coded[ch] = a;
  853. v |= a;
  854. }
  855. /* if no channel coded, no need to go further */
  856. /* XXX: fix potential framing problems */
  857. if (!v)
  858. {
  859. goto next;
  860. }
  861. bsize = s->frame_len_bits - s->block_len_bits;
  862. /* read total gain and extract corresponding number of bits for
  863. coef escape coding */
  864. total_gain = 1;
  865. for(;;)
  866. {
  867. a = get_bits(&s->gb, 7);
  868. total_gain += a;
  869. if (a != 127)
  870. {
  871. break;
  872. }
  873. }
  874. if (total_gain < 15)
  875. coef_nb_bits = 13;
  876. else if (total_gain < 32)
  877. coef_nb_bits = 12;
  878. else if (total_gain < 40)
  879. coef_nb_bits = 11;
  880. else if (total_gain < 45)
  881. coef_nb_bits = 10;
  882. else
  883. coef_nb_bits = 9;
  884. /* compute number of coefficients */
  885. n = s->coefs_end[bsize] - s->coefs_start;
  886. for(ch = 0; ch < s->nb_channels; ++ch)
  887. {
  888. nb_coefs[ch] = n;
  889. }
  890. /* complex coding */
  891. if (s->use_noise_coding)
  892. {
  893. for(ch = 0; ch < s->nb_channels; ++ch)
  894. {
  895. if (s->channel_coded[ch])
  896. {
  897. int i, n, a;
  898. n = s->exponent_high_sizes[bsize];
  899. for(i=0;i<n;++i)
  900. {
  901. a = get_bits1(&s->gb);
  902. s->high_band_coded[ch][i] = a;
  903. /* if noise coding, the coefficients are not transmitted */
  904. if (a)
  905. nb_coefs[ch] -= s->exponent_high_bands[bsize][i];
  906. }
  907. }
  908. }
  909. for(ch = 0; ch < s->nb_channels; ++ch)
  910. {
  911. if (s->channel_coded[ch])
  912. {
  913. int i, n, val, code;
  914. n = s->exponent_high_sizes[bsize];
  915. val = (int)0x80000000;
  916. for(i=0;i<n;++i)
  917. {
  918. if (s->high_band_coded[ch][i])
  919. {
  920. if (val == (int)0x80000000)
  921. {
  922. val = get_bits(&s->gb, 7) - 19;
  923. }
  924. else
  925. {
  926. //code = get_vlc(&s->gb, &s->hgain_vlc);
  927. code = get_vlc2(&s->gb, s->hgain_vlc.table, HGAINVLCBITS, HGAINMAX);
  928. if (code < 0)
  929. {
  930. return -6;
  931. }
  932. val += code - 18;
  933. }
  934. s->high_band_values[ch][i] = val;
  935. }
  936. }
  937. }
  938. }
  939. }
  940. /* exponents can be reused in short blocks. */
  941. if ((s->block_len_bits == s->frame_len_bits) || get_bits1(&s->gb))
  942. {
  943. for(ch = 0; ch < s->nb_channels; ++ch)
  944. {
  945. if (s->channel_coded[ch])
  946. {
  947. if (s->use_exp_vlc)
  948. {
  949. if (decode_exp_vlc(s, ch) < 0)
  950. {
  951. return -7;
  952. }
  953. }
  954. else
  955. {
  956. decode_exp_lsp(s, ch);
  957. }
  958. s->exponents_bsize[ch] = bsize;
  959. }
  960. }
  961. }
  962. /* parse spectral coefficients : just RLE encoding */
  963. for(ch = 0; ch < s->nb_channels; ++ch)
  964. {
  965. if (s->channel_coded[ch])
  966. {
  967. VLC *coef_vlc;
  968. int level, run, sign, tindex;
  969. int16_t *ptr, *eptr;
  970. const int16_t *level_table, *run_table;
  971. /* special VLC tables are used for ms stereo because
  972. there is potentially less energy there */
  973. tindex = (ch == 1 && s->ms_stereo);
  974. coef_vlc = &s->coef_vlc[tindex];
  975. run_table = s->run_table[tindex];
  976. level_table = s->level_table[tindex];
  977. /* XXX: optimize */
  978. ptr = &s->coefs1[ch][0];
  979. eptr = ptr + nb_coefs[ch];
  980. memset(ptr, 0, s->block_len * sizeof(int16_t));
  981. for(;;)
  982. {
  983. code = get_vlc2(&s->gb, coef_vlc->table, VLCBITS, VLCMAX);
  984. //code = get_vlc(&s->gb, coef_vlc);
  985. if (code < 0)
  986. {
  987. return -8;
  988. }
  989. if (code == 1)
  990. {
  991. /* EOB */
  992. break;
  993. }
  994. else if (code == 0)
  995. {
  996. /* escape */
  997. level = get_bits(&s->gb, coef_nb_bits);
  998. /* NOTE: this is rather suboptimal. reading
  999. block_len_bits would be better */
  1000. run = get_bits(&s->gb, s->frame_len_bits);
  1001. }
  1002. else
  1003. {
  1004. /* normal code */
  1005. run = run_table[code];
  1006. level = level_table[code];
  1007. }
  1008. sign = get_bits1(&s->gb);
  1009. if (!sign)
  1010. level = -level;
  1011. ptr += run;
  1012. if (ptr >= eptr)
  1013. {
  1014. break;
  1015. }
  1016. *ptr++ = level;
  1017. /* NOTE: EOB can be omitted */
  1018. if (ptr >= eptr)
  1019. break;
  1020. }
  1021. }
  1022. if (s->version == 1 && s->nb_channels >= 2)
  1023. {
  1024. align_get_bits(&s->gb);
  1025. }
  1026. }
  1027. {
  1028. int n4 = s->block_len >> 1;
  1029. mdct_norm = 0x10000>>(s->block_len_bits-1);
  1030. if (s->version == 1)
  1031. {
  1032. mdct_norm *= fixtoi32(fixsqrt32(itofix32(n4)));
  1033. }
  1034. }
  1035. /* finally compute the MDCT coefficients */
  1036. for(ch = 0; ch < s->nb_channels; ++ch)
  1037. {
  1038. if (s->channel_coded[ch])
  1039. {
  1040. int16_t *coefs1;
  1041. fixed32 *exponents;
  1042. fixed32 *coefs, atemp;
  1043. fixed64 mult;
  1044. fixed64 mult1;
  1045. fixed32 noise, temp1, temp2, mult2;
  1046. int i, j, n, n1, last_high_band, esize;
  1047. fixed32 exp_power[HIGH_BAND_MAX_SIZE];
  1048. //total_gain, coefs1, mdctnorm are lossless
  1049. coefs1 = s->coefs1[ch];
  1050. exponents = s->exponents[ch];
  1051. esize = s->exponents_bsize[ch];
  1052. coefs = (*(s->coefs))[ch];
  1053. n=0;
  1054. /*
  1055. * The calculation of coefs has a shift right by 2 built in. This
  1056. * prepares samples for the Tremor IMDCT which uses a slightly
  1057. * different fixed format then the ffmpeg one. If the old ffmpeg
  1058. * imdct is used, each shift storing into coefs should be reduced
  1059. * by 1.
  1060. * See SVN logs for details.
  1061. */
  1062. if (s->use_noise_coding)
  1063. {
  1064. /*TODO: mult should be converted to 32 bit to speed up noise coding*/
  1065. mult = fixdiv64(pow_table[total_gain+20],Fixed32To64(s->max_exponent[ch]));
  1066. mult = mult* mdct_norm;
  1067. mult1 = mult;
  1068. /* very low freqs : noise */
  1069. for(i = 0;i < s->coefs_start; ++i)
  1070. {
  1071. *coefs++ = fixmul32( (fixmul32(s->noise_table[s->noise_index],
  1072. exponents[i<<bsize>>esize])>>4),Fixed32From64(mult1)) >>2;
  1073. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  1074. }
  1075. n1 = s->exponent_high_sizes[bsize];
  1076. /* compute power of high bands */
  1077. exponents = s->exponents[ch] +(s->high_band_start[bsize]<<bsize);
  1078. last_high_band = 0; /* avoid warning */
  1079. for (j=0;j<n1;++j)
  1080. {
  1081. n = s->exponent_high_bands[s->frame_len_bits -
  1082. s->block_len_bits][j];
  1083. if (s->high_band_coded[ch][j])
  1084. {
  1085. fixed32 e2, v;
  1086. e2 = 0;
  1087. for(i = 0;i < n; ++i)
  1088. {
  1089. /*v is normalized later on so its fixed format is irrelevant*/
  1090. v = exponents[i<<bsize>>esize]>>4;
  1091. e2 += fixmul32(v, v)>>3;
  1092. }
  1093. exp_power[j] = e2/n; /*n is an int...*/
  1094. last_high_band = j;
  1095. }
  1096. exponents += n<<bsize;
  1097. }
  1098. /* main freqs and high freqs */
  1099. exponents = s->exponents[ch] + (s->coefs_start<<bsize);
  1100. for(j=-1;j<n1;++j)
  1101. {
  1102. if (j < 0)
  1103. {
  1104. n = s->high_band_start[bsize] -
  1105. s->coefs_start;
  1106. }
  1107. else
  1108. {
  1109. n = s->exponent_high_bands[s->frame_len_bits -
  1110. s->block_len_bits][j];
  1111. }
  1112. if (j >= 0 && s->high_band_coded[ch][j])
  1113. {
  1114. /* use noise with specified power */
  1115. fixed32 tmp = fixdiv32(exp_power[j],exp_power[last_high_band]);
  1116. /*mult1 is 48.16, pow_table is 48.16*/
  1117. mult1 = fixmul32(fixsqrt32(tmp),
  1118. pow_table[s->high_band_values[ch][j]+20]) >> 16;
  1119. /*this step has a fairly high degree of error for some reason*/
  1120. mult1 = fixdiv64(mult1,fixmul32(s->max_exponent[ch],s->noise_mult));
  1121. mult1 = mult1*mdct_norm>>PRECISION;
  1122. for(i = 0;i < n; ++i)
  1123. {
  1124. noise = s->noise_table[s->noise_index];
  1125. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  1126. *coefs++ = fixmul32((fixmul32(exponents[i<<bsize>>esize],noise)>>4),
  1127. Fixed32From64(mult1)) >>2;
  1128. }
  1129. exponents += n<<bsize;
  1130. }
  1131. else
  1132. {
  1133. /* coded values + small noise */
  1134. for(i = 0;i < n; ++i)
  1135. {
  1136. noise = s->noise_table[s->noise_index];
  1137. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  1138. /*don't forget to renormalize the noise*/
  1139. temp1 = (((int32_t)*coefs1++)<<16) + (noise>>4);
  1140. temp2 = fixmul32(exponents[i<<bsize>>esize], mult>>18);
  1141. *coefs++ = fixmul32(temp1, temp2);
  1142. }
  1143. exponents += n<<bsize;
  1144. }
  1145. }
  1146. /* very high freqs : noise */
  1147. n = s->block_len - s->coefs_end[bsize];
  1148. mult2 = fixmul32(mult>>16,exponents[((-1<<bsize))>>esize]) ;
  1149. for (i = 0; i < n; ++i)
  1150. {
  1151. /*renormalize the noise product and then reduce to 14.18 precison*/
  1152. *coefs++ = fixmul32(s->noise_table[s->noise_index],mult2) >>6;
  1153. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  1154. }
  1155. }
  1156. else
  1157. {
  1158. /*Noise coding not used, simply convert from exp to fixed representation*/
  1159. fixed32 mult3 = (fixed32)(fixdiv64(pow_table[total_gain+20],
  1160. Fixed32To64(s->max_exponent[ch])));
  1161. mult3 = fixmul32(mult3, mdct_norm);
  1162. /*zero the first 3 coefficients for WMA V1, does nothing otherwise*/
  1163. for(i=0; i<s->coefs_start; i++)
  1164. *coefs++=0;
  1165. n = nb_coefs[ch];
  1166. /* XXX: optimize more, unrolling this loop in asm
  1167. might be a good idea */
  1168. for(i = 0;i < n; ++i)
  1169. {
  1170. /*ffmpeg imdct needs 15.17, while tremor 14.18*/
  1171. atemp = (coefs1[i] * mult3)>>2;
  1172. *coefs++=fixmul32(atemp,exponents[i<<bsize>>esize]);
  1173. }
  1174. n = s->block_len - s->coefs_end[bsize];
  1175. memset(coefs, 0, n*sizeof(fixed32));
  1176. }
  1177. }
  1178. }
  1179. if (s->ms_stereo && s->channel_coded[1])
  1180. {
  1181. fixed32 a, b;
  1182. int i;
  1183. fixed32 (*coefs)[MAX_CHANNELS][BLOCK_MAX_SIZE] = (s->coefs);
  1184. /* nominal case for ms stereo: we do it before mdct */
  1185. /* no need to optimize this case because it should almost
  1186. never happen */
  1187. if (!s->channel_coded[0])
  1188. {
  1189. memset((*(s->coefs))[0], 0, sizeof(fixed32) * s->block_len);
  1190. s->channel_coded[0] = 1;
  1191. }
  1192. for(i = 0; i < s->block_len; ++i)
  1193. {
  1194. a = (*coefs)[0][i];
  1195. b = (*coefs)[1][i];
  1196. (*coefs)[0][i] = a + b;
  1197. (*coefs)[1][i] = a - b;
  1198. }
  1199. }
  1200. for(ch = 0; ch < s->nb_channels; ++ch)
  1201. {
  1202. if (s->channel_coded[ch])
  1203. {
  1204. int n4, index;
  1205. n4 = s->block_len >>1;
  1206. /*faster IMDCT from Vorbis*/
  1207. mdct_backward( (1 << (s->block_len_bits+1)), (int32_t*)(*(s->coefs))[ch], (int32_t*)scratch_buffer);
  1208. /*slower but more easily understood IMDCT from FFMPEG*/
  1209. //ff_imdct_calc(&s->mdct_ctx[bsize],
  1210. // output,
  1211. // (*(s->coefs))[ch]);
  1212. /* add in the frame */
  1213. index = (s->frame_len / 2) + s->block_pos - n4;
  1214. wma_window(s, scratch_buffer, &((*s->frame_out)[ch][index]));
  1215. /* specific fast case for ms-stereo : add to second
  1216. channel if it is not coded */
  1217. if (s->ms_stereo && !s->channel_coded[1])
  1218. {
  1219. wma_window(s, scratch_buffer, &((*s->frame_out)[1][index]));
  1220. }
  1221. }
  1222. }
  1223. next:
  1224. /* update block number */
  1225. ++s->block_num;
  1226. s->block_pos += s->block_len;
  1227. if (s->block_pos >= s->frame_len)
  1228. {
  1229. return 1;
  1230. }
  1231. else
  1232. {
  1233. return 0;
  1234. }
  1235. }
  1236. /* decode a frame of frame_len samples */
  1237. static int wma_decode_frame(WMADecodeContext *s, int32_t *samples)
  1238. {
  1239. int ret, i, n, ch, incr;
  1240. int32_t *ptr;
  1241. fixed32 *iptr;
  1242. /* read each block */
  1243. s->block_num = 0;
  1244. s->block_pos = 0;
  1245. for(;;)
  1246. {
  1247. ret = wma_decode_block(s, samples);
  1248. if (ret < 0)
  1249. {
  1250. DEBUGF("wma_decode_block failed with code %d\n", ret);
  1251. return -1;
  1252. }
  1253. if (ret)
  1254. {
  1255. break;
  1256. }
  1257. }
  1258. /* return frame with full 30-bit precision */
  1259. n = s->frame_len;
  1260. incr = s->nb_channels;
  1261. for(ch = 0; ch < s->nb_channels; ++ch)
  1262. {
  1263. ptr = samples + ch;
  1264. iptr = &((*s->frame_out)[ch][0]);
  1265. for (i=0;i<n;++i)
  1266. {
  1267. *ptr = (*iptr++);
  1268. ptr += incr;
  1269. }
  1270. memmove(&((*s->frame_out)[ch][0]), &((*s->frame_out)[ch][s->frame_len]),
  1271. s->frame_len * sizeof(fixed32));
  1272. }
  1273. return 0;
  1274. }
  1275. /* Initialise the superframe decoding */
  1276. int wma_decode_superframe_init(WMADecodeContext* s,
  1277. const uint8_t *buf, /*input*/
  1278. int buf_size)
  1279. {
  1280. if (buf_size==0)
  1281. {
  1282. s->last_superframe_len = 0;
  1283. return 0;
  1284. }
  1285. s->current_frame = 0;
  1286. init_get_bits(&s->gb, buf, buf_size*8);
  1287. if (s->use_bit_reservoir)
  1288. {
  1289. /* read super frame header */
  1290. skip_bits(&s->gb, 4); /* super frame index */
  1291. s->nb_frames = get_bits(&s->gb, 4);
  1292. if (s->last_superframe_len == 0)
  1293. s->nb_frames --;
  1294. else if (s->nb_frames == 0)
  1295. s->nb_frames++;
  1296. s->bit_offset = get_bits(&s->gb, s->byte_offset_bits + 3);
  1297. } else {
  1298. s->nb_frames = 1;
  1299. }
  1300. return 1;
  1301. }
  1302. /* Decode a single frame in the current superframe - return -1 if
  1303. there was a decoding error, or the number of samples decoded.
  1304. */
  1305. int wma_decode_superframe_frame(WMADecodeContext* s,
  1306. int32_t* samples, /*output*/
  1307. const uint8_t *buf, /*input*/
  1308. int buf_size)
  1309. {
  1310. int pos, len;
  1311. uint8_t *q;
  1312. int done = 0;
  1313. if ((s->use_bit_reservoir) && (s->current_frame == 0))
  1314. {
  1315. if (s->last_superframe_len > 0)
  1316. {
  1317. /* add s->bit_offset bits to last frame */
  1318. if ((s->last_superframe_len + ((s->bit_offset + 7) >> 3)) >
  1319. MAX_CODED_SUPERFRAME_SIZE)
  1320. {
  1321. DEBUGF("superframe size too large error\n");
  1322. goto fail;
  1323. }
  1324. q = s->last_superframe + s->last_superframe_len;
  1325. len = s->bit_offset;
  1326. while (len > 7)
  1327. {
  1328. *q++ = (get_bits)(&s->gb, 8);
  1329. len -= 8;
  1330. }
  1331. if (len > 0)
  1332. {
  1333. *q++ = (get_bits)(&s->gb, len) << (8 - len);
  1334. }
  1335. /* XXX: s->bit_offset bits into last frame */
  1336. init_get_bits(&s->gb, s->last_superframe, MAX_CODED_SUPERFRAME_SIZE*8);
  1337. /* skip unused bits */
  1338. if (s->last_bitoffset > 0)
  1339. skip_bits(&s->gb, s->last_bitoffset);
  1340. /* this frame is stored in the last superframe and in the
  1341. current one */
  1342. if (wma_decode_frame(s, samples) < 0)
  1343. {
  1344. goto fail;
  1345. }
  1346. done = 1;
  1347. }
  1348. /* read each frame starting from s->bit_offset */
  1349. pos = s->bit_offset + 4 + 4 + s->byte_offset_bits + 3;
  1350. init_get_bits(&s->gb, buf + (pos >> 3), (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3))*8);
  1351. len = pos & 7;
  1352. if (len > 0)
  1353. skip_bits(&s->gb, len);
  1354. s->reset_block_lengths = 1;
  1355. }
  1356. /* If we haven't decoded a frame yet, do it now */
  1357. if (!done)
  1358. {
  1359. if (wma_decode_frame(s, samples) < 0)
  1360. {
  1361. goto fail;
  1362. }
  1363. }
  1364. s->current_frame++;
  1365. if ((s->use_bit_reservoir) && (s->current_frame == s->nb_frames))
  1366. {
  1367. /* we copy the end of the frame in the last frame buffer */
  1368. pos = get_bits_count(&s->gb) + ((s->bit_offset + 4 + 4 + s->byte_offset_bits + 3) & ~7);
  1369. s->last_bitoffset = pos & 7;
  1370. pos >>= 3;
  1371. len = buf_size - pos;
  1372. if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0)
  1373. {
  1374. DEBUGF("superframe size too large error after decoding\n");
  1375. goto fail;
  1376. }
  1377. s->last_superframe_len = len;
  1378. memcpy(s->last_superframe, buf + pos, len);
  1379. }
  1380. return s->frame_len;
  1381. fail:
  1382. /* when error, we reset the bit reservoir */
  1383. s->last_superframe_len = 0;
  1384. return -1;
  1385. }