cmsis_armclang_ltm.h 54 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898
  1. /**************************************************************************//**
  2. * @file cmsis_armclang_ltm.h
  3. * @brief CMSIS compiler armclang (Arm Compiler 6) header file
  4. * @version V1.2.0
  5. * @date 08. May 2019
  6. ******************************************************************************/
  7. /*
  8. * Copyright (c) 2018-2019 Arm Limited. All rights reserved.
  9. *
  10. * SPDX-License-Identifier: Apache-2.0
  11. *
  12. * Licensed under the Apache License, Version 2.0 (the License); you may
  13. * not use this file except in compliance with the License.
  14. * You may obtain a copy of the License at
  15. *
  16. * www.apache.org/licenses/LICENSE-2.0
  17. *
  18. * Unless required by applicable law or agreed to in writing, software
  19. * distributed under the License is distributed on an AS IS BASIS, WITHOUT
  20. * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  21. * See the License for the specific language governing permissions and
  22. * limitations under the License.
  23. */
  24. /*lint -esym(9058, IRQn)*/ /* disable MISRA 2012 Rule 2.4 for IRQn */
  25. #ifndef __CMSIS_ARMCLANG_H
  26. #define __CMSIS_ARMCLANG_H
  27. #pragma clang system_header /* treat file as system include file */
  28. #ifndef __ARM_COMPAT_H
  29. #include <arm_compat.h> /* Compatibility header for Arm Compiler 5 intrinsics */
  30. #endif
  31. /* CMSIS compiler specific defines */
  32. #ifndef __ASM
  33. #define __ASM __asm
  34. #endif
  35. #ifndef __INLINE
  36. #define __INLINE __inline
  37. #endif
  38. #ifndef __STATIC_INLINE
  39. #define __STATIC_INLINE static __inline
  40. #endif
  41. #ifndef __STATIC_FORCEINLINE
  42. #define __STATIC_FORCEINLINE __attribute__((always_inline)) static __inline
  43. #endif
  44. #ifndef __NO_RETURN
  45. #define __NO_RETURN __attribute__((__noreturn__))
  46. #endif
  47. #ifndef __USED
  48. #define __USED __attribute__((used))
  49. #endif
  50. #ifndef __WEAK
  51. #define __WEAK __attribute__((weak))
  52. #endif
  53. #ifndef __PACKED
  54. #define __PACKED __attribute__((packed, aligned(1)))
  55. #endif
  56. #ifndef __PACKED_STRUCT
  57. #define __PACKED_STRUCT struct __attribute__((packed, aligned(1)))
  58. #endif
  59. #ifndef __PACKED_UNION
  60. #define __PACKED_UNION union __attribute__((packed, aligned(1)))
  61. #endif
  62. #ifndef __UNALIGNED_UINT32 /* deprecated */
  63. #pragma clang diagnostic push
  64. #pragma clang diagnostic ignored "-Wpacked"
  65. /*lint -esym(9058, T_UINT32)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT32 */
  66. struct __attribute__((packed)) T_UINT32
  67. {
  68. uint32_t v;
  69. };
  70. #pragma clang diagnostic pop
  71. #define __UNALIGNED_UINT32(x) (((struct T_UINT32 *)(x))->v)
  72. #endif
  73. #ifndef __UNALIGNED_UINT16_WRITE
  74. #pragma clang diagnostic push
  75. #pragma clang diagnostic ignored "-Wpacked"
  76. /*lint -esym(9058, T_UINT16_WRITE)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT16_WRITE */
  77. __PACKED_STRUCT T_UINT16_WRITE { uint16_t v; };
  78. #pragma clang diagnostic pop
  79. #define __UNALIGNED_UINT16_WRITE(addr, val) (void)((((struct T_UINT16_WRITE *)(void *)(addr))->v) = (val))
  80. #endif
  81. #ifndef __UNALIGNED_UINT16_READ
  82. #pragma clang diagnostic push
  83. #pragma clang diagnostic ignored "-Wpacked"
  84. /*lint -esym(9058, T_UINT16_READ)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT16_READ */
  85. __PACKED_STRUCT T_UINT16_READ { uint16_t v; };
  86. #pragma clang diagnostic pop
  87. #define __UNALIGNED_UINT16_READ(addr) (((const struct T_UINT16_READ *)(const void *)(addr))->v)
  88. #endif
  89. #ifndef __UNALIGNED_UINT32_WRITE
  90. #pragma clang diagnostic push
  91. #pragma clang diagnostic ignored "-Wpacked"
  92. /*lint -esym(9058, T_UINT32_WRITE)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT32_WRITE */
  93. __PACKED_STRUCT T_UINT32_WRITE { uint32_t v; };
  94. #pragma clang diagnostic pop
  95. #define __UNALIGNED_UINT32_WRITE(addr, val) (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val))
  96. #endif
  97. #ifndef __UNALIGNED_UINT32_READ
  98. #pragma clang diagnostic push
  99. #pragma clang diagnostic ignored "-Wpacked"
  100. /*lint -esym(9058, T_UINT32_READ)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT32_READ */
  101. __PACKED_STRUCT T_UINT32_READ { uint32_t v; };
  102. #pragma clang diagnostic pop
  103. #define __UNALIGNED_UINT32_READ(addr) (((const struct T_UINT32_READ *)(const void *)(addr))->v)
  104. #endif
  105. #ifndef __ALIGNED
  106. #define __ALIGNED(x) __attribute__((aligned(x)))
  107. #endif
  108. #ifndef __RESTRICT
  109. #define __RESTRICT __restrict
  110. #endif
  111. #ifndef __COMPILER_BARRIER
  112. #define __COMPILER_BARRIER() __ASM volatile("":::"memory")
  113. #endif
  114. /* ######################### Startup and Lowlevel Init ######################## */
  115. #ifndef __PROGRAM_START
  116. #define __PROGRAM_START __main
  117. #endif
  118. #ifndef __INITIAL_SP
  119. #define __INITIAL_SP Image$$ARM_LIB_STACK$$ZI$$Limit
  120. #endif
  121. #ifndef __STACK_LIMIT
  122. #define __STACK_LIMIT Image$$ARM_LIB_STACK$$ZI$$Base
  123. #endif
  124. #ifndef __VECTOR_TABLE
  125. #define __VECTOR_TABLE __Vectors
  126. #endif
  127. #ifndef __VECTOR_TABLE_ATTRIBUTE
  128. #define __VECTOR_TABLE_ATTRIBUTE __attribute((used, section("RESET")))
  129. #endif
  130. /* ########################### Core Function Access ########################### */
  131. /** \ingroup CMSIS_Core_FunctionInterface
  132. \defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions
  133. @{
  134. */
  135. /**
  136. \brief Enable IRQ Interrupts
  137. \details Enables IRQ interrupts by clearing the I-bit in the CPSR.
  138. Can only be executed in Privileged modes.
  139. */
  140. /* intrinsic void __enable_irq(); see arm_compat.h */
  141. /**
  142. \brief Disable IRQ Interrupts
  143. \details Disables IRQ interrupts by setting the I-bit in the CPSR.
  144. Can only be executed in Privileged modes.
  145. */
  146. /* intrinsic void __disable_irq(); see arm_compat.h */
  147. /**
  148. \brief Get Control Register
  149. \details Returns the content of the Control Register.
  150. \return Control Register value
  151. */
  152. __STATIC_FORCEINLINE uint32_t __get_CONTROL(void)
  153. {
  154. uint32_t result;
  155. __ASM volatile("MRS %0, control" : "=r"(result));
  156. return (result);
  157. }
  158. #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
  159. /**
  160. \brief Get Control Register (non-secure)
  161. \details Returns the content of the non-secure Control Register when in secure mode.
  162. \return non-secure Control Register value
  163. */
  164. __STATIC_FORCEINLINE uint32_t __TZ_get_CONTROL_NS(void)
  165. {
  166. uint32_t result;
  167. __ASM volatile("MRS %0, control_ns" : "=r"(result));
  168. return (result);
  169. }
  170. #endif
  171. /**
  172. \brief Set Control Register
  173. \details Writes the given value to the Control Register.
  174. \param [in] control Control Register value to set
  175. */
  176. __STATIC_FORCEINLINE void __set_CONTROL(uint32_t control)
  177. {
  178. __ASM volatile("MSR control, %0" : : "r"(control) : "memory");
  179. }
  180. #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
  181. /**
  182. \brief Set Control Register (non-secure)
  183. \details Writes the given value to the non-secure Control Register when in secure state.
  184. \param [in] control Control Register value to set
  185. */
  186. __STATIC_FORCEINLINE void __TZ_set_CONTROL_NS(uint32_t control)
  187. {
  188. __ASM volatile("MSR control_ns, %0" : : "r"(control) : "memory");
  189. }
  190. #endif
  191. /**
  192. \brief Get IPSR Register
  193. \details Returns the content of the IPSR Register.
  194. \return IPSR Register value
  195. */
  196. __STATIC_FORCEINLINE uint32_t __get_IPSR(void)
  197. {
  198. uint32_t result;
  199. __ASM volatile("MRS %0, ipsr" : "=r"(result));
  200. return (result);
  201. }
  202. /**
  203. \brief Get APSR Register
  204. \details Returns the content of the APSR Register.
  205. \return APSR Register value
  206. */
  207. __STATIC_FORCEINLINE uint32_t __get_APSR(void)
  208. {
  209. uint32_t result;
  210. __ASM volatile("MRS %0, apsr" : "=r"(result));
  211. return (result);
  212. }
  213. /**
  214. \brief Get xPSR Register
  215. \details Returns the content of the xPSR Register.
  216. \return xPSR Register value
  217. */
  218. __STATIC_FORCEINLINE uint32_t __get_xPSR(void)
  219. {
  220. uint32_t result;
  221. __ASM volatile("MRS %0, xpsr" : "=r"(result));
  222. return (result);
  223. }
  224. /**
  225. \brief Get Process Stack Pointer
  226. \details Returns the current value of the Process Stack Pointer (PSP).
  227. \return PSP Register value
  228. */
  229. __STATIC_FORCEINLINE uint32_t __get_PSP(void)
  230. {
  231. uint32_t result;
  232. __ASM volatile("MRS %0, psp" : "=r"(result));
  233. return (result);
  234. }
  235. #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
  236. /**
  237. \brief Get Process Stack Pointer (non-secure)
  238. \details Returns the current value of the non-secure Process Stack Pointer (PSP) when in secure state.
  239. \return PSP Register value
  240. */
  241. __STATIC_FORCEINLINE uint32_t __TZ_get_PSP_NS(void)
  242. {
  243. uint32_t result;
  244. __ASM volatile("MRS %0, psp_ns" : "=r"(result));
  245. return (result);
  246. }
  247. #endif
  248. /**
  249. \brief Set Process Stack Pointer
  250. \details Assigns the given value to the Process Stack Pointer (PSP).
  251. \param [in] topOfProcStack Process Stack Pointer value to set
  252. */
  253. __STATIC_FORCEINLINE void __set_PSP(uint32_t topOfProcStack)
  254. {
  255. __ASM volatile("MSR psp, %0" : : "r"(topOfProcStack) :);
  256. }
  257. #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
  258. /**
  259. \brief Set Process Stack Pointer (non-secure)
  260. \details Assigns the given value to the non-secure Process Stack Pointer (PSP) when in secure state.
  261. \param [in] topOfProcStack Process Stack Pointer value to set
  262. */
  263. __STATIC_FORCEINLINE void __TZ_set_PSP_NS(uint32_t topOfProcStack)
  264. {
  265. __ASM volatile("MSR psp_ns, %0" : : "r"(topOfProcStack) :);
  266. }
  267. #endif
  268. /**
  269. \brief Get Main Stack Pointer
  270. \details Returns the current value of the Main Stack Pointer (MSP).
  271. \return MSP Register value
  272. */
  273. __STATIC_FORCEINLINE uint32_t __get_MSP(void)
  274. {
  275. uint32_t result;
  276. __ASM volatile("MRS %0, msp" : "=r"(result));
  277. return (result);
  278. }
  279. #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
  280. /**
  281. \brief Get Main Stack Pointer (non-secure)
  282. \details Returns the current value of the non-secure Main Stack Pointer (MSP) when in secure state.
  283. \return MSP Register value
  284. */
  285. __STATIC_FORCEINLINE uint32_t __TZ_get_MSP_NS(void)
  286. {
  287. uint32_t result;
  288. __ASM volatile("MRS %0, msp_ns" : "=r"(result));
  289. return (result);
  290. }
  291. #endif
  292. /**
  293. \brief Set Main Stack Pointer
  294. \details Assigns the given value to the Main Stack Pointer (MSP).
  295. \param [in] topOfMainStack Main Stack Pointer value to set
  296. */
  297. __STATIC_FORCEINLINE void __set_MSP(uint32_t topOfMainStack)
  298. {
  299. __ASM volatile("MSR msp, %0" : : "r"(topOfMainStack) :);
  300. }
  301. #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
  302. /**
  303. \brief Set Main Stack Pointer (non-secure)
  304. \details Assigns the given value to the non-secure Main Stack Pointer (MSP) when in secure state.
  305. \param [in] topOfMainStack Main Stack Pointer value to set
  306. */
  307. __STATIC_FORCEINLINE void __TZ_set_MSP_NS(uint32_t topOfMainStack)
  308. {
  309. __ASM volatile("MSR msp_ns, %0" : : "r"(topOfMainStack) :);
  310. }
  311. #endif
  312. #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
  313. /**
  314. \brief Get Stack Pointer (non-secure)
  315. \details Returns the current value of the non-secure Stack Pointer (SP) when in secure state.
  316. \return SP Register value
  317. */
  318. __STATIC_FORCEINLINE uint32_t __TZ_get_SP_NS(void)
  319. {
  320. uint32_t result;
  321. __ASM volatile("MRS %0, sp_ns" : "=r"(result));
  322. return (result);
  323. }
  324. /**
  325. \brief Set Stack Pointer (non-secure)
  326. \details Assigns the given value to the non-secure Stack Pointer (SP) when in secure state.
  327. \param [in] topOfStack Stack Pointer value to set
  328. */
  329. __STATIC_FORCEINLINE void __TZ_set_SP_NS(uint32_t topOfStack)
  330. {
  331. __ASM volatile("MSR sp_ns, %0" : : "r"(topOfStack) :);
  332. }
  333. #endif
  334. /**
  335. \brief Get Priority Mask
  336. \details Returns the current state of the priority mask bit from the Priority Mask Register.
  337. \return Priority Mask value
  338. */
  339. __STATIC_FORCEINLINE uint32_t __get_PRIMASK(void)
  340. {
  341. uint32_t result;
  342. __ASM volatile("MRS %0, primask" : "=r"(result));
  343. return (result);
  344. }
  345. #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
  346. /**
  347. \brief Get Priority Mask (non-secure)
  348. \details Returns the current state of the non-secure priority mask bit from the Priority Mask Register when in secure state.
  349. \return Priority Mask value
  350. */
  351. __STATIC_FORCEINLINE uint32_t __TZ_get_PRIMASK_NS(void)
  352. {
  353. uint32_t result;
  354. __ASM volatile("MRS %0, primask_ns" : "=r"(result));
  355. return (result);
  356. }
  357. #endif
  358. /**
  359. \brief Set Priority Mask
  360. \details Assigns the given value to the Priority Mask Register.
  361. \param [in] priMask Priority Mask
  362. */
  363. __STATIC_FORCEINLINE void __set_PRIMASK(uint32_t priMask)
  364. {
  365. __ASM volatile("MSR primask, %0" : : "r"(priMask) : "memory");
  366. }
  367. #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
  368. /**
  369. \brief Set Priority Mask (non-secure)
  370. \details Assigns the given value to the non-secure Priority Mask Register when in secure state.
  371. \param [in] priMask Priority Mask
  372. */
  373. __STATIC_FORCEINLINE void __TZ_set_PRIMASK_NS(uint32_t priMask)
  374. {
  375. __ASM volatile("MSR primask_ns, %0" : : "r"(priMask) : "memory");
  376. }
  377. #endif
  378. #if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
  379. (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
  380. (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) )
  381. /**
  382. \brief Enable FIQ
  383. \details Enables FIQ interrupts by clearing the F-bit in the CPSR.
  384. Can only be executed in Privileged modes.
  385. */
  386. #define __enable_fault_irq __enable_fiq /* see arm_compat.h */
  387. /**
  388. \brief Disable FIQ
  389. \details Disables FIQ interrupts by setting the F-bit in the CPSR.
  390. Can only be executed in Privileged modes.
  391. */
  392. #define __disable_fault_irq __disable_fiq /* see arm_compat.h */
  393. /**
  394. \brief Get Base Priority
  395. \details Returns the current value of the Base Priority register.
  396. \return Base Priority register value
  397. */
  398. __STATIC_FORCEINLINE uint32_t __get_BASEPRI(void)
  399. {
  400. uint32_t result;
  401. __ASM volatile("MRS %0, basepri" : "=r"(result));
  402. return (result);
  403. }
  404. #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
  405. /**
  406. \brief Get Base Priority (non-secure)
  407. \details Returns the current value of the non-secure Base Priority register when in secure state.
  408. \return Base Priority register value
  409. */
  410. __STATIC_FORCEINLINE uint32_t __TZ_get_BASEPRI_NS(void)
  411. {
  412. uint32_t result;
  413. __ASM volatile("MRS %0, basepri_ns" : "=r"(result));
  414. return (result);
  415. }
  416. #endif
  417. /**
  418. \brief Set Base Priority
  419. \details Assigns the given value to the Base Priority register.
  420. \param [in] basePri Base Priority value to set
  421. */
  422. __STATIC_FORCEINLINE void __set_BASEPRI(uint32_t basePri)
  423. {
  424. __ASM volatile("MSR basepri, %0" : : "r"(basePri) : "memory");
  425. }
  426. #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
  427. /**
  428. \brief Set Base Priority (non-secure)
  429. \details Assigns the given value to the non-secure Base Priority register when in secure state.
  430. \param [in] basePri Base Priority value to set
  431. */
  432. __STATIC_FORCEINLINE void __TZ_set_BASEPRI_NS(uint32_t basePri)
  433. {
  434. __ASM volatile("MSR basepri_ns, %0" : : "r"(basePri) : "memory");
  435. }
  436. #endif
  437. /**
  438. \brief Set Base Priority with condition
  439. \details Assigns the given value to the Base Priority register only if BASEPRI masking is disabled,
  440. or the new value increases the BASEPRI priority level.
  441. \param [in] basePri Base Priority value to set
  442. */
  443. __STATIC_FORCEINLINE void __set_BASEPRI_MAX(uint32_t basePri)
  444. {
  445. __ASM volatile("MSR basepri_max, %0" : : "r"(basePri) : "memory");
  446. }
  447. /**
  448. \brief Get Fault Mask
  449. \details Returns the current value of the Fault Mask register.
  450. \return Fault Mask register value
  451. */
  452. __STATIC_FORCEINLINE uint32_t __get_FAULTMASK(void)
  453. {
  454. uint32_t result;
  455. __ASM volatile("MRS %0, faultmask" : "=r"(result));
  456. return (result);
  457. }
  458. #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
  459. /**
  460. \brief Get Fault Mask (non-secure)
  461. \details Returns the current value of the non-secure Fault Mask register when in secure state.
  462. \return Fault Mask register value
  463. */
  464. __STATIC_FORCEINLINE uint32_t __TZ_get_FAULTMASK_NS(void)
  465. {
  466. uint32_t result;
  467. __ASM volatile("MRS %0, faultmask_ns" : "=r"(result));
  468. return (result);
  469. }
  470. #endif
  471. /**
  472. \brief Set Fault Mask
  473. \details Assigns the given value to the Fault Mask register.
  474. \param [in] faultMask Fault Mask value to set
  475. */
  476. __STATIC_FORCEINLINE void __set_FAULTMASK(uint32_t faultMask)
  477. {
  478. __ASM volatile("MSR faultmask, %0" : : "r"(faultMask) : "memory");
  479. }
  480. #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
  481. /**
  482. \brief Set Fault Mask (non-secure)
  483. \details Assigns the given value to the non-secure Fault Mask register when in secure state.
  484. \param [in] faultMask Fault Mask value to set
  485. */
  486. __STATIC_FORCEINLINE void __TZ_set_FAULTMASK_NS(uint32_t faultMask)
  487. {
  488. __ASM volatile("MSR faultmask_ns, %0" : : "r"(faultMask) : "memory");
  489. }
  490. #endif
  491. #endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
  492. (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
  493. (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) */
  494. #if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
  495. (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) )
  496. /**
  497. \brief Get Process Stack Pointer Limit
  498. Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
  499. Stack Pointer Limit register hence zero is returned always in non-secure
  500. mode.
  501. \details Returns the current value of the Process Stack Pointer Limit (PSPLIM).
  502. \return PSPLIM Register value
  503. */
  504. __STATIC_FORCEINLINE uint32_t __get_PSPLIM(void)
  505. {
  506. #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
  507. (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
  508. // without main extensions, the non-secure PSPLIM is RAZ/WI
  509. return 0U;
  510. #else
  511. uint32_t result;
  512. __ASM volatile("MRS %0, psplim" : "=r"(result));
  513. return result;
  514. #endif
  515. }
  516. #if (defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3))
  517. /**
  518. \brief Get Process Stack Pointer Limit (non-secure)
  519. Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
  520. Stack Pointer Limit register hence zero is returned always in non-secure
  521. mode.
  522. \details Returns the current value of the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state.
  523. \return PSPLIM Register value
  524. */
  525. __STATIC_FORCEINLINE uint32_t __TZ_get_PSPLIM_NS(void)
  526. {
  527. #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
  528. // without main extensions, the non-secure PSPLIM is RAZ/WI
  529. return 0U;
  530. #else
  531. uint32_t result;
  532. __ASM volatile("MRS %0, psplim_ns" : "=r"(result));
  533. return result;
  534. #endif
  535. }
  536. #endif
  537. /**
  538. \brief Set Process Stack Pointer Limit
  539. Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
  540. Stack Pointer Limit register hence the write is silently ignored in non-secure
  541. mode.
  542. \details Assigns the given value to the Process Stack Pointer Limit (PSPLIM).
  543. \param [in] ProcStackPtrLimit Process Stack Pointer Limit value to set
  544. */
  545. __STATIC_FORCEINLINE void __set_PSPLIM(uint32_t ProcStackPtrLimit)
  546. {
  547. #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
  548. (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
  549. // without main extensions, the non-secure PSPLIM is RAZ/WI
  550. (void)ProcStackPtrLimit;
  551. #else
  552. __ASM volatile("MSR psplim, %0" : : "r"(ProcStackPtrLimit));
  553. #endif
  554. }
  555. #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
  556. /**
  557. \brief Set Process Stack Pointer (non-secure)
  558. Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
  559. Stack Pointer Limit register hence the write is silently ignored in non-secure
  560. mode.
  561. \details Assigns the given value to the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state.
  562. \param [in] ProcStackPtrLimit Process Stack Pointer Limit value to set
  563. */
  564. __STATIC_FORCEINLINE void __TZ_set_PSPLIM_NS(uint32_t ProcStackPtrLimit)
  565. {
  566. #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
  567. // without main extensions, the non-secure PSPLIM is RAZ/WI
  568. (void)ProcStackPtrLimit;
  569. #else
  570. __ASM volatile("MSR psplim_ns, %0\n" : : "r"(ProcStackPtrLimit));
  571. #endif
  572. }
  573. #endif
  574. /**
  575. \brief Get Main Stack Pointer Limit
  576. Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
  577. Stack Pointer Limit register hence zero is returned always.
  578. \details Returns the current value of the Main Stack Pointer Limit (MSPLIM).
  579. \return MSPLIM Register value
  580. */
  581. __STATIC_FORCEINLINE uint32_t __get_MSPLIM(void)
  582. {
  583. #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
  584. (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
  585. // without main extensions, the non-secure MSPLIM is RAZ/WI
  586. return 0U;
  587. #else
  588. uint32_t result;
  589. __ASM volatile("MRS %0, msplim" : "=r"(result));
  590. return result;
  591. #endif
  592. }
  593. #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
  594. /**
  595. \brief Get Main Stack Pointer Limit (non-secure)
  596. Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
  597. Stack Pointer Limit register hence zero is returned always.
  598. \details Returns the current value of the non-secure Main Stack Pointer Limit(MSPLIM) when in secure state.
  599. \return MSPLIM Register value
  600. */
  601. __STATIC_FORCEINLINE uint32_t __TZ_get_MSPLIM_NS(void)
  602. {
  603. #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
  604. // without main extensions, the non-secure MSPLIM is RAZ/WI
  605. return 0U;
  606. #else
  607. uint32_t result;
  608. __ASM volatile("MRS %0, msplim_ns" : "=r"(result));
  609. return result;
  610. #endif
  611. }
  612. #endif
  613. /**
  614. \brief Set Main Stack Pointer Limit
  615. Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
  616. Stack Pointer Limit register hence the write is silently ignored.
  617. \details Assigns the given value to the Main Stack Pointer Limit (MSPLIM).
  618. \param [in] MainStackPtrLimit Main Stack Pointer Limit value to set
  619. */
  620. __STATIC_FORCEINLINE void __set_MSPLIM(uint32_t MainStackPtrLimit)
  621. {
  622. #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
  623. (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
  624. // without main extensions, the non-secure MSPLIM is RAZ/WI
  625. (void)MainStackPtrLimit;
  626. #else
  627. __ASM volatile("MSR msplim, %0" : : "r"(MainStackPtrLimit));
  628. #endif
  629. }
  630. #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
  631. /**
  632. \brief Set Main Stack Pointer Limit (non-secure)
  633. Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
  634. Stack Pointer Limit register hence the write is silently ignored.
  635. \details Assigns the given value to the non-secure Main Stack Pointer Limit (MSPLIM) when in secure state.
  636. \param [in] MainStackPtrLimit Main Stack Pointer value to set
  637. */
  638. __STATIC_FORCEINLINE void __TZ_set_MSPLIM_NS(uint32_t MainStackPtrLimit)
  639. {
  640. #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
  641. // without main extensions, the non-secure MSPLIM is RAZ/WI
  642. (void)MainStackPtrLimit;
  643. #else
  644. __ASM volatile("MSR msplim_ns, %0" : : "r"(MainStackPtrLimit));
  645. #endif
  646. }
  647. #endif
  648. #endif /* ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
  649. (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) */
  650. /**
  651. \brief Get FPSCR
  652. \details Returns the current value of the Floating Point Status/Control register.
  653. \return Floating Point Status/Control register value
  654. */
  655. #if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
  656. (defined (__FPU_USED ) && (__FPU_USED == 1U)) )
  657. #define __get_FPSCR (uint32_t)__builtin_arm_get_fpscr
  658. #else
  659. #define __get_FPSCR() ((uint32_t)0U)
  660. #endif
  661. /**
  662. \brief Set FPSCR
  663. \details Assigns the given value to the Floating Point Status/Control register.
  664. \param [in] fpscr Floating Point Status/Control value to set
  665. */
  666. #if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
  667. (defined (__FPU_USED ) && (__FPU_USED == 1U)) )
  668. #define __set_FPSCR __builtin_arm_set_fpscr
  669. #else
  670. #define __set_FPSCR(x) ((void)(x))
  671. #endif
  672. /*@} end of CMSIS_Core_RegAccFunctions */
  673. /* ########################## Core Instruction Access ######################### */
  674. /** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface
  675. Access to dedicated instructions
  676. @{
  677. */
  678. /* Define macros for porting to both thumb1 and thumb2.
  679. * For thumb1, use low register (r0-r7), specified by constraint "l"
  680. * Otherwise, use general registers, specified by constraint "r" */
  681. #if defined (__thumb__) && !defined (__thumb2__)
  682. #define __CMSIS_GCC_OUT_REG(r) "=l" (r)
  683. #define __CMSIS_GCC_USE_REG(r) "l" (r)
  684. #else
  685. #define __CMSIS_GCC_OUT_REG(r) "=r" (r)
  686. #define __CMSIS_GCC_USE_REG(r) "r" (r)
  687. #endif
  688. /**
  689. \brief No Operation
  690. \details No Operation does nothing. This instruction can be used for code alignment purposes.
  691. */
  692. #define __NOP __builtin_arm_nop
  693. /**
  694. \brief Wait For Interrupt
  695. \details Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs.
  696. */
  697. #define __WFI __builtin_arm_wfi
  698. /**
  699. \brief Wait For Event
  700. \details Wait For Event is a hint instruction that permits the processor to enter
  701. a low-power state until one of a number of events occurs.
  702. */
  703. #define __WFE __builtin_arm_wfe
  704. /**
  705. \brief Send Event
  706. \details Send Event is a hint instruction. It causes an event to be signaled to the CPU.
  707. */
  708. #define __SEV __builtin_arm_sev
  709. /**
  710. \brief Instruction Synchronization Barrier
  711. \details Instruction Synchronization Barrier flushes the pipeline in the processor,
  712. so that all instructions following the ISB are fetched from cache or memory,
  713. after the instruction has been completed.
  714. */
  715. #define __ISB() __builtin_arm_isb(0xF)
  716. /**
  717. \brief Data Synchronization Barrier
  718. \details Acts as a special kind of Data Memory Barrier.
  719. It completes when all explicit memory accesses before this instruction complete.
  720. */
  721. #define __DSB() __builtin_arm_dsb(0xF)
  722. /**
  723. \brief Data Memory Barrier
  724. \details Ensures the apparent order of the explicit memory operations before
  725. and after the instruction, without ensuring their completion.
  726. */
  727. #define __DMB() __builtin_arm_dmb(0xF)
  728. /**
  729. \brief Reverse byte order (32 bit)
  730. \details Reverses the byte order in unsigned integer value. For example, 0x12345678 becomes 0x78563412.
  731. \param [in] value Value to reverse
  732. \return Reversed value
  733. */
  734. #define __REV(value) __builtin_bswap32(value)
  735. /**
  736. \brief Reverse byte order (16 bit)
  737. \details Reverses the byte order within each halfword of a word. For example, 0x12345678 becomes 0x34127856.
  738. \param [in] value Value to reverse
  739. \return Reversed value
  740. */
  741. #define __REV16(value) __ROR(__REV(value), 16)
  742. /**
  743. \brief Reverse byte order (16 bit)
  744. \details Reverses the byte order in a 16-bit value and returns the signed 16-bit result. For example, 0x0080 becomes 0x8000.
  745. \param [in] value Value to reverse
  746. \return Reversed value
  747. */
  748. #define __REVSH(value) (int16_t)__builtin_bswap16(value)
  749. /**
  750. \brief Rotate Right in unsigned value (32 bit)
  751. \details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
  752. \param [in] op1 Value to rotate
  753. \param [in] op2 Number of Bits to rotate
  754. \return Rotated value
  755. */
  756. __STATIC_FORCEINLINE uint32_t __ROR(uint32_t op1, uint32_t op2)
  757. {
  758. op2 %= 32U;
  759. if (op2 == 0U)
  760. {
  761. return op1;
  762. }
  763. return (op1 >> op2) | (op1 << (32U - op2));
  764. }
  765. /**
  766. \brief Breakpoint
  767. \details Causes the processor to enter Debug state.
  768. Debug tools can use this to investigate system state when the instruction at a particular address is reached.
  769. \param [in] value is ignored by the processor.
  770. If required, a debugger can use it to store additional information about the breakpoint.
  771. */
  772. #define __BKPT(value) __ASM volatile ("bkpt "#value)
  773. /**
  774. \brief Reverse bit order of value
  775. \details Reverses the bit order of the given value.
  776. \param [in] value Value to reverse
  777. \return Reversed value
  778. */
  779. #define __RBIT __builtin_arm_rbit
  780. /**
  781. \brief Count leading zeros
  782. \details Counts the number of leading zeros of a data value.
  783. \param [in] value Value to count the leading zeros
  784. \return number of leading zeros in value
  785. */
  786. __STATIC_FORCEINLINE uint8_t __CLZ(uint32_t value)
  787. {
  788. /* Even though __builtin_clz produces a CLZ instruction on ARM, formally
  789. __builtin_clz(0) is undefined behaviour, so handle this case specially.
  790. This guarantees ARM-compatible results if happening to compile on a non-ARM
  791. target, and ensures the compiler doesn't decide to activate any
  792. optimisations using the logic "value was passed to __builtin_clz, so it
  793. is non-zero".
  794. ARM Compiler 6.10 and possibly earlier will optimise this test away, leaving a
  795. single CLZ instruction.
  796. */
  797. if (value == 0U)
  798. {
  799. return 32U;
  800. }
  801. return __builtin_clz(value);
  802. }
  803. #if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
  804. (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
  805. (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
  806. (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) )
  807. /**
  808. \brief LDR Exclusive (8 bit)
  809. \details Executes a exclusive LDR instruction for 8 bit value.
  810. \param [in] ptr Pointer to data
  811. \return value of type uint8_t at (*ptr)
  812. */
  813. #define __LDREXB (uint8_t)__builtin_arm_ldrex
  814. /**
  815. \brief LDR Exclusive (16 bit)
  816. \details Executes a exclusive LDR instruction for 16 bit values.
  817. \param [in] ptr Pointer to data
  818. \return value of type uint16_t at (*ptr)
  819. */
  820. #define __LDREXH (uint16_t)__builtin_arm_ldrex
  821. /**
  822. \brief LDR Exclusive (32 bit)
  823. \details Executes a exclusive LDR instruction for 32 bit values.
  824. \param [in] ptr Pointer to data
  825. \return value of type uint32_t at (*ptr)
  826. */
  827. #define __LDREXW (uint32_t)__builtin_arm_ldrex
  828. /**
  829. \brief STR Exclusive (8 bit)
  830. \details Executes a exclusive STR instruction for 8 bit values.
  831. \param [in] value Value to store
  832. \param [in] ptr Pointer to location
  833. \return 0 Function succeeded
  834. \return 1 Function failed
  835. */
  836. #define __STREXB (uint32_t)__builtin_arm_strex
  837. /**
  838. \brief STR Exclusive (16 bit)
  839. \details Executes a exclusive STR instruction for 16 bit values.
  840. \param [in] value Value to store
  841. \param [in] ptr Pointer to location
  842. \return 0 Function succeeded
  843. \return 1 Function failed
  844. */
  845. #define __STREXH (uint32_t)__builtin_arm_strex
  846. /**
  847. \brief STR Exclusive (32 bit)
  848. \details Executes a exclusive STR instruction for 32 bit values.
  849. \param [in] value Value to store
  850. \param [in] ptr Pointer to location
  851. \return 0 Function succeeded
  852. \return 1 Function failed
  853. */
  854. #define __STREXW (uint32_t)__builtin_arm_strex
  855. /**
  856. \brief Remove the exclusive lock
  857. \details Removes the exclusive lock which is created by LDREX.
  858. */
  859. #define __CLREX __builtin_arm_clrex
  860. #endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
  861. (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
  862. (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
  863. (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) */
  864. #if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
  865. (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
  866. (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) )
  867. /**
  868. \brief Signed Saturate
  869. \details Saturates a signed value.
  870. \param [in] value Value to be saturated
  871. \param [in] sat Bit position to saturate to (1..32)
  872. \return Saturated value
  873. */
  874. #define __SSAT __builtin_arm_ssat
  875. /**
  876. \brief Unsigned Saturate
  877. \details Saturates an unsigned value.
  878. \param [in] value Value to be saturated
  879. \param [in] sat Bit position to saturate to (0..31)
  880. \return Saturated value
  881. */
  882. #define __USAT __builtin_arm_usat
  883. /**
  884. \brief Rotate Right with Extend (32 bit)
  885. \details Moves each bit of a bitstring right by one bit.
  886. The carry input is shifted in at the left end of the bitstring.
  887. \param [in] value Value to rotate
  888. \return Rotated value
  889. */
  890. __STATIC_FORCEINLINE uint32_t __RRX(uint32_t value)
  891. {
  892. uint32_t result;
  893. __ASM volatile("rrx %0, %1" : __CMSIS_GCC_OUT_REG(result) : __CMSIS_GCC_USE_REG(value));
  894. return (result);
  895. }
  896. /**
  897. \brief LDRT Unprivileged (8 bit)
  898. \details Executes a Unprivileged LDRT instruction for 8 bit value.
  899. \param [in] ptr Pointer to data
  900. \return value of type uint8_t at (*ptr)
  901. */
  902. __STATIC_FORCEINLINE uint8_t __LDRBT(volatile uint8_t *ptr)
  903. {
  904. uint32_t result;
  905. __ASM volatile("ldrbt %0, %1" : "=r"(result) : "Q"(*ptr));
  906. return ((uint8_t) result); /* Add explicit type cast here */
  907. }
  908. /**
  909. \brief LDRT Unprivileged (16 bit)
  910. \details Executes a Unprivileged LDRT instruction for 16 bit values.
  911. \param [in] ptr Pointer to data
  912. \return value of type uint16_t at (*ptr)
  913. */
  914. __STATIC_FORCEINLINE uint16_t __LDRHT(volatile uint16_t *ptr)
  915. {
  916. uint32_t result;
  917. __ASM volatile("ldrht %0, %1" : "=r"(result) : "Q"(*ptr));
  918. return ((uint16_t) result); /* Add explicit type cast here */
  919. }
  920. /**
  921. \brief LDRT Unprivileged (32 bit)
  922. \details Executes a Unprivileged LDRT instruction for 32 bit values.
  923. \param [in] ptr Pointer to data
  924. \return value of type uint32_t at (*ptr)
  925. */
  926. __STATIC_FORCEINLINE uint32_t __LDRT(volatile uint32_t *ptr)
  927. {
  928. uint32_t result;
  929. __ASM volatile("ldrt %0, %1" : "=r"(result) : "Q"(*ptr));
  930. return (result);
  931. }
  932. /**
  933. \brief STRT Unprivileged (8 bit)
  934. \details Executes a Unprivileged STRT instruction for 8 bit values.
  935. \param [in] value Value to store
  936. \param [in] ptr Pointer to location
  937. */
  938. __STATIC_FORCEINLINE void __STRBT(uint8_t value, volatile uint8_t *ptr)
  939. {
  940. __ASM volatile("strbt %1, %0" : "=Q"(*ptr) : "r"((uint32_t)value));
  941. }
  942. /**
  943. \brief STRT Unprivileged (16 bit)
  944. \details Executes a Unprivileged STRT instruction for 16 bit values.
  945. \param [in] value Value to store
  946. \param [in] ptr Pointer to location
  947. */
  948. __STATIC_FORCEINLINE void __STRHT(uint16_t value, volatile uint16_t *ptr)
  949. {
  950. __ASM volatile("strht %1, %0" : "=Q"(*ptr) : "r"((uint32_t)value));
  951. }
  952. /**
  953. \brief STRT Unprivileged (32 bit)
  954. \details Executes a Unprivileged STRT instruction for 32 bit values.
  955. \param [in] value Value to store
  956. \param [in] ptr Pointer to location
  957. */
  958. __STATIC_FORCEINLINE void __STRT(uint32_t value, volatile uint32_t *ptr)
  959. {
  960. __ASM volatile("strt %1, %0" : "=Q"(*ptr) : "r"(value));
  961. }
  962. #else /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
  963. (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
  964. (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) */
  965. /**
  966. \brief Signed Saturate
  967. \details Saturates a signed value.
  968. \param [in] value Value to be saturated
  969. \param [in] sat Bit position to saturate to (1..32)
  970. \return Saturated value
  971. */
  972. __STATIC_FORCEINLINE int32_t __SSAT(int32_t val, uint32_t sat)
  973. {
  974. if ((sat >= 1U) && (sat <= 32U))
  975. {
  976. const int32_t max = (int32_t)((1U << (sat - 1U)) - 1U);
  977. const int32_t min = -1 - max ;
  978. if (val > max)
  979. {
  980. return max;
  981. }
  982. else if (val < min)
  983. {
  984. return min;
  985. }
  986. }
  987. return val;
  988. }
  989. /**
  990. \brief Unsigned Saturate
  991. \details Saturates an unsigned value.
  992. \param [in] value Value to be saturated
  993. \param [in] sat Bit position to saturate to (0..31)
  994. \return Saturated value
  995. */
  996. __STATIC_FORCEINLINE uint32_t __USAT(int32_t val, uint32_t sat)
  997. {
  998. if (sat <= 31U)
  999. {
  1000. const uint32_t max = ((1U << sat) - 1U);
  1001. if (val > (int32_t)max)
  1002. {
  1003. return max;
  1004. }
  1005. else if (val < 0)
  1006. {
  1007. return 0U;
  1008. }
  1009. }
  1010. return (uint32_t)val;
  1011. }
  1012. #endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
  1013. (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
  1014. (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) */
  1015. #if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
  1016. (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) )
  1017. /**
  1018. \brief Load-Acquire (8 bit)
  1019. \details Executes a LDAB instruction for 8 bit value.
  1020. \param [in] ptr Pointer to data
  1021. \return value of type uint8_t at (*ptr)
  1022. */
  1023. __STATIC_FORCEINLINE uint8_t __LDAB(volatile uint8_t *ptr)
  1024. {
  1025. uint32_t result;
  1026. __ASM volatile("ldab %0, %1" : "=r"(result) : "Q"(*ptr));
  1027. return ((uint8_t) result);
  1028. }
  1029. /**
  1030. \brief Load-Acquire (16 bit)
  1031. \details Executes a LDAH instruction for 16 bit values.
  1032. \param [in] ptr Pointer to data
  1033. \return value of type uint16_t at (*ptr)
  1034. */
  1035. __STATIC_FORCEINLINE uint16_t __LDAH(volatile uint16_t *ptr)
  1036. {
  1037. uint32_t result;
  1038. __ASM volatile("ldah %0, %1" : "=r"(result) : "Q"(*ptr));
  1039. return ((uint16_t) result);
  1040. }
  1041. /**
  1042. \brief Load-Acquire (32 bit)
  1043. \details Executes a LDA instruction for 32 bit values.
  1044. \param [in] ptr Pointer to data
  1045. \return value of type uint32_t at (*ptr)
  1046. */
  1047. __STATIC_FORCEINLINE uint32_t __LDA(volatile uint32_t *ptr)
  1048. {
  1049. uint32_t result;
  1050. __ASM volatile("lda %0, %1" : "=r"(result) : "Q"(*ptr));
  1051. return (result);
  1052. }
  1053. /**
  1054. \brief Store-Release (8 bit)
  1055. \details Executes a STLB instruction for 8 bit values.
  1056. \param [in] value Value to store
  1057. \param [in] ptr Pointer to location
  1058. */
  1059. __STATIC_FORCEINLINE void __STLB(uint8_t value, volatile uint8_t *ptr)
  1060. {
  1061. __ASM volatile("stlb %1, %0" : "=Q"(*ptr) : "r"((uint32_t)value));
  1062. }
  1063. /**
  1064. \brief Store-Release (16 bit)
  1065. \details Executes a STLH instruction for 16 bit values.
  1066. \param [in] value Value to store
  1067. \param [in] ptr Pointer to location
  1068. */
  1069. __STATIC_FORCEINLINE void __STLH(uint16_t value, volatile uint16_t *ptr)
  1070. {
  1071. __ASM volatile("stlh %1, %0" : "=Q"(*ptr) : "r"((uint32_t)value));
  1072. }
  1073. /**
  1074. \brief Store-Release (32 bit)
  1075. \details Executes a STL instruction for 32 bit values.
  1076. \param [in] value Value to store
  1077. \param [in] ptr Pointer to location
  1078. */
  1079. __STATIC_FORCEINLINE void __STL(uint32_t value, volatile uint32_t *ptr)
  1080. {
  1081. __ASM volatile("stl %1, %0" : "=Q"(*ptr) : "r"((uint32_t)value));
  1082. }
  1083. /**
  1084. \brief Load-Acquire Exclusive (8 bit)
  1085. \details Executes a LDAB exclusive instruction for 8 bit value.
  1086. \param [in] ptr Pointer to data
  1087. \return value of type uint8_t at (*ptr)
  1088. */
  1089. #define __LDAEXB (uint8_t)__builtin_arm_ldaex
  1090. /**
  1091. \brief Load-Acquire Exclusive (16 bit)
  1092. \details Executes a LDAH exclusive instruction for 16 bit values.
  1093. \param [in] ptr Pointer to data
  1094. \return value of type uint16_t at (*ptr)
  1095. */
  1096. #define __LDAEXH (uint16_t)__builtin_arm_ldaex
  1097. /**
  1098. \brief Load-Acquire Exclusive (32 bit)
  1099. \details Executes a LDA exclusive instruction for 32 bit values.
  1100. \param [in] ptr Pointer to data
  1101. \return value of type uint32_t at (*ptr)
  1102. */
  1103. #define __LDAEX (uint32_t)__builtin_arm_ldaex
  1104. /**
  1105. \brief Store-Release Exclusive (8 bit)
  1106. \details Executes a STLB exclusive instruction for 8 bit values.
  1107. \param [in] value Value to store
  1108. \param [in] ptr Pointer to location
  1109. \return 0 Function succeeded
  1110. \return 1 Function failed
  1111. */
  1112. #define __STLEXB (uint32_t)__builtin_arm_stlex
  1113. /**
  1114. \brief Store-Release Exclusive (16 bit)
  1115. \details Executes a STLH exclusive instruction for 16 bit values.
  1116. \param [in] value Value to store
  1117. \param [in] ptr Pointer to location
  1118. \return 0 Function succeeded
  1119. \return 1 Function failed
  1120. */
  1121. #define __STLEXH (uint32_t)__builtin_arm_stlex
  1122. /**
  1123. \brief Store-Release Exclusive (32 bit)
  1124. \details Executes a STL exclusive instruction for 32 bit values.
  1125. \param [in] value Value to store
  1126. \param [in] ptr Pointer to location
  1127. \return 0 Function succeeded
  1128. \return 1 Function failed
  1129. */
  1130. #define __STLEX (uint32_t)__builtin_arm_stlex
  1131. #endif /* ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
  1132. (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) */
  1133. /**@}*/ /* end of group CMSIS_Core_InstructionInterface */
  1134. /* ################### Compiler specific Intrinsics ########################### */
  1135. /** \defgroup CMSIS_SIMD_intrinsics CMSIS SIMD Intrinsics
  1136. Access to dedicated SIMD instructions
  1137. @{
  1138. */
  1139. #if (defined (__ARM_FEATURE_DSP) && (__ARM_FEATURE_DSP == 1))
  1140. __STATIC_FORCEINLINE uint32_t __SADD8(uint32_t op1, uint32_t op2)
  1141. {
  1142. uint32_t result;
  1143. __ASM volatile("sadd8 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
  1144. return (result);
  1145. }
  1146. __STATIC_FORCEINLINE uint32_t __QADD8(uint32_t op1, uint32_t op2)
  1147. {
  1148. uint32_t result;
  1149. __ASM volatile("qadd8 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
  1150. return (result);
  1151. }
  1152. __STATIC_FORCEINLINE uint32_t __SHADD8(uint32_t op1, uint32_t op2)
  1153. {
  1154. uint32_t result;
  1155. __ASM volatile("shadd8 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
  1156. return (result);
  1157. }
  1158. __STATIC_FORCEINLINE uint32_t __UADD8(uint32_t op1, uint32_t op2)
  1159. {
  1160. uint32_t result;
  1161. __ASM volatile("uadd8 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
  1162. return (result);
  1163. }
  1164. __STATIC_FORCEINLINE uint32_t __UQADD8(uint32_t op1, uint32_t op2)
  1165. {
  1166. uint32_t result;
  1167. __ASM volatile("uqadd8 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
  1168. return (result);
  1169. }
  1170. __STATIC_FORCEINLINE uint32_t __UHADD8(uint32_t op1, uint32_t op2)
  1171. {
  1172. uint32_t result;
  1173. __ASM volatile("uhadd8 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
  1174. return (result);
  1175. }
  1176. __STATIC_FORCEINLINE uint32_t __SSUB8(uint32_t op1, uint32_t op2)
  1177. {
  1178. uint32_t result;
  1179. __ASM volatile("ssub8 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
  1180. return (result);
  1181. }
  1182. __STATIC_FORCEINLINE uint32_t __QSUB8(uint32_t op1, uint32_t op2)
  1183. {
  1184. uint32_t result;
  1185. __ASM volatile("qsub8 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
  1186. return (result);
  1187. }
  1188. __STATIC_FORCEINLINE uint32_t __SHSUB8(uint32_t op1, uint32_t op2)
  1189. {
  1190. uint32_t result;
  1191. __ASM volatile("shsub8 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
  1192. return (result);
  1193. }
  1194. __STATIC_FORCEINLINE uint32_t __USUB8(uint32_t op1, uint32_t op2)
  1195. {
  1196. uint32_t result;
  1197. __ASM volatile("usub8 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
  1198. return (result);
  1199. }
  1200. __STATIC_FORCEINLINE uint32_t __UQSUB8(uint32_t op1, uint32_t op2)
  1201. {
  1202. uint32_t result;
  1203. __ASM volatile("uqsub8 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
  1204. return (result);
  1205. }
  1206. __STATIC_FORCEINLINE uint32_t __UHSUB8(uint32_t op1, uint32_t op2)
  1207. {
  1208. uint32_t result;
  1209. __ASM volatile("uhsub8 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
  1210. return (result);
  1211. }
  1212. __STATIC_FORCEINLINE uint32_t __SADD16(uint32_t op1, uint32_t op2)
  1213. {
  1214. uint32_t result;
  1215. __ASM volatile("sadd16 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
  1216. return (result);
  1217. }
  1218. __STATIC_FORCEINLINE uint32_t __QADD16(uint32_t op1, uint32_t op2)
  1219. {
  1220. uint32_t result;
  1221. __ASM volatile("qadd16 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
  1222. return (result);
  1223. }
  1224. __STATIC_FORCEINLINE uint32_t __SHADD16(uint32_t op1, uint32_t op2)
  1225. {
  1226. uint32_t result;
  1227. __ASM volatile("shadd16 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
  1228. return (result);
  1229. }
  1230. __STATIC_FORCEINLINE uint32_t __UADD16(uint32_t op1, uint32_t op2)
  1231. {
  1232. uint32_t result;
  1233. __ASM volatile("uadd16 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
  1234. return (result);
  1235. }
  1236. __STATIC_FORCEINLINE uint32_t __UQADD16(uint32_t op1, uint32_t op2)
  1237. {
  1238. uint32_t result;
  1239. __ASM volatile("uqadd16 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
  1240. return (result);
  1241. }
  1242. __STATIC_FORCEINLINE uint32_t __UHADD16(uint32_t op1, uint32_t op2)
  1243. {
  1244. uint32_t result;
  1245. __ASM volatile("uhadd16 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
  1246. return (result);
  1247. }
  1248. __STATIC_FORCEINLINE uint32_t __SSUB16(uint32_t op1, uint32_t op2)
  1249. {
  1250. uint32_t result;
  1251. __ASM volatile("ssub16 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
  1252. return (result);
  1253. }
  1254. __STATIC_FORCEINLINE uint32_t __QSUB16(uint32_t op1, uint32_t op2)
  1255. {
  1256. uint32_t result;
  1257. __ASM volatile("qsub16 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
  1258. return (result);
  1259. }
  1260. __STATIC_FORCEINLINE uint32_t __SHSUB16(uint32_t op1, uint32_t op2)
  1261. {
  1262. uint32_t result;
  1263. __ASM volatile("shsub16 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
  1264. return (result);
  1265. }
  1266. __STATIC_FORCEINLINE uint32_t __USUB16(uint32_t op1, uint32_t op2)
  1267. {
  1268. uint32_t result;
  1269. __ASM volatile("usub16 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
  1270. return (result);
  1271. }
  1272. __STATIC_FORCEINLINE uint32_t __UQSUB16(uint32_t op1, uint32_t op2)
  1273. {
  1274. uint32_t result;
  1275. __ASM volatile("uqsub16 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
  1276. return (result);
  1277. }
  1278. __STATIC_FORCEINLINE uint32_t __UHSUB16(uint32_t op1, uint32_t op2)
  1279. {
  1280. uint32_t result;
  1281. __ASM volatile("uhsub16 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
  1282. return (result);
  1283. }
  1284. __STATIC_FORCEINLINE uint32_t __SASX(uint32_t op1, uint32_t op2)
  1285. {
  1286. uint32_t result;
  1287. __ASM volatile("sasx %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
  1288. return (result);
  1289. }
  1290. __STATIC_FORCEINLINE uint32_t __QASX(uint32_t op1, uint32_t op2)
  1291. {
  1292. uint32_t result;
  1293. __ASM volatile("qasx %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
  1294. return (result);
  1295. }
  1296. __STATIC_FORCEINLINE uint32_t __SHASX(uint32_t op1, uint32_t op2)
  1297. {
  1298. uint32_t result;
  1299. __ASM volatile("shasx %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
  1300. return (result);
  1301. }
  1302. __STATIC_FORCEINLINE uint32_t __UASX(uint32_t op1, uint32_t op2)
  1303. {
  1304. uint32_t result;
  1305. __ASM volatile("uasx %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
  1306. return (result);
  1307. }
  1308. __STATIC_FORCEINLINE uint32_t __UQASX(uint32_t op1, uint32_t op2)
  1309. {
  1310. uint32_t result;
  1311. __ASM volatile("uqasx %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
  1312. return (result);
  1313. }
  1314. __STATIC_FORCEINLINE uint32_t __UHASX(uint32_t op1, uint32_t op2)
  1315. {
  1316. uint32_t result;
  1317. __ASM volatile("uhasx %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
  1318. return (result);
  1319. }
  1320. __STATIC_FORCEINLINE uint32_t __SSAX(uint32_t op1, uint32_t op2)
  1321. {
  1322. uint32_t result;
  1323. __ASM volatile("ssax %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
  1324. return (result);
  1325. }
  1326. __STATIC_FORCEINLINE uint32_t __QSAX(uint32_t op1, uint32_t op2)
  1327. {
  1328. uint32_t result;
  1329. __ASM volatile("qsax %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
  1330. return (result);
  1331. }
  1332. __STATIC_FORCEINLINE uint32_t __SHSAX(uint32_t op1, uint32_t op2)
  1333. {
  1334. uint32_t result;
  1335. __ASM volatile("shsax %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
  1336. return (result);
  1337. }
  1338. __STATIC_FORCEINLINE uint32_t __USAX(uint32_t op1, uint32_t op2)
  1339. {
  1340. uint32_t result;
  1341. __ASM volatile("usax %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
  1342. return (result);
  1343. }
  1344. __STATIC_FORCEINLINE uint32_t __UQSAX(uint32_t op1, uint32_t op2)
  1345. {
  1346. uint32_t result;
  1347. __ASM volatile("uqsax %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
  1348. return (result);
  1349. }
  1350. __STATIC_FORCEINLINE uint32_t __UHSAX(uint32_t op1, uint32_t op2)
  1351. {
  1352. uint32_t result;
  1353. __ASM volatile("uhsax %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
  1354. return (result);
  1355. }
  1356. __STATIC_FORCEINLINE uint32_t __USAD8(uint32_t op1, uint32_t op2)
  1357. {
  1358. uint32_t result;
  1359. __ASM volatile("usad8 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
  1360. return (result);
  1361. }
  1362. __STATIC_FORCEINLINE uint32_t __USADA8(uint32_t op1, uint32_t op2, uint32_t op3)
  1363. {
  1364. uint32_t result;
  1365. __ASM volatile("usada8 %0, %1, %2, %3" : "=r"(result) : "r"(op1), "r"(op2), "r"(op3));
  1366. return (result);
  1367. }
  1368. #define __SSAT16(ARG1,ARG2) \
  1369. ({ \
  1370. int32_t __RES, __ARG1 = (ARG1); \
  1371. __ASM ("ssat16 %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
  1372. __RES; \
  1373. })
  1374. #define __USAT16(ARG1,ARG2) \
  1375. ({ \
  1376. uint32_t __RES, __ARG1 = (ARG1); \
  1377. __ASM ("usat16 %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
  1378. __RES; \
  1379. })
  1380. __STATIC_FORCEINLINE uint32_t __UXTB16(uint32_t op1)
  1381. {
  1382. uint32_t result;
  1383. __ASM volatile("uxtb16 %0, %1" : "=r"(result) : "r"(op1));
  1384. return (result);
  1385. }
  1386. __STATIC_FORCEINLINE uint32_t __UXTAB16(uint32_t op1, uint32_t op2)
  1387. {
  1388. uint32_t result;
  1389. __ASM volatile("uxtab16 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
  1390. return (result);
  1391. }
  1392. __STATIC_FORCEINLINE uint32_t __SXTB16(uint32_t op1)
  1393. {
  1394. uint32_t result;
  1395. __ASM volatile("sxtb16 %0, %1" : "=r"(result) : "r"(op1));
  1396. return (result);
  1397. }
  1398. __STATIC_FORCEINLINE uint32_t __SXTAB16(uint32_t op1, uint32_t op2)
  1399. {
  1400. uint32_t result;
  1401. __ASM volatile("sxtab16 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
  1402. return (result);
  1403. }
  1404. __STATIC_FORCEINLINE uint32_t __SMUAD(uint32_t op1, uint32_t op2)
  1405. {
  1406. uint32_t result;
  1407. __ASM volatile("smuad %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
  1408. return (result);
  1409. }
  1410. __STATIC_FORCEINLINE uint32_t __SMUADX(uint32_t op1, uint32_t op2)
  1411. {
  1412. uint32_t result;
  1413. __ASM volatile("smuadx %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
  1414. return (result);
  1415. }
  1416. __STATIC_FORCEINLINE uint32_t __SMLAD(uint32_t op1, uint32_t op2, uint32_t op3)
  1417. {
  1418. uint32_t result;
  1419. __ASM volatile("smlad %0, %1, %2, %3" : "=r"(result) : "r"(op1), "r"(op2), "r"(op3));
  1420. return (result);
  1421. }
  1422. __STATIC_FORCEINLINE uint32_t __SMLADX(uint32_t op1, uint32_t op2, uint32_t op3)
  1423. {
  1424. uint32_t result;
  1425. __ASM volatile("smladx %0, %1, %2, %3" : "=r"(result) : "r"(op1), "r"(op2), "r"(op3));
  1426. return (result);
  1427. }
  1428. __STATIC_FORCEINLINE uint64_t __SMLALD(uint32_t op1, uint32_t op2, uint64_t acc)
  1429. {
  1430. union llreg_u
  1431. {
  1432. uint32_t w32[2];
  1433. uint64_t w64;
  1434. } llr;
  1435. llr.w64 = acc;
  1436. #ifndef __ARMEB__ /* Little endian */
  1437. __ASM volatile("smlald %0, %1, %2, %3" : "=r"(llr.w32[0]), "=r"(llr.w32[1]): "r"(op1), "r"(op2), "0"(llr.w32[0]), "1"(llr.w32[1]));
  1438. #else /* Big endian */
  1439. __ASM volatile("smlald %0, %1, %2, %3" : "=r"(llr.w32[1]), "=r"(llr.w32[0]): "r"(op1), "r"(op2), "0"(llr.w32[1]), "1"(llr.w32[0]));
  1440. #endif
  1441. return (llr.w64);
  1442. }
  1443. __STATIC_FORCEINLINE uint64_t __SMLALDX(uint32_t op1, uint32_t op2, uint64_t acc)
  1444. {
  1445. union llreg_u
  1446. {
  1447. uint32_t w32[2];
  1448. uint64_t w64;
  1449. } llr;
  1450. llr.w64 = acc;
  1451. #ifndef __ARMEB__ /* Little endian */
  1452. __ASM volatile("smlaldx %0, %1, %2, %3" : "=r"(llr.w32[0]), "=r"(llr.w32[1]): "r"(op1), "r"(op2), "0"(llr.w32[0]), "1"(llr.w32[1]));
  1453. #else /* Big endian */
  1454. __ASM volatile("smlaldx %0, %1, %2, %3" : "=r"(llr.w32[1]), "=r"(llr.w32[0]): "r"(op1), "r"(op2), "0"(llr.w32[1]), "1"(llr.w32[0]));
  1455. #endif
  1456. return (llr.w64);
  1457. }
  1458. __STATIC_FORCEINLINE uint32_t __SMUSD(uint32_t op1, uint32_t op2)
  1459. {
  1460. uint32_t result;
  1461. __ASM volatile("smusd %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
  1462. return (result);
  1463. }
  1464. __STATIC_FORCEINLINE uint32_t __SMUSDX(uint32_t op1, uint32_t op2)
  1465. {
  1466. uint32_t result;
  1467. __ASM volatile("smusdx %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
  1468. return (result);
  1469. }
  1470. __STATIC_FORCEINLINE uint32_t __SMLSD(uint32_t op1, uint32_t op2, uint32_t op3)
  1471. {
  1472. uint32_t result;
  1473. __ASM volatile("smlsd %0, %1, %2, %3" : "=r"(result) : "r"(op1), "r"(op2), "r"(op3));
  1474. return (result);
  1475. }
  1476. __STATIC_FORCEINLINE uint32_t __SMLSDX(uint32_t op1, uint32_t op2, uint32_t op3)
  1477. {
  1478. uint32_t result;
  1479. __ASM volatile("smlsdx %0, %1, %2, %3" : "=r"(result) : "r"(op1), "r"(op2), "r"(op3));
  1480. return (result);
  1481. }
  1482. __STATIC_FORCEINLINE uint64_t __SMLSLD(uint32_t op1, uint32_t op2, uint64_t acc)
  1483. {
  1484. union llreg_u
  1485. {
  1486. uint32_t w32[2];
  1487. uint64_t w64;
  1488. } llr;
  1489. llr.w64 = acc;
  1490. #ifndef __ARMEB__ /* Little endian */
  1491. __ASM volatile("smlsld %0, %1, %2, %3" : "=r"(llr.w32[0]), "=r"(llr.w32[1]): "r"(op1), "r"(op2), "0"(llr.w32[0]), "1"(llr.w32[1]));
  1492. #else /* Big endian */
  1493. __ASM volatile("smlsld %0, %1, %2, %3" : "=r"(llr.w32[1]), "=r"(llr.w32[0]): "r"(op1), "r"(op2), "0"(llr.w32[1]), "1"(llr.w32[0]));
  1494. #endif
  1495. return (llr.w64);
  1496. }
  1497. __STATIC_FORCEINLINE uint64_t __SMLSLDX(uint32_t op1, uint32_t op2, uint64_t acc)
  1498. {
  1499. union llreg_u
  1500. {
  1501. uint32_t w32[2];
  1502. uint64_t w64;
  1503. } llr;
  1504. llr.w64 = acc;
  1505. #ifndef __ARMEB__ /* Little endian */
  1506. __ASM volatile("smlsldx %0, %1, %2, %3" : "=r"(llr.w32[0]), "=r"(llr.w32[1]): "r"(op1), "r"(op2), "0"(llr.w32[0]), "1"(llr.w32[1]));
  1507. #else /* Big endian */
  1508. __ASM volatile("smlsldx %0, %1, %2, %3" : "=r"(llr.w32[1]), "=r"(llr.w32[0]): "r"(op1), "r"(op2), "0"(llr.w32[1]), "1"(llr.w32[0]));
  1509. #endif
  1510. return (llr.w64);
  1511. }
  1512. __STATIC_FORCEINLINE uint32_t __SEL(uint32_t op1, uint32_t op2)
  1513. {
  1514. uint32_t result;
  1515. __ASM volatile("sel %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
  1516. return (result);
  1517. }
  1518. __STATIC_FORCEINLINE int32_t __QADD(int32_t op1, int32_t op2)
  1519. {
  1520. int32_t result;
  1521. __ASM volatile("qadd %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
  1522. return (result);
  1523. }
  1524. __STATIC_FORCEINLINE int32_t __QSUB(int32_t op1, int32_t op2)
  1525. {
  1526. int32_t result;
  1527. __ASM volatile("qsub %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
  1528. return (result);
  1529. }
  1530. #define __PKHBT(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0x0000FFFFUL) | \
  1531. ((((uint32_t)(ARG2)) << (ARG3)) & 0xFFFF0000UL) )
  1532. #define __PKHTB(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0xFFFF0000UL) | \
  1533. ((((uint32_t)(ARG2)) >> (ARG3)) & 0x0000FFFFUL) )
  1534. __STATIC_FORCEINLINE int32_t __SMMLA(int32_t op1, int32_t op2, int32_t op3)
  1535. {
  1536. int32_t result;
  1537. __ASM volatile("smmla %0, %1, %2, %3" : "=r"(result): "r"(op1), "r"(op2), "r"(op3));
  1538. return (result);
  1539. }
  1540. #endif /* (__ARM_FEATURE_DSP == 1) */
  1541. /**@} end of group CMSIS_SIMD_intrinsics */
  1542. #endif /* __CMSIS_ARMCLANG_H */