123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253 |
- //*****************************************************************************
- //
- // am_hal_iom.c
- //! @file
- //!
- //! @brief Functions for interfacing with the IO Master module
- //!
- //! @addtogroup iom2 IO Master (SPI/I2C)
- //! @ingroup apollo2hal
- //! @{
- //
- //*****************************************************************************
- //*****************************************************************************
- //
- // Copyright (c) 2017, Ambiq Micro
- // All rights reserved.
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // 1. Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // 2. Redistributions in binary form must reproduce the above copyright
- // notice, this list of conditions and the following disclaimer in the
- // documentation and/or other materials provided with the distribution.
- //
- // 3. Neither the name of the copyright holder nor the names of its
- // contributors may be used to endorse or promote products derived from this
- // software without specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // This is part of revision 1.2.11 of the AmbiqSuite Development Package.
- //
- //*****************************************************************************
- #include <stdint.h>
- #include <stdbool.h>
- #include "am_mcu_apollo.h"
- #ifdef __IAR_SYSTEMS_ICC__
- #define AM_INSTR_CLZ(n) __CLZ(n)
- #else
- #define AM_INSTR_CLZ(n) __builtin_clz(n)
- #endif
- //! ASSERT(1) or Correct(0) invalid IOM R/W Thresholds.
- #ifndef AM_ASSERT_INVALID_THRESHOLD
- #define AM_ASSERT_INVALID_THRESHOLD (1)
- #endif
- //*****************************************************************************
- //
- // Forcing optimizations
- //
- // These pragmas must be enabled if we intend to use the IOM4 workaround with a
- // delay higher than 18-bits in the first word.
- //
- //*****************************************************************************
- //#ifdef __IAR_SYSTEMS_ICC__
- //#pragma optimize=3 s
- //#endif
- //
- //#ifdef __ARMCC_VERSION
- //#pragma O3
- //#endif
- //
- //#ifdef __GNUC__
- //#pragma GCC optimize ("O3")
- //#endif
- //*****************************************************************************
- //
- // Forward declarations.
- //
- //*****************************************************************************
- static void iom_workaround_loop(uint32_t ui32PadRegVal,
- volatile uint32_t *pui32PadReg,
- bool bRising);
- static uint32_t
- internal_am_hal_iom_spi_cmd_construct(uint32_t ui32Operation,
- uint32_t ui32ChipSelect,
- uint32_t ui32NumBytes,
- uint32_t ui32Options);
- static am_hal_iom_status_e
- internal_iom_wait_i2c_scl_hi(uint32_t ui32Module);
- //*****************************************************************************
- //
- // IOM Buffer states.
- //
- //*****************************************************************************
- #define BUFFER_IDLE 0x0
- #define BUFFER_SENDING 0x1
- #define BUFFER_RECEIVING 0x2
- //*****************************************************************************
- //
- // Global state variables
- //
- //*****************************************************************************
- //
- // Define a structure to map CE for IOM4 only.
- //
- typedef struct
- {
- uint8_t channel; // CE channel for SPI
- uint8_t pad; // GPIO Pad
- uint8_t funcsel; // FNCSEL value
- } IOMPad_t;
- // Define the mapping between SPI CEn, Pads, and FNCSEL values for all IOMs.
- const IOMPad_t g_IOMPads[] =
- {
- {0, 29, 6}, {0, 34, 6}, {1, 18, 4}, {1, 37, 5}, {2, 41, 6},
- {3, 17, 4}, {3, 45, 4}, {4, 10, 6}, {4, 46, 6}, {5, 9, 4},
- {5, 47, 6}, {6, 35, 4}, {7, 38, 6}
- };
- typedef struct
- {
- uint8_t module; // IOM module
- uint8_t pad; // GPIO Pad
- uint8_t funcsel; // FNCSEL value
- } I2CPad_t;
- // Define the mapping between I2C SCL Pads, and FNCSEL values for all IOMs.
- const I2CPad_t g_I2CPads[] =
- {
- {0, 5, 0},
- {1, 8, 0},
- {2, 0, 7},
- {3, 42, 4},
- {4, 39, 4},
- {5, 48, 4},
- {2, 27, 4},
- };
- // Defines for IOM 4 Workaround
- #define WORKAROUND_IOM 4
- #define WORKAROUND_IOM_MOSI_PIN 44
- #define WORKAROUND_IOM_MOSI_CFG AM_HAL_PIN_44_M4MOSI
- #define MAX_IOM_BITS 9
- #define IOM_OVERHEAD_FACTOR 2
- //*****************************************************************************
- //
- // Non-blocking buffer and buffer-management variables.
- //
- //*****************************************************************************
- typedef struct
- {
- uint32_t ui32State;
- uint32_t *pui32Data;
- uint32_t ui32BytesLeft;
- uint32_t ui32Options;
- void (*pfnCallback)(void);
- }
- am_hal_iom_nb_buffer;
- //
- // Global State to keep track if there is an ongoing transaction
- //
- volatile bool g_bIomBusy[AM_REG_IOMSTR_NUM_MODULES + 1] = {0};
- am_hal_iom_nb_buffer g_psIOMBuffers[AM_REG_IOMSTR_NUM_MODULES];
- //
- // Save error status from non-blocking calls
- //
- static am_hal_iom_status_e g_iom_error_status[AM_REG_IOMSTR_NUM_MODULES + 1];
- //*****************************************************************************
- //
- // Computed timeout.
- //
- // The IOM may not always respond to events (e.g., CMDCMP). This is a
- // timeout value in cycles to be used when waiting on status changes.
- //*****************************************************************************
- uint32_t ui32StatusTimeout[AM_REG_IOMSTR_NUM_MODULES];
- //*****************************************************************************
- //
- // Queue management variables.
- //
- //*****************************************************************************
- am_hal_queue_t g_psIOMQueue[AM_REG_IOMSTR_NUM_MODULES];
- //*****************************************************************************
- //
- // Default queue flush function
- //
- //*****************************************************************************
- am_hal_iom_queue_flush_t am_hal_iom_queue_flush = am_hal_iom_sleeping_queue_flush;
- //*****************************************************************************
- //
- // Power management structure.
- //
- //*****************************************************************************
- am_hal_iom_pwrsave_t am_hal_iom_pwrsave[AM_REG_IOMSTR_NUM_MODULES];
- //*****************************************************************************
- //
- // I2C BitBang to IOM error mapping
- //
- //*****************************************************************************
- const am_hal_iom_status_e i2c_bb_errmap[AM_HAL_I2C_BIT_BANG_STATUS_MAX] =
- {
- AM_HAL_IOM_SUCCESS, // AM_HAL_I2C_BIT_BANG_SUCCESS,
- AM_HAL_IOM_ERR_I2C_NAK, // AM_HAL_I2C_BIT_BANG_ADDRESS_NAKED,
- AM_HAL_IOM_ERR_I2C_NAK, // AM_HAL_I2C_BIT_BANG_DATA_NAKED,
- AM_HAL_IOM_ERR_TIMEOUT, // AM_HAL_I2C_BIT_BANG_CLOCK_TIMEOUT,
- AM_HAL_IOM_ERR_TIMEOUT, // AM_HAL_I2C_BIT_BANG_DATA_TIMEOUT,
- };
- //*****************************************************************************
- //
- // Static helper functions
- //
- //*****************************************************************************
- //*****************************************************************************
- //
- // Get the error interrupt staus
- //
- //*****************************************************************************
- //
- //! @brief Returns the error status based on interrupt bits
- //!
- //! @param ui32Module - IOM module
- //! ui32Status - Currently accumulated error status
- //!
- //! The function looks at the supplied interrupt error status bits and the
- //! the current INTSTAT and maps the same to the enum am_hal_iom_status_e.
- //!
- //! @return Returns the appropriate error status in the form of am_hal_iom_status_e
- //!
- //*****************************************************************************
- static am_hal_iom_status_e
- internal_iom_get_int_err(uint32_t ui32Module, uint32_t ui32IntStatus)
- {
- am_hal_iom_status_e ui32Status = AM_HAL_IOM_SUCCESS;
- //
- // Let's accumulate the errors
- //
- ui32IntStatus |= am_hal_iom_int_status_get(ui32Module, false);
- if (ui32IntStatus & AM_HAL_IOM_INT_SWERR)
- {
- // Error in hardware command issued or illegal access by SW
- ui32Status = AM_HAL_IOM_ERR_INVALID_OPER;
- }
- else if (ui32IntStatus & AM_HAL_IOM_INT_I2CARBERR)
- {
- // Loss of I2C multi-master arbitration
- ui32Status = AM_HAL_IOM_ERR_I2C_ARB;
- }
- else if (ui32IntStatus & AM_HAL_IOM_INT_NAK)
- {
- // I2C NAK
- ui32Status = AM_HAL_IOM_ERR_I2C_NAK;
- }
- return ui32Status;
- }
- //*****************************************************************************
- // onebit()
- //*****************************************************************************
- //
- // A power of 2?
- // Return true if ui32Value has exactly 1 bit set, otherwise false.
- //
- static bool onebit(uint32_t ui32Value)
- {
- return ui32Value && !(ui32Value & (ui32Value - 1));
- }
- //*****************************************************************************
- // compute_freq()
- //*****************************************************************************
- //
- // Compute the interface frequency based on the given parameters
- //
- static uint32_t compute_freq(uint32_t ui32HFRCfreqHz,
- uint32_t ui32Fsel, uint32_t ui32Div3,
- uint32_t ui32DivEn, uint32_t ui32TotPer)
- {
- uint32_t ui32Denomfinal, ui32ClkFreq;
- ui32Denomfinal = ((1 << (ui32Fsel - 1)) * (1 + ui32Div3 * 2) * (1 + ui32DivEn * (ui32TotPer)));
- ui32ClkFreq = (ui32HFRCfreqHz) / ui32Denomfinal; // Compute the set frequency value
- ui32ClkFreq += (((ui32HFRCfreqHz) % ui32Denomfinal) > (ui32Denomfinal / 2)) ? 1 : 0;
- return ui32ClkFreq;
- }
- //*****************************************************************************
- // iom_calc_gpio()
- //
- // Calculate the IOM4 GPIO to assert.
- //
- //*****************************************************************************
- static uint32_t iom_calc_gpio(uint32_t ui32ChipSelect)
- {
- uint32_t index;
- uint8_t ui8PadRegVal, ui8FncSelVal;
- //
- // Figure out which GPIO we are using for the IOM
- //
- for ( index = 0; index < (sizeof(g_IOMPads) / sizeof(IOMPad_t)); index++ )
- {
- //
- // Is this one of the CEn that we are using?
- //
- if ( g_IOMPads[index].channel == ui32ChipSelect )
- {
- //
- // Get the PAD register value
- //
- ui8PadRegVal = ((AM_REGVAL(AM_HAL_GPIO_PADREG(g_IOMPads[index].pad))) &
- AM_HAL_GPIO_PADREG_M(g_IOMPads[index].pad)) >>
- AM_HAL_GPIO_PADREG_S(g_IOMPads[index].pad);
- //
- // Get the FNCSEL field value
- //
- ui8FncSelVal = (ui8PadRegVal & 0x38) >> 3;
- //
- // Is the FNCSEL filed for this pad set to the expected value?
- //
- if ( ui8FncSelVal == g_IOMPads[index].funcsel )
- {
- // This is the GPIO we need to use.
- return g_IOMPads[index].pad;
- }
- }
- }
- return 0xDEADBEEF;
- }
- //*****************************************************************************
- //
- // Checks to see if this processor is a Rev B0 device.
- //
- // This is needed for the B0 IOM workaround.
- //
- //*****************************************************************************
- bool
- isRevB0(void)
- {
- //
- // Check to make sure the major rev is B and the minor rev is zero.
- //
- if ( (AM_REG(MCUCTRL, CHIPREV) & 0xFF) == AM_REG_MCUCTRL_CHIPREV_REVMAJ_B )
- {
- return true;
- }
- else
- {
- return false;
- }
- }
- //*****************************************************************************
- //
- // Checks to see if this processor is a Rev B2 device.
- //
- // This is needed for the B2 I2C workaround.
- //
- //*****************************************************************************
- static bool
- isRevB2(void)
- {
- //
- // Check to make sure the major rev is B and the minor rev is zero.
- //
- if ( (AM_REG(MCUCTRL, CHIPREV) & 0xFF) ==
- (AM_REG_MCUCTRL_CHIPREV_REVMAJ_B | AM_REG_MCUCTRL_CHIPREV_REVMIN_REV2) )
- {
- return true;
- }
- else
- {
- return false;
- }
- }
- //*****************************************************************************
- //
- // Checks and waits for the SCL line to be high
- // This is to ensure clock hi time specs are not violated in case slave did
- // clock stretching in previous transaction
- //
- //*****************************************************************************
- static am_hal_iom_status_e
- internal_iom_wait_i2c_scl_hi(uint32_t ui32Module)
- {
- uint32_t ui32IOMGPIO = 0xDEADBEEF;
- volatile uint32_t *pui32SCLPadreg;
- uint32_t ui32SCLPadregVal;
- uint32_t index;
- uint8_t ui8PadRegVal;
- uint8_t ui8FncSelVal;
- uint32_t waitStatus;
- // Need to change the SCL pin as a GPIO and poll till it is set to hi
- // For all the IOM's except for IOM2, there is a single designated pin for SCL
- // IOM2 has two choices and we need to determine which one
- //
- // Figure out which GPIO we are using for the SCL
- //
- for ( index = 0; index < (sizeof(g_I2CPads) / sizeof(I2CPad_t)); index++ )
- {
- //
- // Is this for the IOM that we are using?
- //
- if ( g_I2CPads[index].module == ui32Module )
- {
- //
- // Get the PAD register value
- //
- ui8PadRegVal = ((AM_REGVAL(AM_HAL_GPIO_PADREG(g_I2CPads[index].pad))) &
- AM_HAL_GPIO_PADREG_M(g_I2CPads[index].pad)) >>
- AM_HAL_GPIO_PADREG_S(g_I2CPads[index].pad);
- //
- // Get the FNCSEL field value
- //
- ui8FncSelVal = (ui8PadRegVal & 0x38) >> 3;
- //
- // Is the FNCSEL filed for this pad set to the expected value?
- //
- if ( ui8FncSelVal == g_I2CPads[index].funcsel )
- {
- // This is the GPIO we need to use.
- ui32IOMGPIO = g_I2CPads[index].pad;
- break;
- }
- }
- }
- if (0xDEADBEEF == ui32IOMGPIO)
- {
- // SCL has not been configured
- return AM_HAL_IOM_ERR_INVALID_CFG;
- }
- //
- // Save the locations and values of the SCL pin configuration
- // information.
- //
- pui32SCLPadreg = (volatile uint32_t *)AM_HAL_GPIO_PADREG(ui32IOMGPIO);
- ui32SCLPadregVal = *pui32SCLPadreg;
- //
- // Temporarily configure the override pin as an input.
- //
- am_hal_gpio_pin_config(ui32IOMGPIO, AM_HAL_PIN_INPUT);
- //
- // Make sure SCL is high within standard timeout
- //
- waitStatus = am_hal_flash_delay_status_change(ui32StatusTimeout[ui32Module],
- AM_HAL_GPIO_RD_REG(ui32IOMGPIO), AM_HAL_GPIO_RD_M(ui32IOMGPIO),
- AM_HAL_GPIO_RD_M(ui32IOMGPIO));
- //
- // Write the GPIO PADKEY register
- //
- AM_REGn(GPIO, 0, PADKEY) = AM_REG_GPIO_PADKEY_KEYVAL;
- // Revert back the original settings
- *pui32SCLPadreg = ui32SCLPadregVal;
- //
- // Re-lock the GPIO PADKEY register
- //
- AM_REGn(GPIO, 0, PADKEY) = 0;
- if (waitStatus != 1)
- {
- return AM_HAL_IOM_ERR_TIMEOUT;
- }
- return AM_HAL_IOM_SUCCESS;
- }
- //*****************************************************************************
- //
- //! @brief Returns the proper settings for the CLKCFG register.
- //!
- //! @param ui32FreqHz - The desired interface frequency in Hz.
- //! ui32Phase - SPI phase (0 or 1). Can affect duty cycle.
- //!
- //! Given a desired serial interface clock frequency, this function computes
- //! the appropriate settings for the various fields in the CLKCFG register
- //! and returns the 32-bit value that should be written to that register.
- //! The actual interface frequency may be slightly lower than the specified
- //! frequency, but the actual frequency is also returned.
- //!
- //! @note A couple of criteria that this algorithm follow are:
- //! 1. For power savings, choose the highest FSEL possible.
- //! 2. For best duty cycle, use DIV3 when possible rather than DIVEN.
- //!
- //! An example of #1 is that both of the following CLKCFGs would result
- //! in a frequency of 428,571 Hz: 0x0E071400 and 0x1C0E1300.
- //! The former is chosen by the algorithm because it results in FSEL=4
- //! while the latter is FSEL=3.
- //!
- //! An example of #2 is that both of the following CLKCFGs would result
- //! in a frequency of 2,000,000 Hz: 0x02011400 and 0x00000C00.
- //! The latter is chosen by the algorithm because it results in use of DIV3
- //! rather than DIVEN.
- //!
- //! @return An unsigned 64-bit value.
- //! The lower 32-bits represent the value to use to set CLKCFG.
- //! The upper 32-bits represent the actual frequency (in Hz) that will result
- //! from setting CLKCFG with the lower 32-bits.
- //!
- //! 0 (64 bits) = error. Note that the caller must check the entire 64 bits.
- //! It is not an error if only the low 32-bits are 0 (this is a valid value).
- //! But the entire 64 bits returning 0 is an error.
- //!
- //*****************************************************************************
- static
- uint64_t iom_get_interface_clock_cfg(uint32_t ui32FreqHz, uint32_t ui32Phase )
- {
- uint32_t ui32Fsel, ui32Div3, ui32DivEn, ui32TotPer, ui32LowPer;
- uint32_t ui32Denom, ui32v1, ui32Denomfinal, ui32ClkFreq, ui32ClkCfg;
- uint32_t ui32HFRCfreqHz;
- int32_t i32Div, i32N;
- if ( ui32FreqHz == 0 )
- {
- return 0;
- }
- //
- // Set the HFRC clock frequency.
- //
- ui32HFRCfreqHz = AM_HAL_CLKGEN_FREQ_MAX_HZ;
- //
- // Compute various parameters used for computing the optimal CLKCFG setting.
- //
- i32Div = (ui32HFRCfreqHz / ui32FreqHz) + ((ui32HFRCfreqHz % ui32FreqHz) ? 1 : 0); // Round up (ceiling)
- //
- // Compute N (count the number of LS zeros of Div) = ctz(Div) = log2(Div & (-Div))
- //
- i32N = 31 - AM_INSTR_CLZ((i32Div & (-i32Div)));
- if ( i32N > 6 )
- {
- i32N = 6;
- }
- ui32Div3 = ( (ui32FreqHz < (ui32HFRCfreqHz / 16384)) ||
- ( ((ui32FreqHz >= (ui32HFRCfreqHz / 3)) &&
- (ui32FreqHz <= ((ui32HFRCfreqHz / 2) - 1)) ) ) ) ? 1 : 0;
- ui32Denom = ( 1 << i32N ) * ( 1 + (ui32Div3 * 2) );
- ui32TotPer = i32Div / ui32Denom;
- ui32TotPer += (i32Div % ui32Denom) ? 1 : 0;
- ui32v1 = 31 - AM_INSTR_CLZ(ui32TotPer); // v1 = log2(TotPer)
- ui32Fsel = (ui32v1 > 7) ? ui32v1 + i32N - 7 : i32N;
- ui32Fsel++;
- if ( ui32Fsel > 7 )
- {
- //
- // This is an error, can't go that low.
- //
- return 0;
- }
- if ( ui32v1 > 7 )
- {
- ui32DivEn = ui32TotPer; // Save TotPer for the round up calculation
- ui32TotPer = ui32TotPer>>(ui32v1-7);
- ui32TotPer += ((ui32DivEn) % (1 << (ui32v1 - 7))) ? 1 : 0;
- }
- ui32DivEn = ( (ui32FreqHz >= (ui32HFRCfreqHz / 4)) ||
- ((1 << (ui32Fsel - 1)) == i32Div) ) ? 0 : 1;
- if (ui32Phase == 1)
- {
- ui32LowPer = (ui32TotPer - 2) / 2; // Longer high phase
- }
- else
- {
- ui32LowPer = (ui32TotPer - 1) / 2; // Longer low phase
- }
- ui32ClkCfg = AM_REG_IOMSTR_CLKCFG_FSEL(ui32Fsel) |
- AM_REG_IOMSTR_CLKCFG_DIV3(ui32Div3) |
- AM_REG_IOMSTR_CLKCFG_DIVEN(ui32DivEn) |
- AM_REG_IOMSTR_CLKCFG_LOWPER(ui32LowPer) |
- AM_REG_IOMSTR_CLKCFG_TOTPER(ui32TotPer - 1);
- //
- // Now, compute the actual frequency, which will be returned.
- //
- ui32ClkFreq = compute_freq(ui32HFRCfreqHz, ui32Fsel, ui32Div3, ui32DivEn, ui32TotPer - 1);
- //
- // Determine if the actual frequency is a power of 2 (MHz).
- //
- if ( (ui32ClkFreq % 250000) == 0 )
- {
- //
- // If the actual clock frequency is a power of 2 ranging from 250KHz up,
- // we can simplify the CLKCFG value using DIV3 (which also results in a
- // better duty cycle).
- //
- ui32Denomfinal = ui32ClkFreq / (uint32_t)250000;
- if ( onebit(ui32Denomfinal) )
- {
- //
- // These configurations can be simplified by using DIV3. Configs
- // using DIV3 have a 50% duty cycle, while those from DIVEN will
- // have a 66/33 duty cycle.
- //
- ui32TotPer = ui32LowPer = ui32DivEn = 0;
- ui32Div3 = 1;
- //
- // Now, compute the return values.
- //
- ui32ClkFreq = compute_freq(ui32HFRCfreqHz, ui32Fsel, ui32Div3, ui32DivEn, ui32TotPer);
- ui32ClkCfg = AM_REG_IOMSTR_CLKCFG_FSEL(ui32Fsel) |
- AM_REG_IOMSTR_CLKCFG_DIV3(1) |
- AM_REG_IOMSTR_CLKCFG_DIVEN(0) |
- AM_REG_IOMSTR_CLKCFG_LOWPER(0) |
- AM_REG_IOMSTR_CLKCFG_TOTPER(0);
- }
- }
- return ( ((uint64_t)ui32ClkFreq) << 32) | (uint64_t)ui32ClkCfg;
- } //iom_get_interface_clock_cfg()
- //*****************************************************************************
- //
- //! @brief Clock setting for the I2C Clock Stretch Workaround
- //!
- //! This restricts the frequencies that can be used for I2C devices on
- //!
- //! @param ui32FreqHz - The desired interface frequency in Hz.
- //!
- //! @return None.
- //
- //*****************************************************************************
- static
- uint64_t iom_get_i2c_workaround_clock_cfg(uint32_t ui32FreqHz)
- {
- uint32_t ui32Fsel;
- // Only allow certain SCL frequencies for clock stretching devices.
- if (ui32FreqHz == AM_HAL_IOM_800KHZ)
- {
- ui32Fsel = 2;
- }
- else if (ui32FreqHz == AM_HAL_IOM_400KHZ)
- {
- ui32Fsel = 3;
- }
- else if (ui32FreqHz == AM_HAL_IOM_200KHZ)
- {
- ui32Fsel = 4;
- }
- else if (ui32FreqHz == AM_HAL_IOM_100KHZ)
- {
- ui32Fsel = 5;
- }
- else // Default is 100KHz.
- {
- ui32Fsel = 5;
- }
- // Return the resulting CLKCFG register settings.
- return (AM_REG_IOMSTR_CLKCFG_FSEL(ui32Fsel) |
- AM_REG_IOMSTR_CLKCFG_DIV3(0) |
- AM_REG_IOMSTR_CLKCFG_DIVEN(1) |
- AM_REG_IOMSTR_CLKCFG_LOWPER(14) |
- AM_REG_IOMSTR_CLKCFG_TOTPER(29));
- } // iom_get_i2c_workaround_clock_cfg
- //*****************************************************************************
- //
- //! @brief Enable the IOM in the power control block.
- //!
- //! This function enables the desigated IOM module in the power control block.
- //!
- //! @return None.
- //
- //*****************************************************************************
- void
- am_hal_iom_pwrctrl_enable(uint32_t ui32Module)
- {
- am_hal_debug_assert_msg(ui32Module < AM_REG_IOMSTR_NUM_MODULES,
- "Trying to enable an IOM module that doesn't exist.");
- am_hal_pwrctrl_periph_enable(AM_HAL_PWRCTRL_IOM0 << ui32Module);
- }
- //*****************************************************************************
- //
- //! @brief Disable the IOM in the power control block.
- //!
- //! This function disables the desigated IOM module in the power control block.
- //!
- //! @return None.
- //
- //*****************************************************************************
- void
- am_hal_iom_pwrctrl_disable(uint32_t ui32Module)
- {
- am_hal_debug_assert_msg(ui32Module < AM_REG_IOMSTR_NUM_MODULES,
- "Trying to disable an IOM module that doesn't exist.");
- am_hal_pwrctrl_periph_disable(AM_HAL_PWRCTRL_IOM0 << ui32Module);
- }
- //*****************************************************************************
- //
- //! @brief Enables the IOM module
- //!
- //! @param ui32Module - The number of the IOM module to be enabled.
- //!
- //! This function enables the IOM module using the IFCEN bitfield in the
- //! IOMSTR_CFG register.
- //!
- //! @return None.
- //
- //*****************************************************************************
- void
- am_hal_iom_enable(uint32_t ui32Module)
- {
- if ( ui32Module < AM_REG_IOMSTR_NUM_MODULES )
- {
- AM_REGn(IOMSTR, ui32Module, CFG) |= AM_REG_IOMSTR_CFG_IFCEN(1);
- g_bIomBusy[ui32Module] = false;
- }
- }
- //*****************************************************************************
- //
- //! @brief Disables the IOM module.
- //!
- //! @param ui32Module - The number of the IOM module to be disabled.
- //!
- //! This function disables the IOM module using the IFCEN bitfield in the
- //! IOMSTR_CFG register.
- //!
- //! @return None.
- //
- //*****************************************************************************
- void
- am_hal_iom_disable(uint32_t ui32Module)
- {
- if ( ui32Module < AM_REG_IOMSTR_NUM_MODULES )
- {
- //
- // Wait until the bus is idle.
- //
- am_hal_iom_poll_complete(ui32Module);
- //
- // Disable the interface.
- //
- AM_REGn(IOMSTR, ui32Module, CFG) &= ~(AM_REG_IOMSTR_CFG_IFCEN(1));
- }
- }
- //*****************************************************************************
- //
- //! @brief Enable power to the selected IOM module.
- //!
- //! @param ui32Module - Module number for the IOM to be turned on.
- //!
- //! This function enables the power gate to the selected IOM module. It is
- //! intended to be used along with am_hal_iom_power_off_save(). Used together,
- //! these functions allow the caller to power IOM modules off to save
- //! additional power without losing important configuration information.
- //!
- //! The am_hal_iom_power_off_save() function will save IOM configuration
- //! register information to SRAM before powering off the selected IOM module.
- //! This function will re-enable the IOM module, and restore those
- //! configuration settings from SRAM.
- //!
- //! @return None.
- //
- //*****************************************************************************
- void
- am_hal_iom_power_on_restore(uint32_t ui32Module)
- {
- am_hal_debug_assert_msg(ui32Module < AM_REG_IOMSTR_NUM_MODULES,
- "Trying to enable an IOM module that doesn't exist.");
- //
- // Make sure this restore is a companion to a previous save call.
- //
- if ( am_hal_iom_pwrsave[ui32Module].bValid == 0 )
- {
- return;
- }
- //
- // Enable power to the selected IOM.
- //
- am_hal_pwrctrl_periph_enable(AM_HAL_PWRCTRL_IOM0 << ui32Module);
- //
- // Restore the IOM configuration registers from the structure in SRAM.
- //
- AM_REGn(IOMSTR, ui32Module, FIFOTHR) = am_hal_iom_pwrsave[ui32Module].FIFOTHR;
- AM_REGn(IOMSTR, ui32Module, CLKCFG) = am_hal_iom_pwrsave[ui32Module].CLKCFG;
- AM_REGn(IOMSTR, ui32Module, CFG) = am_hal_iom_pwrsave[ui32Module].CFG;
- AM_REGn(IOMSTR, ui32Module, INTEN) = am_hal_iom_pwrsave[ui32Module].INTEN;
- //
- // Indicates we have restored the configuration.
- //
- am_hal_iom_pwrsave[ui32Module].bValid = 0;
- }
- //*****************************************************************************
- //
- //! @brief Disable power to the selected IOM module.
- //!
- //! @param ui32Module - Module number for the IOM to be turned off.
- //!
- //! This function disables the power gate to the selected IOM module. It is
- //! intended to be used along with am_hal_iom_power_on_restore(). Used together,
- //! these functions allow the caller to power IOM modules off to save
- //! additional power without losing important configuration information.
- //!
- //! The am_hal_iom_power_off_save() function will save IOM configuration
- //! register information to SRAM before powering off the selected IOM module.
- //! The am_hal_iom_power_on_restore() function will re-enable the IOM module
- //! and restore those configuration settings from SRAM.
- //!
- //! @return None.
- //
- //*****************************************************************************
- void
- am_hal_iom_power_off_save(uint32_t ui32Module)
- {
- am_hal_debug_assert_msg(ui32Module < AM_REG_IOMSTR_NUM_MODULES,
- "Trying to disable an IOM module that doesn't exist.");
- //
- // Save the IOM configuration registers to the structure in SRAM.
- //
- am_hal_iom_pwrsave[ui32Module].FIFOTHR = AM_REGn(IOMSTR, ui32Module, FIFOTHR);
- am_hal_iom_pwrsave[ui32Module].CLKCFG = AM_REGn(IOMSTR, ui32Module, CLKCFG);
- am_hal_iom_pwrsave[ui32Module].CFG = AM_REGn(IOMSTR, ui32Module, CFG);
- am_hal_iom_pwrsave[ui32Module].INTEN = AM_REGn(IOMSTR, ui32Module, INTEN);
- //
- // Indicates we have a valid saved configuration.
- //
- am_hal_iom_pwrsave[ui32Module].bValid = 1;
- //
- // Disable power to the selected IOM.
- //
- am_hal_pwrctrl_periph_disable(AM_HAL_PWRCTRL_IOM0 << ui32Module);
- }
- //
- //! Check and correct the IOM FIFO threshold.
- //
- #define MAX_RW_THRESHOLD (AM_HAL_IOM_MAX_FIFO_SIZE - 4)
- #define MIN_RW_THRESHOLD (4)
- #if (AM_ASSERT_INVALID_THRESHOLD == 0)
- static uint8_t check_iom_threshold(const uint8_t iom_threshold)
- {
- uint8_t corrected_threshold = iom_threshold;
- if ( corrected_threshold < MIN_RW_THRESHOLD )
- {
- corrected_threshold = MIN_RW_THRESHOLD;
- }
- if ( corrected_threshold > MAX_RW_THRESHOLD )
- {
- corrected_threshold = MAX_RW_THRESHOLD;
- }
- return corrected_threshold;
- }
- #endif
- //*****************************************************************************
- //
- //! @brief Sets module-wide configuration options for the IOM module.
- //!
- //! @param ui32Module - The instance number for the module to be configured
- //! (zero or one)
- //!
- //! @param psConfig - Pointer to an IOM configuration structure.
- //!
- //! This function is used to set the interface mode (SPI or I2C), clock
- //! frequency, SPI format (when relevant), and FIFO read/write interrupt
- //! thresholds for the IO master. For more information on specific
- //! configuration options, please see the documentation for the configuration
- //! structure.
- //!
- //! @note The IOM module should be disabled before configuring or
- //! re-configuring. This function will not re-enable the module when it
- //! completes. Call the am_hal_iom_enable function when the module is
- //! configured and ready to use.
- //!
- //! @return None.
- //
- //*****************************************************************************
- void
- am_hal_iom_config(uint32_t ui32Module, const am_hal_iom_config_t *psConfig)
- {
- uint32_t ui32Config, ui32ClkCfg;
- //
- // Start by checking the interface mode (I2C or SPI), and writing it to the
- // configuration word.
- //
- ui32Config = psConfig->ui32InterfaceMode;
- if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
- {
- return;
- }
- //
- // Check the SPI format, and OR in the bits for SPHA (clock phase) and SPOL
- // (polarity). These shouldn't have any effect in I2C mode, so it should be
- // ok to write them without checking exactly which mode we're in.
- //
- if ( psConfig->bSPHA )
- {
- ui32Config |= AM_REG_IOMSTR_CFG_SPHA(1);
- }
- if ( psConfig->bSPOL )
- {
- ui32Config |= AM_REG_IOMSTR_CFG_SPOL(1);
- }
- // Set the STARTRD based on the interface speed
- // For all I2C frequencies and SPI frequencies below 16 MHz, the STARTRD
- // field should be set to 0 to minimize the potential of the IO transfer
- // holding off a bus access to the FIFO. For SPI frequencies of 16 MHz
- // or 24 MHz, the STARTRD field must be set to a value of 2 to insure
- // enough time for the IO preread.
- if ( psConfig->ui32ClockFrequency >= 16000000UL)
- {
- ui32Config |= AM_REG_IOMSTR_CFG_STARTRD(2);
- }
- //
- // Write the resulting configuration word to the IO master CFG register for
- // the module number we were provided.
- //
- AM_REGn(IOMSTR, ui32Module, CFG) = ui32Config;
- //
- // Write the FIFO write and read thresholds to the appropriate registers.
- //
- #if (AM_ASSERT_INVALID_THRESHOLD == 1)
- am_hal_debug_assert_msg(
- (psConfig->ui8WriteThreshold <= MAX_RW_THRESHOLD), "IOM write threshold too big.");
- am_hal_debug_assert_msg(
- (psConfig->ui8ReadThreshold <= MAX_RW_THRESHOLD), "IOM read threshold too big.");
- am_hal_debug_assert_msg(
- (psConfig->ui8WriteThreshold >= MIN_RW_THRESHOLD), "IOM write threshold too small.");
- am_hal_debug_assert_msg(
- (psConfig->ui8ReadThreshold >= MIN_RW_THRESHOLD), "IOM read threshold too small.");
- AM_REGn(IOMSTR, ui32Module, FIFOTHR) =
- (AM_REG_IOMSTR_FIFOTHR_FIFOWTHR(psConfig->ui8WriteThreshold) |
- AM_REG_IOMSTR_FIFOTHR_FIFORTHR(psConfig->ui8ReadThreshold));
- #elif (AM_ASSERT_INVALID_THRESHOLD == 0)
- AM_REGn(IOMSTR, ui32Module, FIFOTHR) =
- (AM_REG_IOMSTR_FIFOTHR_FIFOWTHR(check_iom_threshold(psConfig->ui8WriteThreshold)) |
- AM_REG_IOMSTR_FIFOTHR_FIFORTHR(check_iom_threshold(psConfig->ui8ReadThreshold)));
- #else
- #error AM_ASSERT_INVALID_THRESHOLD must be 0 or 1.
- #endif
- // Apply I2C clock stretching workaround if B2 silicon and IOM 1,2,3, or 5
- // Note: Only I2C clock speeds of AM_HAL_IOM_800KHZ, AM_HAL_IOM_400KHZ,
- // AM_HAL_IOM_200KHZ, and AM_HAL_IOM_100KHZ are allowed. Other values will
- // result in the default of AM_HAL_IOM_100KHZ.
- if ((0 != ui32Module) && (4 != ui32Module) && (6 != ui32Module) &&
- isRevB2() && (AM_HAL_IOM_I2CMODE == psConfig->ui32InterfaceMode))
- {
- // Set SPHA field to 1 on B2 silicon to enable the feature;
- AM_REGn(IOMSTR, ui32Module, CFG) |= AM_REG_IOMSTR_CFG_SPHA_M;
- ui32ClkCfg = iom_get_i2c_workaround_clock_cfg(psConfig->ui32ClockFrequency);
- }
- else
- {
- //
- // An exception occurs in the LOWPER computation when setting an interface
- // frequency (such as a divide by 5 frequency) which results in a 60/40
- // duty cycle. The 60% cycle must occur in the appropriate half-period,
- // as only one of the half-periods is active, depending on which phase
- // is being selected.
- // If SPHA=0 the low period must be 60%. If SPHA=1 high period must be 60%.
- // Note that the predetermined frequency parameters use the formula
- // lowper = (totper-1)/2, which results in a 60% low period.
- //
- ui32ClkCfg = iom_get_interface_clock_cfg(psConfig->ui32ClockFrequency,
- psConfig->bSPHA );
- }
- if ( ui32ClkCfg )
- {
- AM_REGn(IOMSTR, ui32Module, CLKCFG) = (uint32_t)ui32ClkCfg;
- }
- //
- // Compute the status timeout value.
- //
- ui32StatusTimeout[ui32Module] = MAX_IOM_BITS * AM_HAL_IOM_MAX_FIFO_SIZE *
- IOM_OVERHEAD_FACTOR * (am_hal_clkgen_sysclk_get() / psConfig->ui32ClockFrequency);
- }
- //*****************************************************************************
- //
- //! @brief Returns the actual currently configured interface frequency in Hz.
- //
- //*****************************************************************************
- uint32_t
- am_hal_iom_frequency_get(uint32_t ui32ClkCfg)
- {
- uint32_t ui32Freq;
- ui32Freq = compute_freq(AM_HAL_CLKGEN_FREQ_MAX_HZ,
- (ui32ClkCfg & AM_REG_IOMSTR_CLKCFG_FSEL_M) >> AM_REG_IOMSTR_CLKCFG_FSEL_S,
- (ui32ClkCfg & AM_REG_IOMSTR_CLKCFG_DIV3_M) >> AM_REG_IOMSTR_CLKCFG_DIV3_S,
- (ui32ClkCfg & AM_REG_IOMSTR_CLKCFG_DIVEN_M) >> AM_REG_IOMSTR_CLKCFG_DIVEN_S,
- (ui32ClkCfg & AM_REG_IOMSTR_CLKCFG_TOTPER_M)>> AM_REG_IOMSTR_CLKCFG_TOTPER_S);
- return ui32Freq;
- }
- //*****************************************************************************
- //
- // Helper function for the B0 workaround.
- //
- //*****************************************************************************
- static uint32_t
- iom_get_workaround_fsel(uint32_t maxFreq)
- {
- uint32_t ui32Freq, ui32Fsel;
- uint32_t ui32ClkCfg = AM_REGn(IOMSTR, 4, CLKCFG);
- //
- // Starting with the current clock configuration parameters, find a value
- // of FSEL that will bring our total frequency down to or below maxFreq.
- //
- for ( ui32Fsel = 1; ui32Fsel < 8; ui32Fsel++ )
- {
- ui32Freq = compute_freq(AM_HAL_CLKGEN_FREQ_MAX_HZ, ui32Fsel,
- AM_BFX(IOMSTR, CLKCFG, DIV3, ui32ClkCfg),
- AM_BFX(IOMSTR, CLKCFG, DIVEN, ui32ClkCfg),
- AM_BFX(IOMSTR, CLKCFG, TOTPER, ui32ClkCfg));
- if ( ui32Freq <= maxFreq && ui32Freq != 0 )
- {
- //
- // Return the new FSEL
- //
- return ui32Fsel;
- }
- }
- //
- // Couldn't find an appropriate frequency. This should be impossible
- // because there should always be a value of FSEL that brings the final IOM
- // frequency below 500 KHz.
- //
- am_hal_debug_assert_msg(false, "Could find a valid frequency. Should never get here.");
- return maxFreq;
- }
- // Separating this piece of code in separate function to keep the impact of
- // rest of the code to mimimal because of stack usage
- static void
- internal_iom_workaround_critical(uint32_t ui32Command,
- volatile uint32_t *pui32CSPadreg,
- uint32_t ui32CSPadregVal,
- uint32_t ui32DelayTime,
- uint32_t ui32ClkCfg,
- uint32_t ui32LowClkCfg,
- bool bRising)
- {
- uint32_t ui32Critical = 0;
- //
- // Start a critical section.
- //
- ui32Critical = am_hal_interrupt_master_disable();
- //
- // Start the write on the bus.
- //
- AM_REGn(IOMSTR, WORKAROUND_IOM, CMD) = ui32Command;
- //
- // Slow down the clock, and run the workaround loop. The workaround
- // loop runs an edge-detector on MOSI, and triggers a falling edge on
- // chip-enable on the first bit of our real data.
- //
- ((void (*)(uint32_t)) 0x0800009d)(ui32DelayTime);
- // Switch to Low Freq
- AM_REGn(IOMSTR, WORKAROUND_IOM, CLKCFG) = ui32LowClkCfg;
- iom_workaround_loop(ui32CSPadregVal, pui32CSPadreg, bRising);
- //
- // Restore the clock frequency and the normal MOSI pin function.
- //
- AM_REGn(IOMSTR, WORKAROUND_IOM, CLKCFG) = ui32ClkCfg;
- am_hal_gpio_pin_config(WORKAROUND_IOM_MOSI_PIN, WORKAROUND_IOM_MOSI_CFG);
- //
- // End the critical section.
- //
- am_hal_interrupt_master_set(ui32Critical);
- }
- //*****************************************************************************
- //
- //! @brief Workaround for an Apollo2 Rev B0 issue.
- //!
- //! @param ui32ChipSelect - Chip-select number for this transaction.
- //! @param pui32Data - Pointer to the bytes that will be sent.
- //! @param ui32NumBytes - Number of bytes to send.
- //! @param ui32Options - Additional SPI transfer options.
- //!
- //! Some Apollo2 Rev B0 devices have an issue where the first byte of a SPI
- //! write transaction can have some of its bits changed from ones to zeroes. In
- //! order to get around this issue, we artificially pad the SPI write data with
- //! additional bytes, and manually control the CS pin for the beginning of the
- //! SPI frame so that the receiving device will ignore the bytes of padding
- //! that we added.
- //!
- //! This function acts as a helper function to higher-level spi APIs. It
- //! performs the functions of am_hal_iom_fifo_write() and
- //! am_hal_iom_spi_cmd_run() to get a SPI write started on the bus, including
- //! all of the necessary workaround behavior.
- //!
- //! @return None.
- //
- //*****************************************************************************
- void
- am_hal_iom_workaround_word_write(uint32_t ui32ChipSelect,
- uint32_t *pui32Data, uint32_t ui32NumBytes,
- uint32_t ui32Options)
- {
- uint32_t ui32TransferSize;
- uint32_t ui32IOMGPIO = 0xDEADBEEF;
- volatile uint32_t *pui32CSPadreg = 0;
- uint32_t ui32CSPadregVal = 0;
- uint32_t ui32ClkCfg = 0;
- uint32_t ui32HiClkCfg, ui32LowClkCfg;
- bool bRising = 0;
- uint32_t ui32HiFreq = 0, ui32NormalFreq = 0;
- uint32_t ui32DelayTime = 0;
- uint32_t ui32LowFsel = 0;
- uint32_t ui32HiFsel = 0;
- uint32_t ui32FirstWord = 0;
- uint32_t ui32MaxFifoSize = ((0 == AM_BFRn(IOMSTR, WORKAROUND_IOM, CFG, FULLDUP)) ?
- AM_HAL_IOM_MAX_FIFO_SIZE : AM_HAL_IOM_MAX_FIFO_SIZE / 2);
- uint32_t ui32Command;
- //
- // Make sure the transfer isn't too long for the hardware to support.
- //
- // Note: This is a little shorter than usual, since the workaround
- // consumes an extra byte at the beginning of the transfer.
- //
- am_hal_debug_assert_msg(ui32NumBytes <= 4091, "SPI transfer too big.");
- //
- // Create a "dummy" word to add on to the beginning of the transfer
- // that will guarantee a transition between the first word and the
- // second on the bus.
- //
- // For raw transactions, this is straightforward. For transactions
- // preceded by an offset, we'll add the offset in to the "dummy" word
- // to preserve data alignment later.
- //
- // The workaround uses a critical section for precision
- // To minimize the time in critical section, we raise the SPI frequency
- // to the max possible for the initial preamble to be clocked out
- // then we switch to a 'reasonably' slow frequency to be able to reliably
- // catch the rising or falling edge by polling. Then we switch back to
- // configured frequency
- //
- // We want to slow down the clock to help us count edges more
- // accurately. Save it first, then slow it down. Also, we will
- // pre-calculate a delay for when we need to restore the SPI settings.
- //
- ui32ClkCfg = AM_REGn(IOMSTR, WORKAROUND_IOM, CLKCFG);
- // Get the largest speed we can configure within our rated speed of 16MHz
- ui32HiFsel = iom_get_workaround_fsel(16000000);
- ui32HiClkCfg = ((ui32ClkCfg & (~AM_REG_IOMSTR_CLKCFG_FSEL_M)) |
- AM_BFV(IOMSTR, CLKCFG, FSEL, ui32HiFsel));
- // Switch to Hi Freq
- // Need to make sure we wait long enough for the hi clock to be effective
- // Delay 2 cycles based on previous frequency
- ui32NormalFreq = am_hal_iom_frequency_get(ui32ClkCfg);
- AM_REGn(IOMSTR, WORKAROUND_IOM, CLKCFG) = ui32HiClkCfg;
- ui32DelayTime = ((2 * AM_HAL_CLKGEN_FREQ_MAX_HZ) / (ui32NormalFreq * 3));
- ((void (*)(uint32_t)) 0x0800009d)(ui32DelayTime);
- //
- // Remember what frequency we'll be running at.during Hi Phase
- //
- ui32HiFreq = am_hal_iom_frequency_get(ui32HiClkCfg);
- //
- // Validate return value to prevent DIVBY0 errors.
- //
- am_hal_debug_assert_msg(ui32HiFreq > 0, "Invalid Hi Frequency for IOM.");
- // Get a reasonably slow speed (~1MHz) we can safely poll for the transition
- ui32LowFsel = iom_get_workaround_fsel(1000000);
- ui32LowClkCfg = ((ui32ClkCfg & (~AM_REG_IOMSTR_CLKCFG_FSEL_M)) |
- AM_BFV(IOMSTR, CLKCFG, FSEL, ui32LowFsel));
- if ( ui32Options & AM_HAL_IOM_RAW )
- {
- //
- // The transition we care for is on 33rd bit.
- // Prepare to delay 27 bits past the start of the transaction
- // before getting into polling - to leave some
- // margin for compiler related variations
- //
- ui32DelayTime = ((27 * AM_HAL_CLKGEN_FREQ_MAX_HZ) / (ui32HiFreq * 3));
- if ( pui32Data[0] & 0x80 )
- {
- ui32FirstWord = 0x00000000;
- bRising = true;
- }
- else
- {
- ui32FirstWord = 0xFFFFFF00;
- bRising = false;
- }
- }
- else
- {
- //
- // The transition we care for is on 25th bit.
- // Prepare to delay 19 bits past the start of the transaction
- // before getting into polling - to leave some
- // margin for compiler related variations
- //
- ui32DelayTime = ((19 * AM_HAL_CLKGEN_FREQ_MAX_HZ) / (ui32HiFreq * 3));
- ui32FirstWord = ((ui32Options & 0xFF00) << 16);
- if ( ui32FirstWord & 0x80000000 )
- {
- bRising = true;
- }
- else
- {
- ui32FirstWord |= 0x00FFFF00;
- bRising = false;
- }
- }
- //
- // Now that weve taken care of the offset byte, we can run the
- // transaction in RAW mode.
- //
- ui32Options |= AM_HAL_IOM_RAW;
- ui32NumBytes += 4;
- //
- // Figure out how many bytes we can write to the FIFO immediately.
- //
- ui32TransferSize = (ui32NumBytes <= ui32MaxFifoSize ? ui32NumBytes :
- ui32MaxFifoSize);
- am_hal_iom_fifo_write(WORKAROUND_IOM, &ui32FirstWord, 4);
- am_hal_iom_fifo_write(WORKAROUND_IOM, pui32Data, ui32TransferSize - 4);
- //
- // Calculate the GPIO to be controlled until the initial shift is
- // complete. Make sure we get a valid value.
- //
- ui32IOMGPIO = iom_calc_gpio(ui32ChipSelect);
- am_hal_debug_assert(0xDEADBEEF != ui32IOMGPIO);
- //
- // Save the locations and values of the CS pin configuration
- // information.
- //
- pui32CSPadreg = (volatile uint32_t *)AM_HAL_GPIO_PADREG(ui32IOMGPIO);
- ui32CSPadregVal = *pui32CSPadreg;
- //
- // Switch CS to a GPIO.
- //
- am_hal_gpio_out_bit_set(ui32IOMGPIO);
- am_hal_gpio_pin_config(ui32IOMGPIO, AM_HAL_GPIO_OUTPUT);
- //
- // Enable the input buffer on MOSI.
- //
- am_hal_gpio_pin_config(WORKAROUND_IOM_MOSI_PIN, WORKAROUND_IOM_MOSI_CFG | AM_HAL_PIN_DIR_INPUT);
- //
- // Write the GPIO PADKEY register to allow the workaround loop to
- // reconfigure chip enable.
- //
- AM_REGn(GPIO, 0, PADKEY) = AM_REG_GPIO_PADKEY_KEYVAL;
- // Preconstruct the command - to save on calculations inside critical section
- ui32Command = internal_am_hal_iom_spi_cmd_construct(AM_HAL_IOM_WRITE,
- ui32ChipSelect, ui32NumBytes, ui32Options);
- internal_iom_workaround_critical(ui32Command,
- pui32CSPadreg, ui32CSPadregVal,
- ui32DelayTime, ui32ClkCfg,
- ui32LowClkCfg, bRising);
- //
- // Re-lock the GPIO PADKEY register
- //
- AM_REGn(GPIO, 0, PADKEY) = 0;
- //
- // Update the pointer and data counter.
- //
- ui32NumBytes -= ui32TransferSize;
- pui32Data += (ui32TransferSize - 4) >> 2;
- }
- //*****************************************************************************
- //
- //! @brief Implement an iterative spin loop.
- //!
- //! @param ui32Iterations - Number of iterations to delay.
- //!
- //! Use this function to implement a CPU busy waiting spin. For Apollo, this
- //! delay can be used for timing purposes since for Apollo, each iteration will
- //! take 3 cycles.
- //!
- //! @return None.
- //
- //*****************************************************************************
- #if defined(__GNUC__)
- static void __attribute__((naked))
- iom_workaround_loop(uint32_t ui32PadRegVal, volatile uint32_t *pui32PadReg,
- bool bRising)
- {
- //
- // Check to see if this is a "rising edge" or "falling edge" detector.
- //
- __asm(" cbz r2, falling_edge");
- //
- // Read GPIO pin 44, and loop until it's HIGH.
- //
- __asm("rising_edge:");
- __asm(" ldr r2, =0x40010084");
- __asm("rising_check_mosi:");
- __asm(" ldr r3, [r2]");
- __asm(" ands r3, r3, #0x1000");
- __asm(" beq rising_check_mosi");
- //
- // Write the PADREG Value to the PADREG register.
- //
- __asm(" str r0, [r1]");
- __asm(" bx lr");
- //
- // Read GPIO pin 44, and loop until it's LOW.
- //
- __asm("falling_edge:");
- __asm(" ldr r2, =0x40010084");
- __asm("falling_check_mosi:");
- __asm(" ldr r3, [r2]");
- __asm(" ands r3, r3, #0x1000");
- __asm(" bne falling_check_mosi");
- //
- // Write the PADREG Value to the PADREG register.
- //
- __asm(" str r0, [r1]");
- __asm(" bx lr");
- }
- #elif defined(__CC_ARM)
- __asm static void
- iom_workaround_loop(uint32_t ui32PadRegVal, volatile uint32_t *pui32PadReg,
- bool bRising)
- {
- //
- // Check to see if this is a "rising edge" or "falling edge" detector.
- //
- cbz r2, falling_edge
- //
- // Read GPIO pin 44, and loop until it's HIGH.
- //
- rising_edge
- ldr r2, =0x40010084
- rising_check_mosi
- ldr r3, [r2]
- ands r3, r3, #0x1000
- beq rising_check_mosi
- //
- // Write the PADREG Value to the PADREG register.
- //
- str r0, [r1]
- bx lr
- //
- // Read GPIO pin 44, and loop until it's LOW.
- //
- falling_edge
- ldr r2, =0x40010084
- falling_check_mosi
- ldr r3, [r2]
- ands r3, r3, #0x1000
- bne falling_check_mosi
- //
- // Write the PADREG Value to the PADREG register.
- //
- str r0, [r1]
- bx lr
- nop
- }
- #elif defined(__ICCARM__)
- static void
- iom_workaround_loop(uint32_t ui32PadRegVal, volatile uint32_t *pui32PadReg,
- bool bRising)
- {
- //
- // Check to see if this is a "rising edge" or "falling edge" detector.
- //
- asm(
- " cbz r2, falling_edge\n"
- //
- // Read GPIO pin 44, and loop until it's HIGH.
- //
- "rising_edge:\n"
- " mov32 r2, #0x40010084\n"
- "rising_check_mosi:\n"
- " ldr r3, [r2]\n"
- " ands r3, r3, #0x1000\n"
- " beq rising_check_mosi\n"
- //
- // Write the PADREG Value to the PADREG register.
- //
- " str r0, [r1]\n"
- " bx lr\n"
- //
- // Read GPIO pin 44, and loop until it's LOW.
- //
- "falling_edge:\n"
- " mov32 r2, #0x40010084\n"
- "falling_check_mosi:\n"
- " ldr r3, [r2]\n"
- " ands r3, r3, #0x1000\n"
- " bne falling_check_mosi\n"
- //
- // Write the PADREG Value to the PADREG register.
- //
- " str r0, [r1]\n"
- " bx lr"
- );
- }
- #endif
- //*****************************************************************************
- //
- //! @brief Perform a simple write to the SPI interface.
- //!
- //! @param ui32Module - Module number for the IOM
- //! @param ui32ChipSelect - Chip-select number for this transaction.
- //! @param pui32Data - Pointer to the bytes that will be sent.
- //! @param ui32NumBytes - Number of bytes to send.
- //! @param ui32Options - Additional SPI transfer options.
- //!
- //! This function performs SPI writes to a selected SPI device.
- //!
- //! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
- //! This means that you will need to byte-pack the \e pui32Data array with the
- //! data you intend to send over the interface. One easy way to do this is to
- //! declare the array as a 32-bit integer array, but use an 8-bit pointer to
- //! put your actual data into the array. If there are not enough bytes in your
- //! desired message to completely fill the last 32-bit word, you may pad that
- //! last word with bytes of any value. The IOM hardware will only read the
- //! first \e ui32NumBytes in the \e pui8Data array.
- //!
- //! @return returns AM_HAL_IOM_SUCCESS on successful execution.
- //
- //*****************************************************************************
- am_hal_iom_status_e
- am_hal_iom_spi_write(uint32_t ui32Module, uint32_t ui32ChipSelect,
- uint32_t *pui32Data, uint32_t ui32NumBytes,
- uint32_t ui32Options)
- {
- am_hal_iom_status_e ui32Status;
- //
- // Validate parameters
- //
- if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
- {
- return AM_HAL_IOM_ERR_INVALID_MODULE;
- }
- // Reset the error status
- ui32Status = g_iom_error_status[ui32Module] = AM_HAL_IOM_SUCCESS;
- if (ui32NumBytes == 0)
- {
- g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_INVALID_PARAM;
- return ui32Status;
- }
- //
- // Check to see if queues have been enabled. If they are, we'll actually
- // switch to the queued interface.
- //
- if ( g_psIOMQueue[ui32Module].pui8Data != NULL )
- {
- //
- // If the queue is on, go ahead and add this transaction to the queue.
- //
- ui32Status = am_hal_iom_queue_spi_write(ui32Module, ui32ChipSelect, pui32Data,
- ui32NumBytes, ui32Options, 0);
- if (ui32Status == AM_HAL_IOM_SUCCESS)
- {
- //
- // Wait until the transaction actually clears.
- //
- am_hal_iom_queue_flush(ui32Module);
- // g_iom_error_status gets set in the isr handling
- ui32Status = g_iom_error_status[ui32Module];
- }
- //
- // At this point, we've completed the transaction, and we can return.
- //
- }
- else
- {
- //
- // Otherwise, we'll just do a polled transaction.
- //
- ui32Status = am_hal_iom_spi_write_nq(ui32Module, ui32ChipSelect, pui32Data,
- ui32NumBytes, ui32Options);
- }
- return ui32Status;
- }
- //*****************************************************************************
- //
- //! @brief Perform simple SPI read operations.
- //!
- //! @param ui32Module - Module number for the IOM
- //! @param ui32ChipSelect - Chip-select number for this transaction.
- //! @param pui32Data - Pointer to the array where received bytes should go.
- //! @param ui32NumBytes - Number of bytes to read.
- //! @param ui32Options - Additional SPI transfer options.
- //!
- //! This function performs simple SPI read operations. The caller is
- //! responsible for ensuring that the receive buffer is large enough to hold
- //! the requested amount of data.
- //!
- //! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
- //! This function will pack the individual bytes from the physical interface
- //! into 32-bit words, which are then placed into the \e pui32Data array. Only
- //! the first \e ui32NumBytes bytes in this array will contain valid data.
- //!
- //! @return returns AM_HAL_IOM_SUCCESS on successful execution.
- //
- //*****************************************************************************
- am_hal_iom_status_e
- am_hal_iom_spi_read(uint32_t ui32Module, uint32_t ui32ChipSelect,
- uint32_t *pui32Data, uint32_t ui32NumBytes,
- uint32_t ui32Options)
- {
- am_hal_iom_status_e ui32Status;
- //
- // Validate parameters
- //
- if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
- {
- return AM_HAL_IOM_ERR_INVALID_MODULE;
- }
- // Reset the error status
- AM_REGn(IOMSTR, ui32Module, INTCLR) = AM_HAL_IOM_INT_ALL;
- ui32Status = g_iom_error_status[ui32Module] = AM_HAL_IOM_SUCCESS;
- if (ui32NumBytes == 0)
- {
- g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_INVALID_PARAM;
- return ui32Status;
- }
- //
- // Make sure the transfer isn't too long for the hardware to support.
- //
- if (ui32NumBytes >= 4096)
- {
- g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_INVALID_PARAM;
- return ui32Status;
- }
- //
- // Check to see if queues have been enabled. If they are, we'll actually
- // switch to the queued interface.
- //
- if ( g_psIOMQueue[ui32Module].pui8Data != NULL )
- {
- //
- // If the queue is on, go ahead and add this transaction to the queue.
- //
- ui32Status = am_hal_iom_queue_spi_read(ui32Module, ui32ChipSelect, pui32Data,
- ui32NumBytes, ui32Options, 0);
- if (ui32Status == AM_HAL_IOM_SUCCESS)
- {
- //
- // Wait until the transaction actually clears.
- //
- am_hal_iom_queue_flush(ui32Module);
- // g_iom_error_status gets set in the isr handling
- ui32Status = g_iom_error_status[ui32Module];
- }
- //
- // At this point, we've completed the transaction, and we can return.
- //
- }
- else
- {
- //
- // Otherwise, just perform a polled transaction.
- //
- ui32Status = am_hal_iom_spi_read_nq(ui32Module, ui32ChipSelect, pui32Data,
- ui32NumBytes, ui32Options);
- }
- return ui32Status;
- }
- //*****************************************************************************
- //
- //! @brief Perform a simple full-duplex transaction to the SPI interface.
- //!
- //! @param ui32Module - Module number for the IOM
- //! @param ui32ChipSelect - Chip-select number for this transaction.
- //! @param pui32TxData - Pointer to the bytes that will be sent.
- //! @param pui32RxData - Pointer to the bytes that will be received.
- //! @param ui32NumBytes - Number of bytes to send.
- //! @param ui32Options - Additional SPI transfer options.
- //!
- //! This function performs SPI full-duplex operation to a selected SPI device.
- //!
- //! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
- //! This means that you will need to byte-pack the \e pui32TxData array with the
- //! data you intend to send over the interface. One easy way to do this is to
- //! declare the array as a 32-bit integer array, but use an 8-bit pointer to
- //! put your actual data into the array. If there are not enough bytes in your
- //! desired message to completely fill the last 32-bit word, you may pad that
- //! last word with bytes of any value. The IOM hardware will only read the
- //! first \e ui32NumBytes in the \e pui32TxData array.
- //!
- //! @return returns AM_HAL_IOM_SUCCESS on successful execution.
- //
- //*****************************************************************************
- am_hal_iom_status_e
- am_hal_iom_spi_fullduplex(uint32_t ui32Module, uint32_t ui32ChipSelect,
- uint32_t *pui32TxData, uint32_t *pui32RxData,
- uint32_t ui32NumBytes, uint32_t ui32Options)
- {
- am_hal_iom_status_e ui32Status;
- //
- // Validate parameters
- //
- if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
- {
- return AM_HAL_IOM_ERR_INVALID_MODULE;
- }
- // Reset the error status
- ui32Status = g_iom_error_status[ui32Module] = AM_HAL_IOM_SUCCESS;
- if (ui32NumBytes == 0)
- {
- g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_INVALID_PARAM;
- return ui32Status;
- }
- //
- // Full-Duplex operation is only supported for Apollo2 B2 Silicon.
- //
- if (!isRevB2())
- {
- g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_INVALID_OPER;
- return ui32Status;
- }
- //
- // Check to see if queues have been enabled. If they are, we'll actually
- // switch to the queued interface.
- //
- #if 0
- // To be implemented!!!
- if ( g_psIOMQueue[ui32Module].pui8Data != NULL )
- {
- //
- // If the queue is on, go ahead and add this transaction to the queue.
- //
- ui32Status = am_hal_iom_queue_spi_write(ui32Module, ui32ChipSelect, pui32Data,
- ui32NumBytes, ui32Options, 0);
- if (ui32Status == AM_HAL_IOM_SUCCESS)
- {
- //
- // Wait until the transaction actually clears.
- //
- am_hal_iom_queue_flush(ui32Module);
- // g_iom_error_status gets set in the isr handling
- ui32Status = g_iom_error_status[ui32Module];
- }
- //
- // At this point, we've completed the transaction, and we can return.
- //
- }
- else
- {
- #endif
- //
- // Otherwise, we'll just do a polled transaction.
- //
- ui32Status = am_hal_iom_spi_fullduplex_nq(ui32Module, ui32ChipSelect,
- pui32TxData, pui32RxData,
- ui32NumBytes, ui32Options);
- #if 0
- }
- #endif
- return ui32Status;
- }
- //*****************************************************************************
- //
- //! @brief Perform a simple write to the SPI interface (without queuing)
- //!
- //! @param ui32Module - Module number for the IOM
- //! @param ui32ChipSelect - Chip-select number for this transaction.
- //! @param pui32Data - Pointer to the bytes that will be sent.
- //! @param ui32NumBytes - Number of bytes to send.
- //! @param ui32Options - Additional SPI transfer options.
- //!
- //! This function performs SPI writes to a selected SPI device.
- //!
- //! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
- //! This means that you will need to byte-pack the \e pui32Data array with the
- //! data you intend to send over the interface. One easy way to do this is to
- //! declare the array as a 32-bit integer array, but use an 8-bit pointer to
- //! put your actual data into the array. If there are not enough bytes in your
- //! desired message to completely fill the last 32-bit word, you may pad that
- //! last word with bytes of any value. The IOM hardware will only read the
- //! first \e ui32NumBytes in the \e pui8Data array.
- //!
- //! @return returns AM_HAL_IOM_SUCCESS on successful execution.
- //
- //*****************************************************************************
- am_hal_iom_status_e
- am_hal_iom_spi_write_nq(uint32_t ui32Module, uint32_t ui32ChipSelect,
- uint32_t *pui32Data, uint32_t ui32NumBytes,
- uint32_t ui32Options)
- {
- uint32_t ui32TransferSize;
- uint32_t ui32SpaceInFifo;
- uint32_t ui32IntConfig;
- uint32_t ui32MaxFifoSize;
- am_hal_iom_status_e ui32Status;
- uint32_t waitStatus;
- //
- // Validate parameters
- //
- if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
- {
- return AM_HAL_IOM_ERR_INVALID_MODULE;
- }
- //
- // Wait until the bus is idle
- //
- am_hal_iom_poll_complete(ui32Module);
- // Reset the error status
- ui32Status = g_iom_error_status[ui32Module] = AM_HAL_IOM_SUCCESS;
- if (ui32NumBytes == 0)
- {
- g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_INVALID_PARAM;
- return ui32Status;
- }
- //
- // Make sure the transfer isn't too long for the hardware to support.
- //
- if (ui32NumBytes >= 4096)
- {
- g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_INVALID_PARAM;
- return ui32Status;
- }
- ui32MaxFifoSize = ((0 == AM_BFRn(IOMSTR, ui32Module, CFG, FULLDUP)) ?
- AM_HAL_IOM_MAX_FIFO_SIZE : AM_HAL_IOM_MAX_FIFO_SIZE / 2);
- //
- // Disable interrupts so that we don't get any undesired interrupts.
- //
- ui32IntConfig = AM_REGn(IOMSTR, ui32Module, INTEN);
- AM_REGn(IOMSTR, ui32Module, INTEN) = 0;
- // Clear interrupts
- AM_REGn(IOMSTR, ui32Module, INTCLR) = AM_HAL_IOM_INT_ALL;
- //
- // If we're on a B0 part, and we're using IOM4, our first byte coule be
- // corrupted, so we need to send a dummy word with chip-select held high to
- // get that first byte out of the way.
- //
- // That operation is tricky and detailed, so we'll call a function to do it
- // for us.
- //
- if ( WORKAROUND_IOM == ui32Module && isRevB0() )
- {
- am_hal_iom_workaround_word_write(ui32ChipSelect, pui32Data,
- ui32NumBytes, ui32Options);
- //
- // The workaround function is going to a partial transfer for us, but
- // we have to keep our own data-tracking variables updated. Here, we're
- // subtracting 4 bytes from the effective transfer size to account for
- // the 4 bytes of "dummy" word that we sent instead of the actual data.
- //
- ui32TransferSize = (ui32NumBytes <= (ui32MaxFifoSize - 4) ? ui32NumBytes :
- (ui32MaxFifoSize - 4));
- }
- else
- {
- //
- // Figure out how many bytes we can write to the FIFO immediately.
- //
- ui32TransferSize = (ui32NumBytes <= ui32MaxFifoSize ? ui32NumBytes :
- ui32MaxFifoSize);
- //
- // write our first word to the fifo.
- //
- am_hal_iom_fifo_write(ui32Module, pui32Data, ui32TransferSize);
- //
- // Start the write on the bus.
- //
- am_hal_iom_spi_cmd_run(AM_HAL_IOM_WRITE, ui32Module, ui32ChipSelect,
- ui32NumBytes, ui32Options);
- }
- //
- // Update the pointer and data counter.
- //
- ui32NumBytes -= ui32TransferSize;
- pui32Data += ui32TransferSize >> 2;
- //
- // Keep looping until we're out of bytes to send or command complete (error).
- //
- while ( ui32NumBytes && !AM_BFRn(IOMSTR, ui32Module, INTSTAT, CMDCMP) )
- {
- //
- // This will always return a multiple of four.
- //
- ui32SpaceInFifo = am_hal_iom_fifo_empty_slots(ui32Module);
- if ( ui32NumBytes <= ui32SpaceInFifo )
- {
- //
- // If the entire message will fit in the fifo, prepare to copy
- // everything.
- //
- ui32TransferSize = ui32NumBytes;
- }
- else
- {
- //
- // If only a portion of the message will fit in the fifo, prepare
- // to copy the largest number of 4-byte blocks possible.
- //
- ui32TransferSize = ui32SpaceInFifo & ~(0x3);
- }
- //
- // Write this chunk to the fifo.
- //
- am_hal_iom_fifo_write(ui32Module, pui32Data, ui32TransferSize);
- //
- // Update the data pointer and bytes-left count.
- //
- ui32NumBytes -= ui32TransferSize;
- pui32Data += ui32TransferSize >> 2;
- }
- //
- // Make sure CMDCMP was raised with standard timeout
- //
- waitStatus = am_hal_flash_delay_status_change(ui32StatusTimeout[ui32Module],
- AM_REG_IOMSTRn(ui32Module) + AM_REG_IOMSTR_INTSTAT_O,
- AM_REG_IOMSTR_INTEN_CMDCMP_M, AM_REG_IOMSTR_INTEN_CMDCMP_M);
- if (waitStatus != 1)
- {
- g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_TIMEOUT;
- }
- else
- {
- g_iom_error_status[ui32Module] = ui32Status = internal_iom_get_int_err(ui32Module, 0);
- }
- //
- // Re-enable IOM interrupts.
- //
- // Clear interrupts
- AM_REGn(IOMSTR, ui32Module, INTCLR) = AM_HAL_IOM_INT_ALL;
- AM_REGn(IOMSTR, ui32Module, INTEN) = ui32IntConfig;
- return ui32Status;
- }
- //*****************************************************************************
- //
- //! @brief Perform simple SPI read operations (without queuing).
- //!
- //! @param ui32Module - Module number for the IOM
- //! @param ui32ChipSelect - Chip-select number for this transaction.
- //! @param pui32Data - Pointer to the array where received bytes should go.
- //! @param ui32NumBytes - Number of bytes to read.
- //! @param ui32Options - Additional SPI transfer options.
- //!
- //! This function performs simple SPI read operations. The caller is
- //! responsible for ensuring that the receive buffer is large enough to hold
- //! the requested amount of data.
- //!
- //! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
- //! This function will pack the individual bytes from the physical interface
- //! into 32-bit words, which are then placed into the \e pui32Data array. Only
- //! the first \e ui32NumBytes bytes in this array will contain valid data.
- //!
- //! @return returns AM_HAL_IOM_SUCCESS on successful execution.
- //
- //*****************************************************************************
- am_hal_iom_status_e
- am_hal_iom_spi_read_nq(uint32_t ui32Module, uint32_t ui32ChipSelect,
- uint32_t *pui32Data, uint32_t ui32NumBytes,
- uint32_t ui32Options)
- {
- uint32_t ui32BytesInFifo;
- uint32_t ui32IntConfig;
- uint32_t bCmdCmp = false;
- am_hal_iom_status_e ui32Status;
- uint32_t waitStatus;
- //
- // Validate parameters
- //
- if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
- {
- return AM_HAL_IOM_ERR_INVALID_MODULE;
- }
- //
- // Wait until the bus is idle
- //
- am_hal_iom_poll_complete(ui32Module);
- // Reset the error status
- ui32Status = g_iom_error_status[ui32Module] = AM_HAL_IOM_SUCCESS;
- if (ui32NumBytes == 0)
- {
- g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_INVALID_PARAM;
- return ui32Status;
- }
- //
- // Make sure the transfer isn't too long for the hardware to support.
- //
- if (ui32NumBytes >= 4096)
- {
- g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_INVALID_PARAM;
- return ui32Status;
- }
- //
- // Disable interrupts so that we don't get any undesired interrupts.
- //
- ui32IntConfig = AM_REGn(IOMSTR, ui32Module, INTEN);
- //
- // Disable IOM interrupts as we'll be polling
- //
- AM_REGn(IOMSTR, ui32Module, INTEN) = 0;
- // Clear interrupts
- AM_REGn(IOMSTR, ui32Module, INTCLR) = AM_HAL_IOM_INT_ALL;
- //
- // If we're on a B0 part, and we're using IOM4, our first byte coule be
- // corrupted, so we need to send a dummy word with chip-select held high to
- // get that first byte out of the way. This is only true for spi reads with
- // OFFSET values.
- //
- // That operation is tricky and detailed, so we'll call a function to do it
- // for us.
- //
- if ( (WORKAROUND_IOM == ui32Module) && !(ui32Options & AM_HAL_IOM_RAW) &&
- isRevB0() )
- {
- am_hal_iom_workaround_word_write(ui32ChipSelect, pui32Data, 0,
- ui32Options | AM_HAL_IOM_CS_LOW);
- //
- // The workaround will send our offset for us, so we can run a RAW
- // command after.
- //
- ui32Options |= AM_HAL_IOM_RAW;
- //
- // Wait for the dummy word to go out over the bus.
- //
- // Make sure the command complete has also been raised
- waitStatus = am_hal_flash_delay_status_change(ui32StatusTimeout[ui32Module],
- AM_REG_IOMSTRn(ui32Module) + AM_REG_IOMSTR_INTSTAT_O,
- AM_REG_IOMSTR_INTEN_CMDCMP_M, AM_REG_IOMSTR_INTEN_CMDCMP_M);
- if (waitStatus != 1)
- {
- g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_TIMEOUT;
- //
- // Re-enable IOM interrupts.
- //
- // Clear interrupts
- AM_REGn(IOMSTR, ui32Module, INTCLR) = AM_HAL_IOM_INT_ALL;
- AM_REGn(IOMSTR, ui32Module, INTEN) = ui32IntConfig;
- return ui32Status;
- }
- // Clear CMDCMP status
- AM_BFWn(IOMSTR, ui32Module, INTCLR, CMDCMP, 1);
- }
- am_hal_iom_spi_cmd_run(AM_HAL_IOM_READ, ui32Module, ui32ChipSelect,
- ui32NumBytes, ui32Options);
- //
- // Start a loop to catch the Rx data.
- //
- while ( ui32NumBytes )
- {
- ui32BytesInFifo = am_hal_iom_fifo_full_slots(ui32Module);
- if ( ui32BytesInFifo >= ui32NumBytes )
- {
- //
- // If the fifo contains our entire message, just copy the whole
- // thing out.
- //
- am_hal_iom_fifo_read(ui32Module, pui32Data, ui32NumBytes);
- ui32NumBytes = 0;
- }
- else if ( ui32BytesInFifo >= 4 )
- {
- //
- // If the fifo has at least one 32-bit word in it, copy whole
- // words out.
- //
- am_hal_iom_fifo_read(ui32Module, pui32Data, ui32BytesInFifo & ~0x3);
- ui32NumBytes -= ui32BytesInFifo & ~0x3;
- pui32Data += ui32BytesInFifo >> 2;
- }
- if ( bCmdCmp == true )
- {
- //
- // No more data expected. Get out of the loop
- //
- break;
- }
- bCmdCmp = AM_BFRn(IOMSTR, ui32Module, INTSTAT, CMDCMP);
- }
- //
- // Make sure CMDCMP was raised,
- //
- waitStatus = am_hal_flash_delay_status_change(ui32StatusTimeout[ui32Module],
- AM_REG_IOMSTRn(ui32Module) + AM_REG_IOMSTR_INTSTAT_O,
- AM_REG_IOMSTR_INTEN_CMDCMP_M, AM_REG_IOMSTR_INTEN_CMDCMP_M);
- if (waitStatus != 1)
- {
- g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_TIMEOUT;
- }
- else
- {
- g_iom_error_status[ui32Module] = ui32Status = internal_iom_get_int_err(ui32Module, 0);
- }
- //
- // Re-enable IOM interrupts. Make sure CMDCMP is cleared
- //
- // Clear interrupts
- AM_REGn(IOMSTR, ui32Module, INTCLR) = AM_HAL_IOM_INT_ALL;
- AM_REGn(IOMSTR, ui32Module, INTEN) = ui32IntConfig;
- return ui32Status;
- }
- //*****************************************************************************
- //
- //! @brief Perform a simple full-duplex operation to the SPI interface (without queuing)
- //!
- //! @param ui32Module - Module number for the IOM
- //! @param ui32ChipSelect - Chip-select number for this transaction.
- //! @param pui32Data - Pointer to the bytes that will be sent.
- //! @param pui32Data - Pointer to the bytes that will be received.
- //! @param ui32NumBytes - Number of bytes to send.
- //! @param ui32Options - Additional SPI transfer options.
- //!
- //! This function performs SPI full-duplex operation to a selected SPI device.
- //!
- //! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
- //! This means that you will need to byte-pack the \e pui32TxData array with the
- //! data you intend to send over the interface. One easy way to do this is to
- //! declare the array as a 32-bit integer array, but use an 8-bit pointer to
- //! put your actual data into the array. If there are not enough bytes in your
- //! desired message to completely fill the last 32-bit word, you may pad that
- //! last word with bytes of any value. The IOM hardware will only read the
- //! first \e ui32NumBytes in the \e pui32TxData array.
- //!
- //! @return returns AM_HAL_IOM_SUCCESS on successful execution.
- //
- //*****************************************************************************
- am_hal_iom_status_e
- am_hal_iom_spi_fullduplex_nq(uint32_t ui32Module, uint32_t ui32ChipSelect,
- uint32_t *pui32TxData, uint32_t *pui32RxData,
- uint32_t ui32NumBytes, uint32_t ui32Options)
- {
- uint32_t ui32TransferSize;
- uint32_t ui32SpaceInFifo;
- uint32_t bCmdCmp = false;
- uint32_t ui32IntConfig;
- uint32_t ui32MaxFifoSize;
- am_hal_iom_status_e ui32Status;
- uint32_t waitStatus;
- //
- // Validate parameters
- //
- if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
- {
- return AM_HAL_IOM_ERR_INVALID_MODULE;
- }
- //
- // Wait until the bus is idle
- //
- am_hal_iom_poll_complete(ui32Module);
- // Reset the error status
- ui32Status = g_iom_error_status[ui32Module] = AM_HAL_IOM_SUCCESS;
- if (ui32NumBytes == 0)
- {
- g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_INVALID_PARAM;
- return ui32Status;
- }
- //
- // Make sure the transfer isn't too long for the hardware to support.
- //
- if (ui32NumBytes >= 4096)
- {
- g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_INVALID_PARAM;
- return ui32Status;
- }
- //
- // Full-Duplex operation is only supported for Apollo2 B2 Silicon.
- //
- if (!isRevB2())
- {
- g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_INVALID_OPER;
- return ui32Status;
- }
- //
- // Put the IOM into Full-Duplex mode.
- //
- AM_REGn(IOMSTR, ui32Module, CFG) |= AM_REG_IOMSTR_CFG_FULLDUP_FULLDUP;
- ui32MaxFifoSize = ((0 == AM_BFRn(IOMSTR, ui32Module, CFG, FULLDUP)) ?
- AM_HAL_IOM_MAX_FIFO_SIZE : AM_HAL_IOM_MAX_FIFO_SIZE / 2);
- //
- // Disable interrupts so that we don't get any undesired interrupts.
- //
- ui32IntConfig = AM_REGn(IOMSTR, ui32Module, INTEN);
- AM_REGn(IOMSTR, ui32Module, INTEN) = 0;
- // Clear interrupts
- AM_REGn(IOMSTR, ui32Module, INTCLR) = AM_HAL_IOM_INT_ALL;
- //
- // Figure out how many bytes we can write to the FIFO immediately.
- //
- ui32TransferSize = (ui32NumBytes <= ui32MaxFifoSize ? ui32NumBytes :
- ui32MaxFifoSize);
- //
- // write up to the maximum FIFO size into the fifo.
- //
- am_hal_iom_fifo_write(ui32Module, pui32TxData, ui32TransferSize);
- //
- // Start the write on the bus.
- //
- am_hal_iom_spi_cmd_run(AM_HAL_IOM_WRITE, ui32Module, ui32ChipSelect,
- ui32NumBytes, ui32Options);
- //
- // Update the pointer and data counter.
- //
- pui32TxData += ui32TransferSize >> 2;
- //
- // Keep looping until we're out of bytes to receive or command complete (error).
- //
- while ( ui32NumBytes )
- {
- //
- // Wait for FIFO to empty.
- //
- while (am_hal_iom_fifo_full_slots(ui32Module) > 0);
- am_hal_iom_fifo_read(ui32Module, pui32RxData, ui32TransferSize);
- ui32NumBytes -= ui32TransferSize;
- pui32RxData += ui32TransferSize >> 2;
- //
- // Get the number of bytes that can be written (always a multiple of 4).
- //
- ui32SpaceInFifo = am_hal_iom_fifo_empty_slots(ui32Module);
- if ( ui32NumBytes <= ui32SpaceInFifo )
- {
- //
- // If the entire message will fit in the fifo, prepare to copy
- // everything.
- //
- ui32TransferSize = ui32NumBytes;
- }
- else
- {
- //
- // If only a portion of the message will fit in the fifo, prepare
- // to copy the largest number of 4-byte blocks possible.
- //
- ui32TransferSize = ui32SpaceInFifo & ~(0x3);
- }
- //
- // Write this chunk to the fifo.
- //
- am_hal_iom_fifo_write(ui32Module, pui32TxData, ui32TransferSize);
- //
- // Update the data pointer and bytes-left count.
- //
- pui32TxData += ui32TransferSize >> 2;
- //
- // Check for Command Complete condition.
- if ( bCmdCmp == true )
- {
- //
- // No more data expected. Get out of the loop
- //
- break;
- }
- bCmdCmp = AM_BFRn(IOMSTR, ui32Module, INTSTAT, CMDCMP);
- }
- //
- // Make sure CMDCMP was raised with standard timeout
- //
- waitStatus = am_hal_flash_delay_status_change(ui32StatusTimeout[ui32Module],
- AM_REG_IOMSTRn(ui32Module) + AM_REG_IOMSTR_INTSTAT_O,
- AM_REG_IOMSTR_INTEN_CMDCMP_M, AM_REG_IOMSTR_INTEN_CMDCMP_M);
- if (waitStatus != 1)
- {
- g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_TIMEOUT;
- }
- else
- {
- g_iom_error_status[ui32Module] = ui32Status = internal_iom_get_int_err(ui32Module, 0);
- }
- //
- // Re-enable IOM interrupts.
- //
- // Clear interrupts
- AM_REGn(IOMSTR, ui32Module, INTCLR) = AM_HAL_IOM_INT_ALL;
- AM_REGn(IOMSTR, ui32Module, INTEN) = ui32IntConfig;
- //
- // Take the IOM out of Full-Duplex mode.
- //
- AM_REGn(IOMSTR, ui32Module, CFG) &= ~AM_REG_IOMSTR_CFG_FULLDUP_FULLDUP;
- return ui32Status;
- }
- //*****************************************************************************
- //
- //! @brief Perform a non-blocking write to the SPI interface.
- //!
- //! @param ui32Module - Module number for the IOM
- //! @param ui32ChipSelect - Chip-select number for this transaction.
- //! @param pui32Data - Pointer to the bytes that will be sent.
- //! @param ui32NumBytes - Number of bytes to send.
- //! @param ui32Options - Additional SPI transfer options.
- //! @param pfnCallback - Function to call when the transaction completes.
- //!
- //! This function performs SPI writes to the selected SPI device.
- //!
- //! This function call is a non-blocking implementation. It will write as much
- //! data to the FIFO as possible immediately, store a pointer to the remaining
- //! data, start the transfer on the bus, and then immediately return. The
- //! caller will need to make sure that \e am_hal_iom_int_service() is called
- //! for IOM FIFO interrupt events and "command complete" interrupt events. The
- //! \e am_hal_iom_int_service() function will refill the FIFO as necessary and
- //! call the \e pfnCallback function when the transaction is finished.
- //!
- //! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
- //! This means that you will need to byte-pack the \e pui32Data array with the
- //! data you intend to send over the interface. One easy way to do this is to
- //! declare the array as a 32-bit integer array, but use an 8-bit pointer to
- //! put your actual data into the array. If there are not enough bytes in your
- //! desired message to completely fill the last 32-bit word, you may pad that
- //! last word with bytes of any value. The IOM hardware will only read the
- //! first \e ui32NumBytes in the \e pui8Data array.
- //!
- //! @return returns AM_HAL_IOM_SUCCESS on successful execution. Note that
- //! successful execution for non-blocking call only means the transaction was
- //! successfully initiated. The status of the transaction is not known till the
- //! callback is called on completion
- //
- //*****************************************************************************
- am_hal_iom_status_e
- am_hal_iom_spi_write_nb(uint32_t ui32Module, uint32_t ui32ChipSelect,
- uint32_t *pui32Data, uint32_t ui32NumBytes,
- uint32_t ui32Options,
- am_hal_iom_callback_t pfnCallback)
- {
- am_hal_iom_status_e ui32Status;
- uint32_t ui32TransferSize;
- uint32_t ui32MaxFifoSize;
- //
- // Validate parameters
- //
- if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
- {
- return AM_HAL_IOM_ERR_INVALID_MODULE;
- }
- //
- // Wait until the bus is idle
- //
- am_hal_iom_poll_complete(ui32Module);
- // Reset the error status for non-blocking transfer
- ui32Status = g_iom_error_status[ui32Module] = AM_HAL_IOM_SUCCESS;
- if (ui32NumBytes == 0)
- {
- g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_INVALID_PARAM;
- return ui32Status;
- }
- //
- // Make sure the transfer isn't too long for the hardware to support.
- //
- if (ui32NumBytes >= 4096)
- {
- g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_INVALID_PARAM;
- return ui32Status;
- }
- ui32MaxFifoSize = ((0 == AM_BFRn(IOMSTR, ui32Module, CFG, FULLDUP)) ?
- AM_HAL_IOM_MAX_FIFO_SIZE : AM_HAL_IOM_MAX_FIFO_SIZE / 2);
- //
- // Need to mark IOM busy to avoid another transaction to be scheduled.
- // This is to take care of a race condition in Queue mode, where the IDLE
- // set is not a guarantee that the CMDCMP has been received
- //
- g_bIomBusy[ui32Module] = true;
- // Clear interrupts
- AM_REGn(IOMSTR, ui32Module, INTCLR) = AM_HAL_IOM_INT_ALL;
- //
- // Check to see if we need to do the workaround.
- //
- if ( WORKAROUND_IOM == ui32Module && isRevB0() )
- {
- //
- // Figure out how many bytes we can write to the FIFO immediately,
- // accounting for the extra word from the workaround.
- //
- ui32TransferSize = (ui32NumBytes <= (ui32MaxFifoSize - 4) ? ui32NumBytes :
- (ui32MaxFifoSize - 4));
- //
- // Prepare the global IOM buffer structure.
- //
- g_psIOMBuffers[ui32Module].ui32State = BUFFER_SENDING;
- g_psIOMBuffers[ui32Module].pui32Data = pui32Data + (ui32TransferSize / 4);
- g_psIOMBuffers[ui32Module].ui32BytesLeft = ui32NumBytes - ui32TransferSize;
- g_psIOMBuffers[ui32Module].pfnCallback = pfnCallback;
- g_psIOMBuffers[ui32Module].ui32Options = ui32Options;
- //
- // Start the write on the bus using the workaround. This includes both
- // the command write and the first fifo write, so we won't need to do
- // either of those things manually.
- //
- am_hal_iom_workaround_word_write(ui32ChipSelect, pui32Data,
- ui32NumBytes, ui32Options);
- }
- else
- {
- //
- // Figure out how many bytes we can write to the FIFO immediately.
- //
- ui32TransferSize = (ui32NumBytes <= ui32MaxFifoSize ? ui32NumBytes :
- ui32MaxFifoSize);
- if ( am_hal_iom_fifo_write(ui32Module, pui32Data, ui32TransferSize) > 0 )
- {
- //
- // Prepare the global IOM buffer structure.
- //
- g_psIOMBuffers[ui32Module].ui32State = BUFFER_SENDING;
- g_psIOMBuffers[ui32Module].pui32Data = pui32Data;
- g_psIOMBuffers[ui32Module].ui32BytesLeft = ui32NumBytes;
- g_psIOMBuffers[ui32Module].pfnCallback = pfnCallback;
- g_psIOMBuffers[ui32Module].ui32Options = ui32Options;
- //
- // Update the pointer and the byte counter based on the portion of
- // the transfer we just sent to the fifo.
- //
- g_psIOMBuffers[ui32Module].ui32BytesLeft -= ui32TransferSize;
- g_psIOMBuffers[ui32Module].pui32Data += (ui32TransferSize / 4);
- //
- // Start the write on the bus.
- //
- am_hal_iom_spi_cmd_run(AM_HAL_IOM_WRITE, ui32Module, ui32ChipSelect,
- ui32NumBytes, ui32Options);
- }
- }
- return ui32Status;
- }
- //*****************************************************************************
- //
- //! @brief Perform a non-blocking SPI read.
- //!
- //! @param ui32Module - Module number for the IOM.
- //! @param ui32ChipSelect - Chip select number of the target device.
- //! @param pui32Data - Pointer to the array where received bytes should go.
- //! @param ui32NumBytes - Number of bytes to read.
- //! @param ui32Options - Additional SPI transfer options.
- //! @param pfnCallback - Function to call when the transaction completes.
- //!
- //! This function performs SPI reads to a selected SPI device.
- //!
- //! This function call is a non-blocking implementation. It will start the SPI
- //! transaction on the bus and store a pointer for the destination for the read
- //! data, but it will not wait for the SPI transaction to finish. The caller
- //! will need to make sure that \e am_hal_iom_int_service() is called for IOM
- //! FIFO interrupt events and "command complete" interrupt events. The \e
- //! am_hal_iom_int_service() function will empty the FIFO as necessary,
- //! transfer the data to the \e pui32Data buffer, and call the \e pfnCallback
- //! function when the transaction is finished.
- //!
- //! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
- //! This function will pack the individual bytes from the physical interface
- //! into 32-bit words, which are then placed into the \e pui32Data array. Only
- //! the first \e ui32NumBytes bytes in this array will contain valid data.
- //!
- //! @return returns AM_HAL_IOM_SUCCESS on successful execution. Note that
- //! successful execution for non-blocking call only means the transaction was
- //! successfully initiated. The status of the transaction is not known till the
- //! callback is called on completion
- //
- //*****************************************************************************
- am_hal_iom_status_e
- am_hal_iom_spi_read_nb(uint32_t ui32Module, uint32_t ui32ChipSelect,
- uint32_t *pui32Data, uint32_t ui32NumBytes,
- uint32_t ui32Options,
- am_hal_iom_callback_t pfnCallback)
- {
- am_hal_iom_status_e ui32Status;
- uint32_t ui32IntConfig;
- uint32_t waitStatus;
- //
- // Validate parameters
- //
- if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
- {
- return AM_HAL_IOM_ERR_INVALID_MODULE;
- }
- //
- // Wait until the bus is idle
- //
- am_hal_iom_poll_complete(ui32Module);
- // Reset the error status
- ui32Status = g_iom_error_status[ui32Module] = AM_HAL_IOM_SUCCESS;
- if (ui32NumBytes == 0)
- {
- g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_INVALID_PARAM;
- return ui32Status;
- }
- //
- // Make sure the transfer isn't too long for the hardware to support.
- //
- if (ui32NumBytes >= 4096)
- {
- g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_INVALID_PARAM;
- return ui32Status;
- }
- //
- // Need to mark IOM busy to avoid another transaction to be scheduled.
- // This is to take care of a race condition in Queue mode, where the IDLE
- // set is not a guarantee that the CMDCMP has been received
- //
- g_bIomBusy[ui32Module] = true;
- // Clear interrupts
- AM_REGn(IOMSTR, ui32Module, INTCLR) = AM_HAL_IOM_INT_ALL;
- //
- // If we're on a B0 part, and we're using IOM4, our first byte could be
- // corrupted, so we need to send a dummy word with chip-select held high to
- // get that first byte out of the way. This is only true for spi reads with
- // OFFSET values.
- //
- // That operation is tricky and detailed, so we'll call a function to do it
- // for us.
- //
- if ( (WORKAROUND_IOM == ui32Module) && !(ui32Options & AM_HAL_IOM_RAW) &&
- isRevB0() )
- {
- //
- // We might mess up the interrupt handler behavior if we allow this
- // polled transaction to complete with interrupts enabled. We'll
- // briefly turn them off here.
- //
- ui32IntConfig = AM_REGn(IOMSTR, 4, INTEN);
- AM_REGn(IOMSTR, 4, INTEN) = 0;
- am_hal_iom_workaround_word_write(ui32ChipSelect, pui32Data,
- 0, ui32Options | AM_HAL_IOM_CS_LOW);
- //
- // The workaround will send our offset for us, so we can run a RAW
- // command after.
- //
- ui32Options |= AM_HAL_IOM_RAW;
- //
- // Wait for the dummy word to go out over the bus.
- //
- // Make sure the command complete has also been raised
- waitStatus = am_hal_flash_delay_status_change(ui32StatusTimeout[ui32Module],
- AM_REG_IOMSTRn(ui32Module) + AM_REG_IOMSTR_INTSTAT_O,
- AM_REG_IOMSTR_INTEN_CMDCMP_M, AM_REG_IOMSTR_INTEN_CMDCMP_M);
- if (waitStatus != 1)
- {
- g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_TIMEOUT;
- return ui32Status;
- }
- //
- // Re-mark IOM as busy
- //
- g_bIomBusy[ui32Module] = true;
- //
- // Re-enable IOM interrupts. Make sure CMDCMP is cleared
- //
- AM_REGn(IOMSTR, ui32Module, INTCLR) = AM_HAL_IOM_INT_ALL;
- AM_REGn(IOMSTR, 4, INTEN) = ui32IntConfig;
- }
- //
- // Prepare the global IOM buffer structure.
- //
- g_psIOMBuffers[ui32Module].ui32State = BUFFER_RECEIVING;
- g_psIOMBuffers[ui32Module].pui32Data = pui32Data;
- g_psIOMBuffers[ui32Module].ui32BytesLeft = ui32NumBytes;
- g_psIOMBuffers[ui32Module].pfnCallback = pfnCallback;
- g_psIOMBuffers[ui32Module].ui32Options = ui32Options;
- //
- // Start the read transaction on the bus.
- //
- am_hal_iom_spi_cmd_run(AM_HAL_IOM_READ, ui32Module, ui32ChipSelect,
- ui32NumBytes, ui32Options);
- return ui32Status;
- }
- static uint32_t
- internal_am_hal_iom_spi_cmd_construct(uint32_t ui32Operation,
- uint32_t ui32ChipSelect,
- uint32_t ui32NumBytes,
- uint32_t ui32Options)
- {
- uint32_t ui32Command;
- //
- // Start building the command from the operation parameter.
- //
- ui32Command = ui32Operation;
- //
- // Set the transfer length (the length field is split, so this requires
- // some swizzling).
- //
- ui32Command |= ((ui32NumBytes & 0xF00) << 15);
- ui32Command |= (ui32NumBytes & 0xFF);
- //
- // Set the chip select number.
- //
- ui32Command |= ((ui32ChipSelect << 16) & 0x00070000);
- //
- // Finally, OR in the rest of the options. This mask should make sure that
- // erroneous option values won't interfere with the other transfer
- // parameters.
- //
- ui32Command |= ui32Options & 0x5C00FF00;
- return ui32Command;
- }
- //*****************************************************************************
- //
- //! @brief Runs a SPI "command" through the IO master.
- //!
- //! @param ui32Operation - SPI action to be performed.
- //!
- //! @param psDevice - Structure containing information about the slave device.
- //!
- //! @param ui32NumBytes - Number of bytes to move (transmit or receive) with
- //! this command.
- //!
- //! @param ui32Options - Additional SPI options to apply to this command.
- //!
- //! @return None.
- //
- //*****************************************************************************
- void
- am_hal_iom_spi_cmd_run(uint32_t ui32Operation, uint32_t ui32Module,
- uint32_t ui32ChipSelect, uint32_t ui32NumBytes,
- uint32_t ui32Options)
- {
- uint32_t ui32Command;
- am_hal_debug_assert_msg(ui32NumBytes > 0,
- "Trying to do a 0 byte transaction");
- ui32Command = internal_am_hal_iom_spi_cmd_construct(ui32Operation,
- ui32ChipSelect, ui32NumBytes, ui32Options);
- //
- // Write the complete command word to the IOM command register.
- //
- AM_REGn(IOMSTR, ui32Module, CMD) = ui32Command;
- }
- //*****************************************************************************
- //
- //! @brief Perform a simple write to the I2C interface (without queuing)
- //!
- //! @param ui32Module - Module number for the IOM.
- //! @param ui32BusAddress - I2C address of the target device.
- //! @param pui32Data - Pointer to the bytes that will be sent.
- //! @param ui32NumBytes - Number of bytes to send.
- //! @param ui32Options - Additional I2C transfer options.
- //!
- //! This function performs I2C writes to a selected I2C device.
- //!
- //! This function call is a blocking implementation. It will write as much
- //! data to the FIFO as possible immediately, and then refill the FIFO as data
- //! is transmiitted.
- //!
- //! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words
- //! This means that you will need to byte-pack the \e pui32Data array with the
- //! data you intend to send over the interface. One easy way to do this is to
- //! declare the array as a 32-bit integer array, but use an 8-bit pointer to
- //! put your actual data into the array. If there are not enough bytes in your
- //! desired message to completely fill the last 32-bit word, you may pad that
- //! last word with bytes of any value. The IOM hardware will only read the
- //! first \e ui32NumBytes in the \e pui32Data array.
- //!
- //! @return returns AM_HAL_IOM_SUCCESS on successful execution.
- //
- //*****************************************************************************
- am_hal_iom_status_e
- am_hal_iom_i2c_write_nq(uint32_t ui32Module, uint32_t ui32BusAddress,
- uint32_t *pui32Data, uint32_t ui32NumBytes,
- uint32_t ui32Options)
- {
- uint32_t ui32TransferSize;
- uint32_t ui32SpaceInFifo;
- uint32_t ui32IntConfig;
- uint32_t ui32MaxFifoSize;
- am_hal_iom_status_e ui32Status;
- uint32_t waitStatus;
- am_hal_i2c_bit_bang_enum_e i2cBBStatus;
- //
- // Validate parameters
- //
- if ( ui32Module > AM_REG_IOMSTR_NUM_MODULES )
- {
- return AM_HAL_IOM_ERR_INVALID_MODULE;
- }
- //
- // Wait until any earlier transactions have completed.
- //
- am_hal_iom_poll_complete(ui32Module);
- // Reset the error status
- ui32Status = g_iom_error_status[ui32Module] = AM_HAL_IOM_SUCCESS;
- if (ui32NumBytes == 0)
- {
- g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_INVALID_PARAM;
- return ui32Status;
- }
- //
- // Redirect to the bit-bang interface if the module number matches the
- // software I2C module.
- //
- if ( ui32Module == AM_HAL_IOM_I2CBB_MODULE )
- {
- if ( ui32Options & AM_HAL_IOM_RAW )
- {
- i2cBBStatus = am_hal_i2c_bit_bang_send(ui32BusAddress << 1, ui32NumBytes,
- (uint8_t *)pui32Data, 0, false,
- (ui32Options & AM_HAL_IOM_NO_STOP));
- }
- else
- {
- i2cBBStatus = am_hal_i2c_bit_bang_send(ui32BusAddress << 1, ui32NumBytes,
- (uint8_t *)pui32Data,
- ((ui32Options & 0xFF00) >> 8),
- true,
- (ui32Options & AM_HAL_IOM_NO_STOP));
- }
- //
- // Return. convert BB retCode to proper retCode here
- //
- g_iom_error_status[ui32Module] = ui32Status = i2c_bb_errmap[i2cBBStatus];
- return ui32Status;
- }
- //
- // Make sure the transfer isn't too long for the hardware to support.
- //
- if (ui32NumBytes >= 256)
- {
- g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_INVALID_PARAM;
- return ui32Status;
- }
- ui32MaxFifoSize = ((0 == AM_BFRn(IOMSTR, ui32Module, CFG, FULLDUP)) ?
- AM_HAL_IOM_MAX_FIFO_SIZE : AM_HAL_IOM_MAX_FIFO_SIZE / 2);
- //
- // Disable interrupts so that we don't get any undesired interrupts.
- //
- ui32IntConfig = AM_REGn(IOMSTR, ui32Module, INTEN);
- AM_REGn(IOMSTR, ui32Module, INTEN) = 0;
- // Clear interrupts
- AM_REGn(IOMSTR, ui32Module, INTCLR) = AM_HAL_IOM_INT_ALL;
- //
- // Figure out how many bytes we can write to the FIFO immediately.
- //
- ui32TransferSize = (ui32NumBytes <= ui32MaxFifoSize ? ui32NumBytes :
- ui32MaxFifoSize);
- am_hal_iom_fifo_write(ui32Module, pui32Data, ui32TransferSize);
- //
- // Start the write on the bus.
- //
- ui32Status = am_hal_iom_i2c_cmd_run(AM_HAL_IOM_WRITE, ui32Module, ui32BusAddress,
- ui32NumBytes, ui32Options);
- if (ui32Status != AM_HAL_IOM_SUCCESS)
- {
- g_iom_error_status[ui32Module] = ui32Status = ui32Status;
- //
- // Re-enable IOM interrupts.
- //
- // Clear interrupts
- AM_REGn(IOMSTR, ui32Module, INTCLR) = AM_HAL_IOM_INT_ALL;
- AM_REGn(IOMSTR, ui32Module, INTEN) = ui32IntConfig;
- return ui32Status;
- }
- //
- // Update the pointer and data counter.
- //
- ui32NumBytes -= ui32TransferSize;
- pui32Data += ui32TransferSize >> 2;
- //
- // Keep looping until we're out of bytes to send or command complete (error).
- //
- while ( ui32NumBytes && !AM_BFRn(IOMSTR, ui32Module, INTSTAT, CMDCMP) )
- {
- //
- // This will always return a multiple of four.
- //
- ui32SpaceInFifo = am_hal_iom_fifo_empty_slots(ui32Module);
- if ( ui32NumBytes <= ui32SpaceInFifo )
- {
- //
- // If the entire message will fit in the fifo, prepare to copy
- // everything.
- //
- ui32TransferSize = ui32NumBytes;
- }
- else
- {
- //
- // If only a portion of the message will fit in the fifo, prepare
- // to copy the largest number of 4-byte blocks possible.
- //
- ui32TransferSize = ui32SpaceInFifo;
- }
- //
- // Write this chunk to the fifo.
- //
- am_hal_iom_fifo_write(ui32Module, pui32Data, ui32TransferSize);
- //
- // Update the data pointer and bytes-left count.
- //
- ui32NumBytes -= ui32TransferSize;
- pui32Data += ui32TransferSize >> 2;
- }
- //
- // Make sure CMDCMP was raised,
- //
- waitStatus = am_hal_flash_delay_status_change(ui32StatusTimeout[ui32Module],
- AM_REG_IOMSTRn(ui32Module) + AM_REG_IOMSTR_INTSTAT_O,
- AM_REG_IOMSTR_INTEN_CMDCMP_M, AM_REG_IOMSTR_INTEN_CMDCMP_M);
- if (waitStatus != 1)
- {
- g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_TIMEOUT;
- }
- else
- {
- g_iom_error_status[ui32Module] = ui32Status = internal_iom_get_int_err(ui32Module, 0);
- }
- //
- // Re-enable IOM interrupts.
- //
- // Clear interrupts
- AM_REGn(IOMSTR, ui32Module, INTCLR) = AM_HAL_IOM_INT_ALL;
- AM_REGn(IOMSTR, ui32Module, INTEN) = ui32IntConfig;
- return ui32Status;
- }
- //*****************************************************************************
- //
- //! @brief Perform simple I2C read operations (without queuing).
- //!
- //! @param ui32Module - Module number for the IOM.
- //! @param ui32BusAddress - I2C address of the target device.
- //! @param pui32Data - Pointer to the array where received bytes should go.
- //! @param ui32NumBytes - Number of bytes to read.
- //! @param ui32Options - Additional I2C transfer options.
- //!
- //! This function performs an I2C read to a selected I2C device.
- //!
- //! This function call is a blocking implementation. It will read as much
- //! data from the FIFO as possible immediately, and then re-read the FIFO as more
- //! data is available.
- //!
- //! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
- //! This function will pack the individual bytes from the physical interface
- //! into 32-bit words, which are then placed into the \e pui32Data array. Only
- //! the first \e ui32NumBytes bytes in this array will contain valid data.
- //!
- //! @return returns AM_HAL_IOM_SUCCESS on successful execution.
- //
- //*****************************************************************************
- am_hal_iom_status_e
- am_hal_iom_i2c_read_nq(uint32_t ui32Module, uint32_t ui32BusAddress,
- uint32_t *pui32Data, uint32_t ui32NumBytes,
- uint32_t ui32Options)
- {
- uint32_t ui32BytesInFifo;
- uint32_t ui32IntConfig;
- uint32_t bCmdCmp = false;
- am_hal_iom_status_e ui32Status;
- uint32_t waitStatus;
- am_hal_i2c_bit_bang_enum_e i2cBBStatus;
- //
- // Validate parameters
- //
- if ( ui32Module > AM_REG_IOMSTR_NUM_MODULES )
- {
- return AM_HAL_IOM_ERR_INVALID_MODULE;
- }
- //
- // Wait until the bus is idle
- //
- am_hal_iom_poll_complete(ui32Module);
- // Reset the error status
- ui32Status = g_iom_error_status[ui32Module] = AM_HAL_IOM_SUCCESS;
- if (ui32NumBytes == 0)
- {
- g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_INVALID_PARAM;
- return ui32Status;
- }
- //
- // Redirect to the bit-bang interface if the module number matches the
- // software I2C module.
- //
- if ( ui32Module == AM_HAL_IOM_I2CBB_MODULE )
- {
- if ( ui32Options & AM_HAL_IOM_RAW )
- {
- i2cBBStatus = am_hal_i2c_bit_bang_receive((ui32BusAddress << 1) | 1, ui32NumBytes,
- (uint8_t *)pui32Data, 0, false,
- (ui32Options & AM_HAL_IOM_NO_STOP));
- }
- else
- {
- i2cBBStatus = am_hal_i2c_bit_bang_receive((ui32BusAddress << 1) | 1, ui32NumBytes,
- (uint8_t *)pui32Data,
- ((ui32Options & 0xFF00) >> 8),
- true,
- (ui32Options & AM_HAL_IOM_NO_STOP));
- }
- //
- // Return. convert i2c bb retCode
- //
- g_iom_error_status[ui32Module] = ui32Status = i2c_bb_errmap[i2cBBStatus];
- return ui32Status;
- }
- //
- // Make sure the transfer isn't too long for the hardware to support.
- //
- if (ui32NumBytes >= 256)
- {
- g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_INVALID_PARAM;
- return ui32Status;
- }
- //
- // Disable interrupts so that we don't get any undesired interrupts.
- //
- ui32IntConfig = AM_REGn(IOMSTR, ui32Module, INTEN);
- AM_REGn(IOMSTR, ui32Module, INTEN) = 0;
- // Clear interrupts
- AM_REGn(IOMSTR, ui32Module, INTCLR) = AM_HAL_IOM_INT_ALL;
- ui32Status = am_hal_iom_i2c_cmd_run(AM_HAL_IOM_READ, ui32Module, ui32BusAddress,
- ui32NumBytes, ui32Options);
- if (ui32Status != AM_HAL_IOM_SUCCESS)
- {
- g_iom_error_status[ui32Module] = ui32Status = ui32Status;
- //
- // Re-enable IOM interrupts.
- //
- // Clear interrupts
- AM_REGn(IOMSTR, ui32Module, INTCLR) = AM_HAL_IOM_INT_ALL;
- AM_REGn(IOMSTR, ui32Module, INTEN) = ui32IntConfig;
- return ui32Status;
- }
- //
- // Start a loop to catch the Rx data.
- //
- while ( ui32NumBytes )
- {
- ui32BytesInFifo = am_hal_iom_fifo_full_slots(ui32Module);
- if ( ui32BytesInFifo >= ui32NumBytes )
- {
- //
- // If the fifo contains our entire message, just copy the whole
- // thing out.
- //
- am_hal_iom_fifo_read(ui32Module, pui32Data, ui32NumBytes);
- ui32NumBytes = 0;
- }
- else if ( ui32BytesInFifo >= 4 )
- {
- //
- // If the fifo has at least one 32-bit word in it, copy whole
- // words out.
- //
- am_hal_iom_fifo_read(ui32Module, pui32Data, ui32BytesInFifo & ~0x3);
- ui32NumBytes -= ui32BytesInFifo & ~0x3;
- pui32Data += ui32BytesInFifo >> 2;
- }
- if ( bCmdCmp == true )
- {
- // No more data expected - exit out of loop
- break;
- }
- bCmdCmp = AM_BFRn(IOMSTR, ui32Module, INTSTAT, CMDCMP);
- }
- //
- // Make sure CMDCMP was raised,
- //
- waitStatus = am_hal_flash_delay_status_change(ui32StatusTimeout[ui32Module],
- AM_REG_IOMSTRn(ui32Module) + AM_REG_IOMSTR_INTSTAT_O,
- AM_REG_IOMSTR_INTEN_CMDCMP_M, AM_REG_IOMSTR_INTEN_CMDCMP_M);
- if (waitStatus != 1)
- {
- g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_TIMEOUT;
- }
- else
- {
- g_iom_error_status[ui32Module] = ui32Status = internal_iom_get_int_err(ui32Module, 0);
- }
- //
- // Re-enable IOM interrupts.
- //
- // Clear interrupts
- AM_REGn(IOMSTR, ui32Module, INTCLR) = AM_HAL_IOM_INT_ALL;
- AM_REGn(IOMSTR, ui32Module, INTEN) = ui32IntConfig;
- return ui32Status;
- }
- //*****************************************************************************
- //
- //! @brief Perform a simple write to the I2C interface.
- //!
- //! @param ui32Module - Module number for the IOM
- //! @param ui32BusAddress - I2C bus address for this transaction.
- //! @param pui32Data - Pointer to the bytes that will be sent.
- //! @param ui32NumBytes - Number of bytes to send.
- //! @param ui32Options - Additional options
- //!
- //! Performs a write to the I2C interface using the provided parameters.
- //!
- //! See the "Command Options" section for parameters that may be ORed together
- //! and used in the \b ui32Options parameter.
- //!
- //! @return returns AM_HAL_IOM_SUCCESS on successful execution.
- //
- //*****************************************************************************
- am_hal_iom_status_e
- am_hal_iom_i2c_write(uint32_t ui32Module, uint32_t ui32BusAddress,
- uint32_t *pui32Data, uint32_t ui32NumBytes,
- uint32_t ui32Options)
- {
- am_hal_iom_status_e ui32Status;
- am_hal_i2c_bit_bang_enum_e i2cBBStatus;
- //
- // Validate parameters
- //
- if ( ui32Module > AM_REG_IOMSTR_NUM_MODULES )
- {
- return AM_HAL_IOM_ERR_INVALID_MODULE;
- }
- //
- // Wait until the bus is idle
- //
- am_hal_iom_poll_complete(ui32Module);
- // Reset the error status
- ui32Status = g_iom_error_status[ui32Module] = AM_HAL_IOM_SUCCESS;
- if (ui32NumBytes == 0)
- {
- g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_INVALID_PARAM;
- return ui32Status;
- }
- //
- // Redirect to the bit-bang interface if the module number matches the
- // software I2C module.
- //
- if ( ui32Module == AM_HAL_IOM_I2CBB_MODULE )
- {
- if ( ui32Options & AM_HAL_IOM_RAW )
- {
- i2cBBStatus = am_hal_i2c_bit_bang_send(ui32BusAddress << 1, ui32NumBytes,
- (uint8_t *)pui32Data, 0, false,
- (ui32Options & AM_HAL_IOM_NO_STOP));
- }
- else
- {
- i2cBBStatus = am_hal_i2c_bit_bang_send(ui32BusAddress << 1, ui32NumBytes,
- (uint8_t *)pui32Data,
- ((ui32Options & 0xFF00) >> 8),
- true,
- (ui32Options & AM_HAL_IOM_NO_STOP));
- }
- //
- // Return. convert i2c bb retCode
- //
- g_iom_error_status[ui32Module] = ui32Status = i2c_bb_errmap[i2cBBStatus];
- return ui32Status;
- }
- //
- // Make sure the transfer isn't too long for the hardware to support.
- //
- if (ui32NumBytes >= 256)
- {
- g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_INVALID_PARAM;
- return ui32Status;
- }
- //
- // Check to see if queues have been enabled. If they are, we'll actually
- // switch to the queued interface.
- //
- if ( g_psIOMQueue[ui32Module].pui8Data != NULL )
- {
- //
- // If the queue is on, go ahead and add this transaction to the queue.
- //
- ui32Status = am_hal_iom_queue_i2c_write(ui32Module, ui32BusAddress, pui32Data,
- ui32NumBytes, ui32Options, 0);
- if (ui32Status == AM_HAL_IOM_SUCCESS)
- {
- //
- // Wait until the transaction actually clears.
- //
- am_hal_iom_queue_flush(ui32Module);
- // g_iom_error_status gets set in the isr handling
- ui32Status = g_iom_error_status[ui32Module];
- }
- //
- // At this point, we've completed the transaction, and we can return.
- //
- }
- else
- {
- //
- // Otherwise, we'll just do a polled transaction.
- //
- ui32Status = am_hal_iom_i2c_write_nq(ui32Module, ui32BusAddress, pui32Data,
- ui32NumBytes, ui32Options);
- }
- return ui32Status;
- }
- //*****************************************************************************
- //
- //! @brief Perform simple I2C read operations.
- //!
- //! @param ui32Module - Module number for the IOM
- //! @param ui32BusAddress - I2C bus address for this transaction.
- //! @param pui32Data - Pointer to the array where received bytes should go.
- //! @param ui32NumBytes - Number of bytes to read.
- //! @param ui32Options - Additional I2C transfer options.
- //!
- //! This function performs simple I2C read operations. The caller is
- //! responsible for ensuring that the receive buffer is large enough to hold
- //! the requested amount of data. If \e bPolled is true, this function will
- //! block until all of the requested data has been received and placed in the
- //! user-supplied buffer. Otherwise, the function will execute the I2C read
- //! command and return immediately. The user-supplied buffer will be filled
- //! with the received I2C data as it comes in over the physical interface, and
- //! the "command complete" interrupt bit will become active once the entire
- //! message is available.
- //!
- //! See the "Command Options" section for parameters that may be ORed together
- //! and used in the \b ui32Options parameter.
- //!
- //! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
- //! This function will pack the individual bytes from the physical interface
- //! into 32-bit words, which are then placed into the \e pui32Data array. Only
- //! the first \e ui32NumBytes bytes in this array will contain valid data.
- //!
- //! @return returns AM_HAL_IOM_SUCCESS on successful execution.
- //
- //*****************************************************************************
- am_hal_iom_status_e
- am_hal_iom_i2c_read(uint32_t ui32Module, uint32_t ui32BusAddress,
- uint32_t *pui32Data, uint32_t ui32NumBytes,
- uint32_t ui32Options)
- {
- am_hal_iom_status_e ui32Status;
- am_hal_i2c_bit_bang_enum_e i2cBBStatus;
- //
- // Validate parameters
- //
- if ( ui32Module > AM_REG_IOMSTR_NUM_MODULES )
- {
- return AM_HAL_IOM_ERR_INVALID_MODULE;
- }
- //
- // Wait until the bus is idle
- //
- am_hal_iom_poll_complete(ui32Module);
- // Reset the error status
- ui32Status = g_iom_error_status[ui32Module] = AM_HAL_IOM_SUCCESS;
- if (ui32NumBytes == 0)
- {
- g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_INVALID_PARAM;
- return ui32Status;
- }
- //
- // Redirect to the bit-bang interface if the module number matches the
- // software I2C module.
- //
- if ( ui32Module == AM_HAL_IOM_I2CBB_MODULE )
- {
- if ( ui32Options & AM_HAL_IOM_RAW )
- {
- i2cBBStatus = am_hal_i2c_bit_bang_receive((ui32BusAddress << 1) | 1, ui32NumBytes,
- (uint8_t *)pui32Data, 0, false,
- (ui32Options & AM_HAL_IOM_NO_STOP));
- }
- else
- {
- i2cBBStatus = am_hal_i2c_bit_bang_receive((ui32BusAddress << 1) | 1, ui32NumBytes,
- (uint8_t *)pui32Data,
- ((ui32Options & 0xFF00) >> 8),
- true,
- (ui32Options & AM_HAL_IOM_NO_STOP));
- }
- //
- // Return. convert i2c bb retCode
- //
- g_iom_error_status[ui32Module] = ui32Status = i2c_bb_errmap[i2cBBStatus];
- return ui32Status;
- }
- //
- // Make sure the transfer isn't too long for the hardware to support.
- //
- if (ui32NumBytes >= 256)
- {
- g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_INVALID_PARAM;
- return ui32Status;
- }
- //
- // Check to see if queues have been enabled. If they are, we'll actually
- // switch to the queued interface.
- //
- if ( g_psIOMQueue[ui32Module].pui8Data != NULL )
- {
- //
- // If the queue is on, go ahead and add this transaction to the queue.
- //
- ui32Status = am_hal_iom_queue_i2c_read(ui32Module, ui32BusAddress, pui32Data,
- ui32NumBytes, ui32Options, 0);
- if (ui32Status == AM_HAL_IOM_SUCCESS)
- {
- //
- // Wait until the transaction actually clears.
- //
- am_hal_iom_queue_flush(ui32Module);
- // g_iom_error_status gets set in the isr handling
- ui32Status = g_iom_error_status[ui32Module];
- }
- //
- // At this point, we've completed the transaction, and we can return.
- //
- }
- else
- {
- //
- // Otherwise, just perform a polled transaction.
- //
- ui32Status = am_hal_iom_i2c_read_nq(ui32Module, ui32BusAddress, pui32Data,
- ui32NumBytes, ui32Options);
- }
- return ui32Status;
- }
- //*****************************************************************************
- //
- //! @brief Perform a non-blocking write to the I2C interface.
- //!
- //! @param ui32Module - Module number for the IOM.
- //! @param ui32BusAddress - I2C address of the target device.
- //! @param pui32Data - Pointer to the bytes that will be sent.
- //! @param ui32NumBytes - Number of bytes to send.
- //! @param ui32Options - Additional I2C transfer options.
- //! @param pfnCallback - Function to call when the transaction completes.
- //!
- //! This function performs I2C writes to a selected I2C device.
- //!
- //! This function call is a non-blocking implementation. It will write as much
- //! data to the FIFO as possible immediately, store a pointer to the remaining
- //! data, start the transfer on the bus, and then immediately return. The
- //! caller will need to make sure that \e am_hal_iom_int_service() is called
- //! for IOM FIFO interrupt events and "command complete" interrupt events. The
- //! \e am_hal_iom_int_service() function will refill the FIFO as necessary and
- //! call the \e pfnCallback function when the transaction is finished.
- //!
- //! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
- //! This means that you will need to byte-pack the \e pui32Data array with the
- //! data you intend to send over the interface. One easy way to do this is to
- //! declare the array as a 32-bit integer array, but use an 8-bit pointer to
- //! put your actual data into the array. If there are not enough bytes in your
- //! desired message to completely fill the last 32-bit word, you may pad that
- //! last word with bytes of any value. The IOM hardware will only read the
- //! first \e ui32NumBytes in the \e pui32Data array.
- //!
- //! @return returns AM_HAL_IOM_SUCCESS on successful execution. Note that
- //! successful execution for non-blocking call only means the transaction was
- //! successfully initiated. The status of the transaction is not known till the
- //! callback is called on completion
- //
- //*****************************************************************************
- am_hal_iom_status_e
- am_hal_iom_i2c_write_nb(uint32_t ui32Module, uint32_t ui32BusAddress,
- uint32_t *pui32Data, uint32_t ui32NumBytes,
- uint32_t ui32Options,
- am_hal_iom_callback_t pfnCallback)
- {
- am_hal_iom_status_e ui32Status;
- uint32_t ui32TransferSize;
- uint32_t ui32MaxFifoSize;
- am_hal_i2c_bit_bang_enum_e i2cBBStatus;
- //
- // Validate parameters
- //
- if ( ui32Module > AM_REG_IOMSTR_NUM_MODULES )
- {
- return AM_HAL_IOM_ERR_INVALID_MODULE;
- }
- //
- // Wait until the bus is idle
- //
- am_hal_iom_poll_complete(ui32Module);
- // Reset the error status
- ui32Status = g_iom_error_status[ui32Module] = AM_HAL_IOM_SUCCESS;
- if (ui32NumBytes == 0)
- {
- g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_INVALID_PARAM;
- return ui32Status;
- }
- //
- // Redirect to the bit-bang interface if the module number matches the
- // software I2C module.
- //
- if ( ui32Module == AM_HAL_IOM_I2CBB_MODULE )
- {
- // Reset the error status for non-blocking transfer
- g_iom_error_status[ui32Module] = AM_HAL_IOM_SUCCESS;
- if ( ui32Options & AM_HAL_IOM_RAW )
- {
- i2cBBStatus = am_hal_i2c_bit_bang_send(ui32BusAddress << 1, ui32NumBytes,
- (uint8_t *)pui32Data, 0, false,
- (ui32Options & AM_HAL_IOM_NO_STOP));
- }
- else
- {
- i2cBBStatus = am_hal_i2c_bit_bang_send(ui32BusAddress << 1, ui32NumBytes,
- (uint8_t *)pui32Data,
- ((ui32Options & 0xFF00) >> 8),
- true,
- (ui32Options & AM_HAL_IOM_NO_STOP));
- }
- //
- // Return. convert i2c bb retCode
- //
- g_iom_error_status[ui32Module] = ui32Status = i2c_bb_errmap[i2cBBStatus];
- //
- // The I2C bit-bang interface is actually a blocking transfer, and it
- // doesn't trigger the interrupt handler, so we have to call the
- // callback function manually.
- //
- if ( pfnCallback )
- {
- pfnCallback();
- }
- return ui32Status;
- }
- //
- // Make sure the transfer isn't too long for the hardware to support.
- //
- if (ui32NumBytes >= 256)
- {
- g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_INVALID_PARAM;
- return ui32Status;
- }
- ui32MaxFifoSize = ((0 == AM_BFRn(IOMSTR, ui32Module, CFG, FULLDUP)) ?
- AM_HAL_IOM_MAX_FIFO_SIZE : AM_HAL_IOM_MAX_FIFO_SIZE / 2);
- //
- // Figure out how many bytes we can write to the FIFO immediately.
- //
- ui32TransferSize = (ui32NumBytes <= ui32MaxFifoSize ? ui32NumBytes :
- ui32MaxFifoSize);
- // Need to mark IOM busy to avoid another transaction to be scheduled.
- // This is to take care of a race condition in Queue mode, where the IDLE
- // set is not a guarantee that the CMDCMP has been received
- g_bIomBusy[ui32Module] = true;
- // Clear interrupts
- AM_REGn(IOMSTR, ui32Module, INTCLR) = AM_HAL_IOM_INT_ALL;
- if ( am_hal_iom_fifo_write(ui32Module, pui32Data, ui32TransferSize) > 0 )
- {
- //
- // Prepare the global IOM buffer structure.
- //
- g_psIOMBuffers[ui32Module].ui32State = BUFFER_SENDING;
- g_psIOMBuffers[ui32Module].pui32Data = pui32Data;
- g_psIOMBuffers[ui32Module].ui32BytesLeft = ui32NumBytes;
- g_psIOMBuffers[ui32Module].pfnCallback = pfnCallback;
- //
- // Update the pointer and the byte counter based on the portion of the
- // transfer we just sent to the fifo.
- //
- g_psIOMBuffers[ui32Module].ui32BytesLeft -= ui32TransferSize;
- g_psIOMBuffers[ui32Module].pui32Data += (ui32TransferSize / 4);
- //
- // Start the write on the bus.
- //
- ui32Status = am_hal_iom_i2c_cmd_run(AM_HAL_IOM_WRITE, ui32Module, ui32BusAddress,
- ui32NumBytes, ui32Options);
- if (ui32Status != AM_HAL_IOM_SUCCESS)
- {
- g_iom_error_status[ui32Module] = ui32Status;
- }
- }
- return ui32Status;
- }
- //*****************************************************************************
- //
- //! @brief Perform a non-blocking I2C read.
- //!
- //! @param ui32Module - Module number for the IOM.
- //! @param ui32ChipSelect - I2C address of the target device.
- //! @param pui32Data - Pointer to the array where received bytes should go.
- //! @param ui32NumBytes - Number of bytes to read.
- //! @param ui32Options - Additional I2C transfer options.
- //! @param pfnCallback - Function to call when the transaction completes.
- //!
- //! This function performs an I2C read to a selected I2C device.
- //!
- //! This function call is a non-blocking implementation. It will start the I2C
- //! transaction on the bus and store a pointer for the destination for the read
- //! data, but it will not wait for the I2C transaction to finish. The caller
- //! will need to make sure that \e am_hal_iom_int_service() is called for IOM
- //! FIFO interrupt events and "command complete" interrupt events. The \e
- //! am_hal_iom_int_service() function will empty the FIFO as necessary,
- //! transfer the data to the \e pui32Data buffer, and call the \e pfnCallback
- //! function when the transaction is finished.
- //!
- //! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
- //! This function will pack the individual bytes from the physical interface
- //! into 32-bit words, which are then placed into the \e pui32Data array. Only
- //! the first \e ui32NumBytes bytes in this array will contain valid data.
- //!
- //! @return returns AM_HAL_IOM_SUCCESS on successful execution. Note that
- //! successful execution for non-blocking call only means the transaction was
- //! successfully initiated. The status of the transaction is not known till the
- //! callback is called on completion
- //
- //*****************************************************************************
- am_hal_iom_status_e
- am_hal_iom_i2c_read_nb(uint32_t ui32Module, uint32_t ui32BusAddress,
- uint32_t *pui32Data, uint32_t ui32NumBytes,
- uint32_t ui32Options,
- am_hal_iom_callback_t pfnCallback)
- {
- am_hal_iom_status_e ui32Status;
- am_hal_i2c_bit_bang_enum_e i2cBBStatus;
- //
- // Validate parameters
- //
- if ( ui32Module > AM_REG_IOMSTR_NUM_MODULES )
- {
- return AM_HAL_IOM_ERR_INVALID_MODULE;
- }
- //
- // Wait until the bus is idle
- //
- am_hal_iom_poll_complete(ui32Module);
- // Reset the error status
- ui32Status = g_iom_error_status[ui32Module] = AM_HAL_IOM_SUCCESS;
- if (ui32NumBytes == 0)
- {
- g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_INVALID_PARAM;
- return ui32Status;
- }
- //
- // Redirect to the bit-bang interface if the module number matches the
- // software I2C module.
- //
- if ( ui32Module == AM_HAL_IOM_I2CBB_MODULE )
- {
- // Reset the error status for non-blocking transfer
- g_iom_error_status[ui32Module] = AM_HAL_IOM_SUCCESS;
- if ( ui32Options & AM_HAL_IOM_RAW )
- {
- i2cBBStatus = am_hal_i2c_bit_bang_receive((ui32BusAddress << 1) | 1, ui32NumBytes,
- (uint8_t *)pui32Data, 0, false,
- (ui32Options & AM_HAL_IOM_NO_STOP));
- }
- else
- {
- i2cBBStatus = am_hal_i2c_bit_bang_receive((ui32BusAddress << 1) | 1, ui32NumBytes,
- (uint8_t *)pui32Data,
- ((ui32Options & 0xFF00) >> 8),
- true,
- (ui32Options & AM_HAL_IOM_NO_STOP));
- }
- //
- // Return. convert i2c bb retCode
- //
- g_iom_error_status[ui32Module] = ui32Status = i2c_bb_errmap[i2cBBStatus];
- //
- // The I2C bit-bang interface is actually a blocking transfer, and it
- // doesn't trigger the interrupt handler, so we have to call the
- // callback function manually.
- //
- if ( pfnCallback )
- {
- pfnCallback();
- }
- return ui32Status;
- }
- //
- // Make sure the transfer isn't too long for the hardware to support.
- //
- if (ui32NumBytes >= 256)
- {
- g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_INVALID_PARAM;
- return ui32Status;
- }
- // Need to mark IOM busy to avoid another transaction to be scheduled.
- // This is to take care of a race condition in Queue mode, where the IDLE
- // set is not a guarantee that the CMDCMP has been received
- //
- g_bIomBusy[ui32Module] = true;
- // Clear interrupts
- AM_REGn(IOMSTR, ui32Module, INTCLR) = AM_HAL_IOM_INT_ALL;
- //
- // Prepare the global IOM buffer structure.
- //
- g_psIOMBuffers[ui32Module].ui32State = BUFFER_RECEIVING;
- g_psIOMBuffers[ui32Module].pui32Data = pui32Data;
- g_psIOMBuffers[ui32Module].ui32BytesLeft = ui32NumBytes;
- g_psIOMBuffers[ui32Module].pfnCallback = pfnCallback;
- //
- // Start the read transaction on the bus.
- //
- ui32Status = am_hal_iom_i2c_cmd_run(AM_HAL_IOM_READ, ui32Module, ui32BusAddress,
- ui32NumBytes, ui32Options);
- if (ui32Status != AM_HAL_IOM_SUCCESS)
- {
- g_iom_error_status[ui32Module] = ui32Status;
- }
- return ui32Status;
- }
- //*****************************************************************************
- //
- //! @brief Runs a I2C "command" through the IO master.
- //!
- //! @param ui32Operation - I2C action to be performed. This should either be
- //! AM_HAL_IOM_WRITE or AM_HAL_IOM_READ.
- //! @param psDevice - Structure containing information about the slave device.
- //! @param ui32NumBytes - Number of bytes to move (transmit or receive) with
- //! this command.
- //! @param ui32Options - Additional I2C options to apply to this command.
- //!
- //! This function may be used along with am_hal_iom_fifo_write and
- //! am_hal_iom_fifo_read to perform more complex I2C reads and writes.
- //! This function has additional logic to make sure SCL is high before a new
- //! transaction is initiated.
- //!
- //! @return 0 on success
- //
- //*****************************************************************************
- am_hal_iom_status_e
- am_hal_iom_i2c_cmd_run(uint32_t ui32Operation, uint32_t ui32Module,
- uint32_t ui32BusAddress, uint32_t ui32NumBytes,
- uint32_t ui32Options)
- {
- uint32_t ui32Command;
- am_hal_iom_status_e ui32Status = AM_HAL_IOM_SUCCESS;
- //
- // Validate parameters
- //
- if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
- {
- return AM_HAL_IOM_ERR_INVALID_MODULE;
- }
- if (ui32NumBytes == 0)
- {
- return AM_HAL_IOM_ERR_INVALID_PARAM;
- }
- //
- // Start building the command from the operation parameter.
- //
- ui32Command = ui32Operation;
- //
- // Set the transfer length.
- //
- ui32Command |= (ui32NumBytes & 0xFF);
- //
- // Set the chip select number.
- //
- ui32Command |= ((ui32BusAddress << 16) & 0x03FF0000);
- //
- // Finally, OR in the rest of the options. This mask should make sure that
- // erroneous option values won't interfere with the other transfer
- // parameters.
- //
- ui32Command |= (ui32Options & 0x5C00FF00);
- //
- // Wait for SCL to be high before initiating a new transaction
- // This is to ensure clock hi time specs are not violated in case slave did
- // clock stretching in previous transaction
- //
- ui32Status = internal_iom_wait_i2c_scl_hi(ui32Module);
- if (ui32Status == AM_HAL_IOM_SUCCESS)
- {
- //
- // Write the complete command word to the IOM command register.
- //
- AM_REGn(IOMSTR, ui32Module, CMD) = ui32Command;
- }
- return ui32Status;
- }
- //*****************************************************************************
- //
- //! @brief Sets the repeat count for the next IOM command.
- //!
- //! @param ui32Module is the IOM module number.
- //! @param ui32CmdCount is the number of times the next command should be
- //! executed.
- //!
- //! @note This function is not compatible with the am_hal_iom_spi_read/write()
- //! or am_hal_iom_i2c_read/write() functions. Instead, you will need to use the
- //! am_hal_iom_fifo_read/write() functions and the am_hal_iom_spi/i2c_cmd_run()
- //! functions.
- //!
- //! Example usage:
- //! @code
- //!
- //! //
- //! // Create a buffer and add 3 bytes of data to it.
- //! //
- //! am_hal_iom_buffer(3) psBuffer;
- //! psBuffer.bytes[0] = 's';
- //! psBuffer.bytes[1] = 'p';
- //! psBuffer.bytes[2] = 'i';
- //!
- //! //
- //! // Send three different bytes to the same SPI register on a remote device.
- //! //
- //! am_hal_iom_fifo_write(ui32Module, psBuffer.words, 3);
- //!
- //! am_hal_command_repeat_set(ui32Module, 3);
- //!
- //! am_hal_iom_spi_cmd_run(AM_HAL_IOM_WRITE, psDevice, 1,
- //! AM_HAL_IOM_OFFSET(0x5));
- //!
- //! //
- //! // The sequence "0x5, 's', 0x5, 'p', 0x5, 'i'" should be written to the SPI
- //! // bus.
- //! //
- //!
- //! @endcode
- //!
- //! @return None.
- //
- //*****************************************************************************
- void
- am_hal_iom_command_repeat_set(uint32_t ui32Module, uint32_t ui32CmdCount)
- {
- //
- // Validate parameters
- //
- if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
- {
- return;
- }
- AM_REGn(IOMSTR, ui32Module, CMDRPT) = ui32CmdCount;
- }
- //*****************************************************************************
- //
- //! @brief Writes data to the IOM FIFO.
- //!
- //! @param ui32Module - Selects the IOM module to use (zero or one).
- //! @param pui32Data - Pointer to an array of the data to be written.
- //! @param ui32NumBytes - Number of BYTES to copy into the FIFO.
- //!
- //! This function copies data from the array \e pui32Data into the IOM FIFO.
- //! This prepares the data to eventually be sent as SPI or I2C data by an IOM
- //! "command".
- //!
- //! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
- //! This means that you will need to byte-pack the \e pui32Data array with the
- //! data you intend to send over the interface. One easy way to do this is to
- //! declare the array as a 32-bit integer array, but use an 8-bit pointer to
- //! put your actual data into the array. If there are not enough bytes in your
- //! desired message to completely fill the last 32-bit word, you may pad that
- //! last word with bytes of any value. The IOM hardware will only read the
- //! first \e ui32NumBytes in the \e pui8Data array.
- //!
- //! @note This function may be used to write partial or complete SPI or I2C
- //! messages into the IOM FIFO. When writing partial messages to the FIFO, make
- //! sure that the number of bytes written is a multiple of four. Only the last
- //! 'part' of a message may consist of a number of bytes that is not a multiple
- //! of four. If this rule is not followed, the IOM will not be able to send
- //! these bytes correctly.
- //!
- //! @return Number of bytes actually written to the FIFO.
- //
- //*****************************************************************************
- uint32_t
- am_hal_iom_fifo_write(uint32_t ui32Module, uint32_t *pui32Data,
- uint32_t ui32NumBytes)
- {
- uint32_t ui32Index;
- //
- // Validate parameters
- //
- if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
- {
- return 0;
- }
- //
- // Make sure we check the number of bytes we're writing to the FIFO.
- //
- am_hal_debug_assert_msg((am_hal_iom_fifo_empty_slots(ui32Module) >= ui32NumBytes),
- "The fifo couldn't fit the requested number of bytes");
- //
- // Loop over the words in the array until we have the correct number of
- // bytes.
- //
- for ( ui32Index = 0; (4 * ui32Index) < ui32NumBytes; ui32Index++ )
- {
- //
- // Write the word to the FIFO.
- //
- AM_REGn(IOMSTR, ui32Module, FIFO) = pui32Data[ui32Index];
- }
- return ui32NumBytes;
- }
- //*****************************************************************************
- //
- //! @brief Reads data from the IOM FIFO.
- //!
- //! @param ui32Module - Selects the IOM module to use (zero or one).
- //! @param pui32Data - Pointer to an array where the FIFO data will be copied.
- //! @param ui32NumBytes - Number of bytes to copy into array.
- //!
- //! This function copies data from the IOM FIFO into the array \e pui32Data.
- //! This is how input data from SPI or I2C transactions may be retrieved.
- //!
- //! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
- //! This function will pack the individual bytes from the physical interface
- //! into 32-bit words, which are then placed into the \e pui32Data array. Only
- //! the first \e ui32NumBytes bytes in this array will contain valid data.
- //!
- //! @return Number of bytes read from the fifo.
- //
- //*****************************************************************************
- uint32_t
- am_hal_iom_fifo_read(uint32_t ui32Module, uint32_t *pui32Data,
- uint32_t ui32NumBytes)
- {
- am_hal_iom_buffer(4) sTempBuffer;
- uint32_t i, j, ui32NumWords, ui32Leftovers;
- uint8_t *pui8Data;
- //
- // Validate parameters
- //
- if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
- {
- return 0;
- }
- //
- // Make sure we check the number of bytes we're reading from the FIFO.
- // This doesn't make sense for Full-Duplex operations.
- //
- if ( AM_REG_IOMSTR_CFG_FULLDUP_NORMAL == (AM_REGn(IOMSTR, ui32Module, CFG) & AM_REG_IOMSTR_CFG_FULLDUP_M) )
- {
- am_hal_debug_assert_msg((am_hal_iom_fifo_full_slots(ui32Module) >= ui32NumBytes),
- "The fifo doesn't contain the requested number of bytes.");
- }
- //
- // Figure out how many whole words we're reading from the fifo, and how
- // many bytes will be left over when we're done.
- //
- ui32NumWords = ui32NumBytes / 4;
- ui32Leftovers = ui32NumBytes - (ui32NumWords * 4);
- //
- // Copy out as many full words as we can.
- //
- for ( i = 0; i < ui32NumWords; i++ )
- {
- //
- // Copy data out of the FIFO, one word at a time.
- //
- pui32Data[i] = AM_REGn(IOMSTR, ui32Module, FIFO);
- }
- //
- // If there were leftovers, we'll copy them carefully. Pull the last word
- // from the fifo (there should only be one) into a temporary buffer. Also,
- // create an 8-bit pointer to help us copy the remaining bytes one at a
- // time.
- //
- // Note: If the data buffer we were given was truly a word pointer like the
- // definition requests, we wouldn't need to do this. It's possible to call
- // this function with a re-cast or packed pointer instead though. If that
- // happens, we want to be careful not to overwrite any data that might be
- // sitting just past the end of the destination array.
- //
- if ( ui32Leftovers )
- {
- sTempBuffer.words[0] = AM_REGn(IOMSTR, ui32Module, FIFO);
- pui8Data = (uint8_t *) (&pui32Data[i]);
- //
- // If we had leftover bytes, copy them out one byte at a time.
- //
- for ( j = 0; j < ui32Leftovers; j++ )
- {
- pui8Data[j] = sTempBuffer.bytes[j];
- }
- }
- return ui32NumBytes;
- }
- //*****************************************************************************
- //
- //! @brief Check amount of empty space in the IOM fifo.
- //!
- //! @param ui32Module - Module number of the IOM whose fifo should be checked.
- //!
- //! Returns the number of bytes that could be written to the IOM fifo without
- //! causing an overflow.
- //!
- //! @return Amount of space available in the fifo (in bytes).
- //
- //*****************************************************************************
- uint8_t
- am_hal_iom_fifo_empty_slots(uint32_t ui32Module)
- {
- uint32_t ui32MaxFifoSize;
- //
- // Validate parameters
- //
- if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
- {
- return 0;
- }
- ui32MaxFifoSize = ((0 == AM_BFRn(IOMSTR, ui32Module, CFG, FULLDUP)) ? AM_HAL_IOM_MAX_FIFO_SIZE : AM_HAL_IOM_MAX_FIFO_SIZE / 2);
- //
- // Calculate the FIFO Remaining from the FIFO size. This will be different
- // depending on whether the IOM is configured for half-duplex or
- // full-duplex.
- //
- return (ui32MaxFifoSize - AM_BFRn(IOMSTR, ui32Module, FIFOPTR, FIFOSIZ)) & (~0x3);
- }
- //*****************************************************************************
- //
- //! @brief Check to see how much data is in the IOM fifo.
- //!
- //! @param ui32Module - Module number of the IOM whose fifo should be checked.
- //!
- //! Returns the number of bytes of data that are currently in the IOM fifo.
- //!
- //! @return Number of bytes in the fifo.
- //
- //*****************************************************************************
- uint8_t
- am_hal_iom_fifo_full_slots(uint32_t ui32Module)
- {
- //
- // Validate parameters
- //
- if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
- {
- return 0;
- }
- return AM_BFRn(IOMSTR, ui32Module, FIFOPTR, FIFOSIZ);
- }
- //*****************************************************************************
- //
- //! @brief Wait for the current IOM command to complete.
- //!
- //! @param ui32Module - The module number of the IOM to use.
- //!
- //! This function polls until the IOM bus becomes idle.
- //!
- //! @return None.
- //
- //*****************************************************************************
- void
- am_hal_iom_poll_complete(uint32_t ui32Module)
- {
- //
- // Validate parameters
- //
- if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
- {
- return;
- }
- //
- // Poll on the IDLE bit in the status register.
- //
- while ( g_bIomBusy[ui32Module] );
- }
- //*****************************************************************************
- //
- //! @brief Returns the contents of the IOM status register.
- //!
- //! @param ui32Module IOM instance to check the status of.
- //!
- //! This function is just a wrapper around the IOM status register.
- //!
- //! @return 32-bit contents of IOM status register.
- //
- //*****************************************************************************
- uint32_t
- am_hal_iom_status_get(uint32_t ui32Module)
- {
- //
- // Validate parameters
- //
- if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
- {
- return 0;
- }
- return AM_REGn(IOMSTR, ui32Module, STATUS);
- }
- //*****************************************************************************
- //
- //! @brief Returns current error state of the IOM.
- //!
- //! @param ui32Module IOM instance to check the status of.
- //!
- //! This function returns status indicating whether the IOM has incurred any
- //! errors or not for previous operation.
- //! This function can be called when the callback is invoked to determine the
- //! status of the transaction just completed.
- //! This function can also be called after a blocking call, though it would
- //! return the same status as returned from the call itself
- //! This function should not be called for an ongoing transaction, and the
- //! result of such operation is indeterministic
- //!
- //! @return AM_HAL_IOM_SUCCESS if all is well.
- //
- //*****************************************************************************
- am_hal_iom_status_e
- am_hal_iom_error_status_get(uint32_t ui32Module)
- {
- //
- // Validate parameters
- //
- if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
- {
- //
- // AM_HAL_IOM_ERR_INVALID_MODULE is defined as an unused interrupt bit.
- //
- return AM_HAL_IOM_ERR_INVALID_MODULE;
- }
- return (g_iom_error_status[ui32Module]);
- }
- //*****************************************************************************
- //
- //! @brief Service interrupts from the IOM.
- //!
- //! @param ui32Status is the IOM interrupt status as returned from
- //! am_hal_iom_int_status_get()
- //!
- //! This function performs the necessary operations to facilitate non-blocking
- //! IOM writes and reads.
- //!
- //! @return None.
- //
- //*****************************************************************************
- void
- am_hal_iom_int_service(uint32_t ui32Module, uint32_t ui32Status)
- {
- am_hal_iom_nb_buffer *psBuffer;
- uint32_t ui32NumBytes;
- uint32_t ui32SpaceInFifo;
- uint32_t thresh;
- //
- // Validate parameters
- //
- if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
- {
- return;
- }
- //
- // Find the buffer information for the chosen IOM module.
- //
- psBuffer = &g_psIOMBuffers[ui32Module];
- // Keep accumulating any error indications
- // This is to account for the case if the error indication comes before CMDCMP
- g_iom_error_status[ui32Module] |= ui32Status;
- //
- // Figure out what type of interrupt this was.
- //
- if ( ui32Status & AM_HAL_IOM_INT_CMDCMP )
- {
- //
- // Need to mark IOM Free
- //
- g_bIomBusy[ui32Module] = false;
- //
- // If we're not in the middle of a non-blocking call right now, there's
- // nothing for this routine to do.
- //
- if ( psBuffer->ui32State == BUFFER_IDLE )
- {
- return;
- }
- //
- // If a command just completed, we need to transfer all available data.
- //
- if ( psBuffer->ui32State == BUFFER_RECEIVING )
- {
- //
- // If we were receiving, we need to copy any remaining data out of
- // the IOM FIFO before calling the callback.
- //
- ui32NumBytes = am_hal_iom_fifo_full_slots(ui32Module);
- am_hal_iom_fifo_read(ui32Module, psBuffer->pui32Data, ui32NumBytes);
- }
- //
- // A command complete event also means that we've already transferred
- // all of the data we need, so we can mark the data buffer as IDLE.
- //
- psBuffer->ui32State = BUFFER_IDLE;
- g_iom_error_status[ui32Module] = internal_iom_get_int_err(ui32Module, g_iom_error_status[ui32Module]);
- //
- // If we have a callback, call it now.
- //
- if ( psBuffer->pfnCallback )
- {
- psBuffer->pfnCallback();
- }
- }
- else if ( ui32Status & AM_HAL_IOM_INT_THR )
- {
- //
- // If we're not in the middle of a non-blocking call right now, there's
- // nothing for this routine to do.
- //
- if ( psBuffer->ui32State == BUFFER_IDLE )
- {
- return;
- }
- //
- // If we received a threshold event in the middle of a command, we need
- // to transfer data.
- //
- if ( psBuffer->ui32State == BUFFER_SENDING )
- {
- thresh = AM_BFRn(IOMSTR, ui32Module, FIFOTHR, FIFOWTHR);
- do
- {
- ui32SpaceInFifo = am_hal_iom_fifo_empty_slots(ui32Module);
- //
- // Figure out how much data we can send.
- //
- if ( psBuffer->ui32BytesLeft <= ui32SpaceInFifo )
- {
- //
- // If the whole transfer will fit in the fifo, send it all.
- //
- ui32NumBytes = psBuffer->ui32BytesLeft;
- }
- else
- {
- //
- // If the transfer won't fit in the fifo completely, send as
- // much as we can (rounded down to a multiple of four bytes).
- //
- ui32NumBytes = ui32SpaceInFifo;
- }
- //
- // Perform the transfer.
- //
- am_hal_iom_fifo_write(ui32Module, psBuffer->pui32Data, ui32NumBytes);
- // Clear any spurious THR interrupt that might have got raised
- // while we were adding data to FIFO
- AM_BFWn(IOMSTR, ui32Module, INTCLR, THR, 1);
- //
- // Update the pointer and the byte counter.
- //
- psBuffer->ui32BytesLeft -= ui32NumBytes;
- psBuffer->pui32Data += (ui32NumBytes / 4);
- if ( 0 == psBuffer->ui32BytesLeft )
- {
- //
- // Done with this transaction
- //
- break;
- }
- } while ( am_hal_iom_fifo_full_slots(ui32Module) <= thresh );
- }
- else
- {
- thresh = AM_BFRn(IOMSTR, ui32Module, FIFOTHR, FIFORTHR);
- while ( (ui32NumBytes = am_hal_iom_fifo_full_slots(ui32Module)) >= thresh )
- {
- //
- // If we get here, we're in the middle of a read. Transfer as much
- // data as possible out of the FIFO and into our buffer.
- //
- if ( ui32NumBytes == psBuffer->ui32BytesLeft )
- {
- //
- // If the fifo contains our entire message, just copy the whole
- // thing out.
- //
- am_hal_iom_fifo_read(ui32Module, psBuffer->pui32Data,
- psBuffer->ui32BytesLeft);
- break;
- }
- else if ( ui32NumBytes >= 4 )
- {
- //
- // If the fifo has at least one 32-bit word in it, copy out the
- // biggest block we can.
- //
- ui32NumBytes = (ui32NumBytes & (~0x3));
- am_hal_iom_fifo_read(ui32Module, psBuffer->pui32Data, ui32NumBytes);
- //
- // Update the pointer and the byte counter.
- //
- psBuffer->ui32BytesLeft -= ui32NumBytes;
- psBuffer->pui32Data += (ui32NumBytes / 4);
- // Clear any spurious THR interrupt that might have got raised
- // while we were reading the data from FIFO
- AM_BFWn(IOMSTR, ui32Module, INTCLR, THR, 1);
- }
- }
- }
- }
- }
- //*****************************************************************************
- //
- //! @brief Initialize the IOM queue system.
- //!
- //! @param ui32Module - IOM module to be initialized for queue transfers.
- //! @param psQueueMemory - Memory to be used for queueing IOM transfers.
- //! @param ui32QueueMemSize - Size of the queue memory.
- //!
- //! This function prepares the selected IOM interface for use with the IOM
- //! queue system. The IOM queue system allows the caller to start multiple IOM
- //! transfers in a non-blocking way. In order to do this, the HAL requires some
- //! amount of memory dedicated to keeping track of IOM transactions before they
- //! can be sent to the hardware registers. This function tells the HAL what
- //! memory it should use for this purpose. For more information on the IOM
- //! queue interface, please see the documentation for
- //! am_hal_iom_queue_spi_write().
- //!
- //! @note This function only needs to be called once (per module), but it must
- //! be called before any other am_hal_iom_queue function.
- //!
- //! @note Each IOM module will need its own working space. If you intend to use
- //! the queueing mechanism with more than one IOM module, you will need to
- //! provide separate queue memory for each module.
- //!
- //! Example usage:
- //!
- //! @code
- //!
- //! //
- //! // Declare an array to be used for IOM queue transactions. This array will
- //! // be big enough to handle 32 IOM transactions.
- //! //
- //! am_hal_iom_queue_entry_t g_psQueueMemory[32];
- //!
- //! //
- //! // Attach the IOM0 queue system to the memory we just allocated.
- //! //
- //! am_hal_iom_queue_init(0, g_psQueueMemory, sizeof(g_psQueueMemory));
- //!
- //! @endcode
- //
- //*****************************************************************************
- void
- am_hal_iom_queue_init(uint32_t ui32Module, am_hal_iom_queue_entry_t *psQueueMemory,
- uint32_t ui32QueueMemSize)
- {
- //
- // Validate parameters
- //
- if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
- {
- return;
- }
- am_hal_queue_init(&g_psIOMQueue[ui32Module], psQueueMemory,
- sizeof(am_hal_iom_queue_entry_t), ui32QueueMemSize);
- }
- //*****************************************************************************
- //
- //! @brief Check to see how many transactions are in the queue.
- //!
- //! @param ui32Module Module number for the queue to check
- //!
- //! This function will check to see how many transactions are in the IOM queue
- //! for the selected IOM module.
- //!
- //! @return Number of transactions in the queue.
- //
- //*****************************************************************************
- uint32_t
- am_hal_iom_queue_length_get(uint32_t ui32Module)
- {
- //
- // Validate parameters
- //
- if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
- {
- return 0;
- }
- return am_hal_queue_data_left(&g_psIOMQueue[ui32Module]);
- }
- //*****************************************************************************
- //
- //! @brief Executes the next operation in the IOM queue.
- //!
- //! @param ui32ModuleNum - Module number for the IOM to use.
- //!
- //! This function checks the IOM queue to see if there are any remaining
- //! transactions. If so, it will start the next available transaction in a
- //! non-blocking way.
- //!
- //! @note This function is called automatically by am_hal_iom_queue_service().
- //! You should not call this function standalone in a normal application.
- //
- //*****************************************************************************
- void
- am_hal_iom_queue_start_next_msg(uint32_t ui32Module)
- {
- am_hal_iom_queue_entry_t sIOMTransaction = {0};
- uint32_t ui32ChipSelect;
- uint32_t *pui32Data;
- uint32_t ui32NumBytes;
- uint32_t ui32Options;
- am_hal_iom_callback_t pfnCallback;
- am_hal_iom_status_e ui32Status = AM_HAL_IOM_SUCCESS;
- uint32_t ui32Critical;
- //
- // Validate parameters
- //
- if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
- {
- return;
- }
- //
- // Start a critical section.
- //
- ui32Critical = am_hal_interrupt_master_disable();
- //
- // Try to get the next IOM operation from the queue.
- //
- if ( am_hal_queue_item_get(&g_psIOMQueue[ui32Module], &sIOMTransaction, 1) )
- {
- //
- // Read the operation parameters
- //
- ui32ChipSelect = sIOMTransaction.ui32ChipSelect;
- pui32Data = sIOMTransaction.pui32Data;
- ui32NumBytes = sIOMTransaction.ui32NumBytes;
- ui32Options = sIOMTransaction.ui32Options;
- pfnCallback = sIOMTransaction.pfnCallback;
- //
- // Figure out if this was a SPI or I2C write or read, and call the
- // appropriate non-blocking function.
- //
- switch ( sIOMTransaction.ui32Operation )
- {
- case AM_HAL_IOM_QUEUE_SPI_WRITE:
- ui32Status = am_hal_iom_spi_write_nb(ui32Module, ui32ChipSelect, pui32Data,
- ui32NumBytes, ui32Options, pfnCallback);
- break;
- case AM_HAL_IOM_QUEUE_SPI_READ:
- ui32Status = am_hal_iom_spi_read_nb(ui32Module, ui32ChipSelect, pui32Data,
- ui32NumBytes, ui32Options, pfnCallback);
- break;
- case AM_HAL_IOM_QUEUE_I2C_WRITE:
- ui32Status = am_hal_iom_i2c_write_nb(ui32Module, ui32ChipSelect, pui32Data,
- ui32NumBytes, ui32Options, pfnCallback);
- break;
- case AM_HAL_IOM_QUEUE_I2C_READ:
- ui32Status = am_hal_iom_i2c_read_nb(ui32Module, ui32ChipSelect, pui32Data,
- ui32NumBytes, ui32Options, pfnCallback);
- break;
- }
- }
- //
- // Exit the critical section.
- //
- am_hal_interrupt_master_set(ui32Critical);
- if (ui32Status != AM_HAL_IOM_SUCCESS)
- {
- // Preserve the error
- g_iom_error_status[ui32Module] = ui32Status;
- // Call the respective callback
- pfnCallback();
- }
- }
- //*****************************************************************************
- //
- //! @brief Send a SPI frame using the IOM queue.
- //!
- //! @param ui32Module - Module number for the IOM
- //! @param ui32ChipSelect - Chip-select number for this transaction.
- //! @param pui32Data - Pointer to the bytes that will be sent.
- //! @param ui32NumBytes - Number of bytes to send.
- //! @param ui32Options - Additional SPI transfer options.
- //!
- //! This function performs SPI writes to a selected SPI device.
- //!
- //! This function call is a queued implementation. It will write as much
- //! data to the FIFO as possible immediately, store a pointer to the remaining
- //! data, start the transfer on the bus, and then immediately return. If the
- //! FIFO is already in use, this function will save its arguments to the IOM
- //! queue and execute the transaction when the FIFO becomes available.
- //!
- //! The caller will need to make sure that \e am_hal_iom_queue_service() is
- //! called for IOM FIFO interrupt events and "command complete" interrupt
- //! events. The \e am_hal_iom_queue_service() function will refill the FIFO as
- //! necessary and call the \e pfnCallback function when the transaction is
- //! finished.
- //!
- //! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
- //! This means that you will need to byte-pack the \e pui32Data array with the
- //! data you intend to send over the interface. One easy way to do this is to
- //! declare the array as a 32-bit integer array, but use an 8-bit pointer to
- //! put your actual data into the array. If there are not enough bytes in your
- //! desired message to completely fill the last 32-bit word, you may pad that
- //! last word with bytes of any value. The IOM hardware will only read the
- //! first \e ui32NumBytes in the \e pui8Data array.
- //
- //*****************************************************************************
- am_hal_iom_status_e
- am_hal_iom_queue_spi_write(uint32_t ui32Module, uint32_t ui32ChipSelect,
- uint32_t *pui32Data, uint32_t ui32NumBytes,
- uint32_t ui32Options, am_hal_iom_callback_t pfnCallback)
- {
- uint32_t ui32Critical;
- am_hal_iom_status_e ui32Status;
- //
- // Validate parameters
- //
- if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
- {
- return AM_HAL_IOM_ERR_INVALID_MODULE;
- }
- // Reset the error status
- ui32Status = g_iom_error_status[ui32Module] = AM_HAL_IOM_SUCCESS;
- if ( ui32NumBytes == 0 )
- {
- g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_INVALID_PARAM;
- return ui32Status;
- }
- //
- // Start a critical section.
- //
- ui32Critical = am_hal_interrupt_master_disable();
- //
- // Check to see if we need to use the queue. If the IOM is idle, and
- // there's nothing in the queue already, we can go ahead and start the
- // transaction in the physical IOM. Need to check for the g_bIomBusy to
- // avoid a race condition where IDLE is set - but the command complete
- // for previous transaction has not been processed yet
- //
- if ( (g_bIomBusy[ui32Module] == false) &&
- am_hal_queue_empty(&g_psIOMQueue[ui32Module]) )
- {
- //
- // Send the packet.
- //
- ui32Status = am_hal_iom_spi_write_nb(ui32Module, ui32ChipSelect, pui32Data,
- ui32NumBytes, ui32Options, pfnCallback);
- }
- else
- {
- //
- // Otherwise, we'll build a transaction structure and add it to the queue.
- //
- am_hal_iom_queue_entry_t sIOMTransaction;
- sIOMTransaction.ui32Operation = AM_HAL_IOM_QUEUE_SPI_WRITE;
- sIOMTransaction.ui32Module = ui32Module;
- sIOMTransaction.ui32ChipSelect = ui32ChipSelect;
- sIOMTransaction.pui32Data = pui32Data;
- sIOMTransaction.ui32NumBytes = ui32NumBytes;
- sIOMTransaction.ui32Options = ui32Options;
- sIOMTransaction.pfnCallback = pfnCallback;
- //
- // Make sure the item actually makes it into the queue
- //
- if ( am_hal_queue_item_add(&g_psIOMQueue[ui32Module], &sIOMTransaction, 1) == false )
- {
- //
- // Didn't have enough memory.
- //
- ui32Status = AM_HAL_IOM_ERR_RESOURCE_ERR;
- }
- }
- if (ui32Status != AM_HAL_IOM_SUCCESS)
- {
- g_iom_error_status[ui32Module] = ui32Status;
- }
- //
- // Exit the critical section.
- //
- am_hal_interrupt_master_set(ui32Critical);
- return ui32Status;
- }
- //*****************************************************************************
- //
- //! @brief Read a SPI frame using the IOM queue.
- //!
- //! @param ui32Module - Module number for the IOM
- //! @param ui32ChipSelect - Chip select number for this transaction.
- //! @param pui32Data - Pointer to the array where received bytes should go.
- //! @param ui32NumBytes - Number of bytes to read.
- //! @param ui32Options - Additional SPI transfer options.
- //!
- //! This function performs SPI reads to a selected SPI device.
- //!
- //! This function call is a queued implementation. It will write as much
- //! data to the FIFO as possible immediately, store a pointer to the remaining
- //! data, start the transfer on the bus, and then immediately return. If the
- //! FIFO is already in use, this function will save its arguments to the IOM
- //! queue and execute the transaction when the FIFO becomes available.
- //!
- //! The caller will need to make sure that \e am_hal_iom_queue_service() is
- //! called for IOM FIFO interrupt events and "command complete" interrupt
- //! events. The \e am_hal_iom_queue_service() function will empty the FIFO as
- //! necessary and call the \e pfnCallback function when the transaction is
- //! finished.
- //!
- //! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
- //! This means that you will need to byte-pack the \e pui32Data array with the
- //! data you intend to send over the interface. One easy way to do this is to
- //! declare the array as a 32-bit integer array, but use an 8-bit pointer to
- //! put your actual data into the array. If there are not enough bytes in your
- //! desired message to completely fill the last 32-bit word, you may pad that
- //! last word with bytes of any value. The IOM hardware will only read the
- //! first \e ui32NumBytes in the \e pui8Data array.
- //
- //*****************************************************************************
- am_hal_iom_status_e
- am_hal_iom_queue_spi_read(uint32_t ui32Module, uint32_t ui32ChipSelect,
- uint32_t *pui32Data, uint32_t ui32NumBytes,
- uint32_t ui32Options, am_hal_iom_callback_t pfnCallback)
- {
- uint32_t ui32Critical;
- am_hal_iom_status_e ui32Status;
- //
- // Validate parameters
- //
- if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
- {
- return AM_HAL_IOM_ERR_INVALID_MODULE;
- }
- // Reset the error status
- ui32Status = g_iom_error_status[ui32Module] = AM_HAL_IOM_SUCCESS;
- if ( ui32NumBytes == 0 )
- {
- g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_INVALID_PARAM;
- return ui32Status;
- }
- // Start a critical section.
- //
- ui32Critical = am_hal_interrupt_master_disable();
- //
- // Check to see if we need to use the queue. If the IOM is idle, and
- // there's nothing in the queue already, we can go ahead and start the
- // transaction in the physical IOM. Need to check for the g_bIomBusy to
- // avoid a race condition where IDLE is set - but the command complete
- // for previous transaction has not been processed yet
- //
- if ( (g_bIomBusy[ui32Module] == false) &&
- am_hal_queue_empty(&g_psIOMQueue[ui32Module]) )
- {
- //
- // Send the packet.
- //
- ui32Status = am_hal_iom_spi_read_nb(ui32Module, ui32ChipSelect, pui32Data,
- ui32NumBytes, ui32Options, pfnCallback);
- }
- else
- {
- //
- // Otherwise, we'll build a transaction structure and add it to the queue.
- //
- am_hal_iom_queue_entry_t sIOMTransaction;
- sIOMTransaction.ui32Operation = AM_HAL_IOM_QUEUE_SPI_READ;
- sIOMTransaction.ui32Module = ui32Module;
- sIOMTransaction.ui32ChipSelect = ui32ChipSelect;
- sIOMTransaction.pui32Data = pui32Data;
- sIOMTransaction.ui32NumBytes = ui32NumBytes;
- sIOMTransaction.ui32Options = ui32Options;
- sIOMTransaction.pfnCallback = pfnCallback;
- //
- // Make sure the item actually makes it into the queue
- //
- if ( am_hal_queue_item_add(&g_psIOMQueue[ui32Module], &sIOMTransaction, 1) == false )
- {
- //
- // Didn't have enough memory.
- //
- ui32Status = AM_HAL_IOM_ERR_RESOURCE_ERR;
- }
- }
- if (ui32Status != AM_HAL_IOM_SUCCESS)
- {
- g_iom_error_status[ui32Module] = ui32Status;
- }
- //
- // Exit the critical section.
- //
- am_hal_interrupt_master_set(ui32Critical);
- return ui32Status;
- }
- //*****************************************************************************
- //
- //! @brief Send an I2C frame using the IOM queue.
- //!
- //! @param ui32Module - Module number for the IOM
- //! @param ui32BusAddress - I2C address of the target device.
- //! @param pui32Data - Pointer to the bytes that will be sent.
- //! @param ui32NumBytes - Number of bytes to send.
- //! @param ui32Options - Additional I2C transfer options.
- //!
- //! This function performs I2C writes to a selected I2C device.
- //!
- //! This function call is a queued implementation. It will write as much
- //! data to the FIFO as possible immediately, store a pointer to the remaining
- //! data, start the transfer on the bus, and then immediately return. If the
- //! FIFO is already in use, this function will save its arguments to the IOM
- //! queue and execute the transaction when the FIFO becomes available.
- //!
- //! The caller will need to make sure that \e am_hal_iom_queue_service() is
- //! called for IOM FIFO interrupt events and "command complete" interrupt
- //! events. The \e am_hal_iom_queue_service() function will refill the FIFO as
- //! necessary and call the \e pfnCallback function when the transaction is
- //! finished.
- //!
- //! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
- //! This means that you will need to byte-pack the \e pui32Data array with the
- //! data you intend to send over the interface. One easy way to do this is to
- //! declare the array as a 32-bit integer array, but use an 8-bit pointer to
- //! put your actual data into the array. If there are not enough bytes in your
- //! desired message to completely fill the last 32-bit word, you may pad that
- //! last word with bytes of any value. The IOM hardware will only read the
- //! first \e ui32NumBytes in the \e pui8Data array.
- //
- //*****************************************************************************
- am_hal_iom_status_e
- am_hal_iom_queue_i2c_write(uint32_t ui32Module, uint32_t ui32BusAddress,
- uint32_t *pui32Data, uint32_t ui32NumBytes,
- uint32_t ui32Options, am_hal_iom_callback_t pfnCallback)
- {
- am_hal_iom_status_e ui32Status;
- uint32_t ui32Critical;
- //
- // Validate parameters
- //
- if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
- {
- return AM_HAL_IOM_ERR_INVALID_MODULE;
- }
- // Reset the error status
- ui32Status = g_iom_error_status[ui32Module] = AM_HAL_IOM_SUCCESS;
- if ( ui32NumBytes == 0 )
- {
- g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_INVALID_PARAM;
- return ui32Status;
- }
- //
- // Start a critical section.
- //
- ui32Critical = am_hal_interrupt_master_disable();
- //
- // Check to see if we need to use the queue. If the IOM is idle, and
- // there's nothing in the queue already, we can go ahead and start the
- // transaction in the physical IOM. Need to check for the g_bIomBusy to
- // avoid a race condition where IDLE is set - but the command complete
- // for previous transaction has not been processed yet
- //
- if ( (g_bIomBusy[ui32Module] == false) &&
- am_hal_queue_empty(&g_psIOMQueue[ui32Module]) )
- {
- //
- // Send the packet.
- //
- ui32Status = am_hal_iom_i2c_write_nb(ui32Module, ui32BusAddress, pui32Data,
- ui32NumBytes, ui32Options, pfnCallback);
- }
- else
- {
- //
- // Otherwise, we'll build a transaction structure and add it to the queue.
- //
- am_hal_iom_queue_entry_t sIOMTransaction;
- sIOMTransaction.ui32Operation = AM_HAL_IOM_QUEUE_I2C_WRITE;
- sIOMTransaction.ui32Module = ui32Module;
- sIOMTransaction.ui32ChipSelect = ui32BusAddress;
- sIOMTransaction.pui32Data = pui32Data;
- sIOMTransaction.ui32NumBytes = ui32NumBytes;
- sIOMTransaction.ui32Options = ui32Options;
- sIOMTransaction.pfnCallback = pfnCallback;
- //
- // Make sure the item actually makes it into the queue
- //
- if ( am_hal_queue_item_add(&g_psIOMQueue[ui32Module], &sIOMTransaction, 1) == false )
- {
- //
- // Didn't have enough memory.
- //
- ui32Status = AM_HAL_IOM_ERR_RESOURCE_ERR;
- }
- }
- if (ui32Status != AM_HAL_IOM_SUCCESS)
- {
- g_iom_error_status[ui32Module] = ui32Status;
- }
- //
- // Exit the critical section.
- //
- am_hal_interrupt_master_set(ui32Critical);
- return ui32Status;
- }
- //*****************************************************************************
- //
- //! @brief Read a I2C frame using the IOM queue.
- //!
- //! @param ui32Module - Module number for the IOM
- //! @param ui32BusAddress - I2C address of the target device.
- //! @param pui32Data - Pointer to the array where received bytes should go.
- //! @param ui32NumBytes - Number of bytes to read.
- //! @param ui32Options - Additional I2C transfer options.
- //!
- //! This function performs I2C reads to a selected I2C device.
- //!
- //! This function call is a queued implementation. It will write as much
- //! data to the FIFO as possible immediately, store a pointer to the remaining
- //! data, start the transfer on the bus, and then immediately return. If the
- //! FIFO is already in use, this function will save its arguments to the IOM
- //! queue and execute the transaction when the FIFO becomes available.
- //!
- //! The caller will need to make sure that \e am_hal_iom_queue_service() is
- //! called for IOM FIFO interrupt events and "command complete" interrupt
- //! events. The \e am_hal_iom_queue_service() function will empty the FIFO as
- //! necessary and call the \e pfnCallback function when the transaction is
- //! finished.
- //!
- //! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
- //! This means that you will need to byte-pack the \e pui32Data array with the
- //! data you intend to send over the interface. One easy way to do this is to
- //! declare the array as a 32-bit integer array, but use an 8-bit pointer to
- //! put your actual data into the array. If there are not enough bytes in your
- //! desired message to completely fill the last 32-bit word, you may pad that
- //! last word with bytes of any value. The IOM hardware will only read the
- //! first \e ui32NumBytes in the \e pui8Data array.
- //
- //*****************************************************************************
- am_hal_iom_status_e
- am_hal_iom_queue_i2c_read(uint32_t ui32Module, uint32_t ui32BusAddress,
- uint32_t *pui32Data, uint32_t ui32NumBytes,
- uint32_t ui32Options, am_hal_iom_callback_t pfnCallback)
- {
- uint32_t ui32Critical;
- am_hal_iom_status_e ui32Status;
- //
- // Validate parameters
- //
- if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
- {
- return AM_HAL_IOM_ERR_INVALID_MODULE;
- }
- // Reset the error status
- ui32Status = g_iom_error_status[ui32Module] = AM_HAL_IOM_SUCCESS;
- if ( ui32NumBytes == 0 )
- {
- g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_INVALID_PARAM;
- return ui32Status;
- }
- //
- // Start a critical section.
- //
- ui32Critical = am_hal_interrupt_master_disable();
- //
- // Check to see if we need to use the queue. If the IOM is idle, and
- // there's nothing in the queue already, we can go ahead and start the
- // transaction in the physical IOM. Need to check for the g_bIomBusy to
- // avoid a race condition where IDLE is set - but the command complete
- // for previous transaction has not been processed yet
- //
- if ( (g_bIomBusy[ui32Module] == false) &&
- am_hal_queue_empty(&g_psIOMQueue[ui32Module]) )
- {
- //
- // Send the packet.
- //
- ui32Status = am_hal_iom_i2c_read_nb(ui32Module, ui32BusAddress, pui32Data,
- ui32NumBytes, ui32Options, pfnCallback);
- }
- else
- {
- //
- // Otherwise, we'll build a transaction structure and add it to the queue.
- //
- am_hal_iom_queue_entry_t sIOMTransaction;
- sIOMTransaction.ui32Operation = AM_HAL_IOM_QUEUE_I2C_READ;
- sIOMTransaction.ui32Module = ui32Module;
- sIOMTransaction.ui32ChipSelect = ui32BusAddress;
- sIOMTransaction.pui32Data = pui32Data;
- sIOMTransaction.ui32NumBytes = ui32NumBytes;
- sIOMTransaction.ui32Options = ui32Options;
- sIOMTransaction.pfnCallback = pfnCallback;
- //
- // Make sure the item actually makes it into the queue
- //
- if ( am_hal_queue_item_add(&g_psIOMQueue[ui32Module], &sIOMTransaction, 1) == false )
- {
- //
- // Didn't have enough memory.
- //
- ui32Status = AM_HAL_IOM_ERR_RESOURCE_ERR;
- }
- }
- if (ui32Status != AM_HAL_IOM_SUCCESS)
- {
- g_iom_error_status[ui32Module] = ui32Status;
- }
- //
- // Exit the critical section.
- //
- am_hal_interrupt_master_set(ui32Critical);
- return ui32Status;
- }
- //*****************************************************************************
- //
- //! @brief "Block" until the queue of IOM transactions is over.
- //!
- //! @param ui32Module - Module number for the IOM.
- //!
- //! This function will sleep the core block until the queue for the selected
- //! IOM is empty. This is mainly useful for non-RTOS applications where the
- //! caller needs to know that a certain IOM transaction is complete before
- //! continuing with the main program flow.
- //!
- //! @note This function will put the core to sleep while it waits for the
- //! queued IOM transactions to complete. This will save power, in most
- //! situations, but it may not be the best option in all cases. \e Do \e not
- //! call this function from interrupt context (the core may not wake up again).
- //! \e Be \e careful using this function from an RTOS task (many RTOS
- //! implementations use hardware interrupts to switch contexts, and most RTOS
- //! implementations expect to control sleep behavior).
- //
- //*****************************************************************************
- void
- am_hal_iom_sleeping_queue_flush(uint32_t ui32Module)
- {
- bool bWaiting = true;
- uint32_t ui32Critical;
- //
- // Validate parameters
- //
- if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
- {
- return;
- }
- //
- // Loop forever waiting for the IOM to be idle and the queue to be empty.
- //
- while ( bWaiting )
- {
- //
- // Start a critical section.
- //
- ui32Critical = am_hal_interrupt_master_disable();
- //
- // Check the queue and the IOM itself.
- //
- if ( (g_bIomBusy[ui32Module] == false) &&
- am_hal_queue_empty(&g_psIOMQueue[ui32Module]) )
- {
- //
- // If the queue is empty and the IOM is idle, we can go ahead and
- // return.
- //
- bWaiting = false;
- }
- else
- {
- //
- // Otherwise, we should sleep until the interface is actually free.
- //
- am_hal_sysctrl_sleep(AM_HAL_SYSCTRL_SLEEP_NORMAL);
- }
- //
- // End the critical section.
- //
- am_hal_interrupt_master_set(ui32Critical);
- }
- }
- //*****************************************************************************
- //
- //! @brief Service IOM transaction queue.
- //!
- //! @param ui32Module - Module number for the IOM to be used.
- //! @param ui32Status - Interrupt status bits for the IOM module being used.
- //!
- //! This function handles the operation of FIFOs and the IOM queue during
- //! queued IOM transactions. If you are using \e am_hal_iom_queue_spi_write()
- //! or similar functions, you will need to call this function in your interrupt
- //! handler.
- //!
- //! @note This interrupt service routine relies on the user to enable the IOM
- //! interrupts for FIFO threshold and CMD complete.
- //!
- //! Example:
- //!
- //! @code
- //! void
- //! am_iomaster0_isr(void)
- //! {
- //! uint32_t ui32Status;
- //!
- //! //
- //! // Check to see which interrupt caused us to enter the ISR.
- //! //
- //! ui32Status = am_hal_iom_int_status(0, true);
- //!
- //! //
- //! // Clear the interrupts. This should be done before calling service routine
- //! // as otherwise we may lose re-triggered interrupts
- //! //
- //! am_hal_iom_int_clear(ui32Status);
- //!
- //! //
- //! // Fill or empty the FIFO, and either continue the current operation or
- //! // start the next one in the queue. If there was a callback, it will be
- //! // called here.
- //! //
- //! am_hal_iom_queue_service(0, ui32Status);
- //! }
- //! @endcode
- //!
- //! @return
- //
- //*****************************************************************************
- void
- am_hal_iom_queue_service(uint32_t ui32Module, uint32_t ui32Status)
- {
- //
- // Validate parameters
- //
- if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
- {
- return;
- }
- //
- // Service the FIFOs in case this was a threshold interrupt.
- //
- am_hal_iom_int_service(ui32Module, ui32Status);
- //
- // If the last interrupt was a "command complete", then the IOM should be
- // idle already or very soon. Make absolutely sure that the IOM is not in
- // use, and then start the next transaction in the queue.
- //
- if ( ui32Status & AM_HAL_IOM_INT_CMDCMP )
- {
- if ( g_psIOMQueue[ui32Module].pui8Data != NULL )
- {
- am_hal_iom_queue_start_next_msg(ui32Module);
- }
- }
- }
- //*****************************************************************************
- //
- //! @brief Enable selected IOM Interrupts.
- //!
- //! @param ui32Module - Module number.
- //! @param ui32Interrupt - Use the macro bit fields provided in am_hal_iom.h
- //!
- //! Use this function to enable the IOM interrupts.
- //!
- //! @return None
- //
- //*****************************************************************************
- void
- am_hal_iom_int_enable(uint32_t ui32Module, uint32_t ui32Interrupt)
- {
- //
- // Validate parameters
- //
- if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
- {
- return;
- }
- AM_REGn(IOMSTR, ui32Module, INTEN) |= ui32Interrupt;
- }
- //*****************************************************************************
- //
- //! @brief Return the enabled IOM Interrupts.
- //!
- //! @param ui32Module - Module number.
- //!
- //! Use this function to return all enabled IOM interrupts.
- //!
- //! @return all enabled IOM interrupts.
- //
- //*****************************************************************************
- uint32_t
- am_hal_iom_int_enable_get(uint32_t ui32Module)
- {
- //
- // Validate parameters
- //
- if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
- {
- return 0;
- }
- return AM_REGn(IOMSTR, ui32Module, INTEN);
- }
- //*****************************************************************************
- //
- //! @brief Disable selected IOM Interrupts.
- //!
- //! @param ui32Module - Module number.
- //! @param ui32Interrupt - Use the macro bit fields provided in am_hal_iom.h
- //!
- //! Use this function to disable the IOM interrupts.
- //!
- //! @return None
- //
- //*****************************************************************************
- void
- am_hal_iom_int_disable(uint32_t ui32Module, uint32_t ui32Interrupt)
- {
- //
- // Validate parameters
- //
- if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
- {
- return;
- }
- AM_REGn(IOMSTR, ui32Module, INTEN) &= ~ui32Interrupt;
- }
- //*****************************************************************************
- //
- //! @brief Clear selected IOM Interrupts.
- //!
- //! @param ui32Module - Module number.
- //! @param ui32Interrupt - Use the macro bit fields provided in am_hal_iom.h
- //!
- //! Use this function to clear the IOM interrupts.
- //!
- //! @return None
- //
- //*****************************************************************************
- void
- am_hal_iom_int_clear(uint32_t ui32Module, uint32_t ui32Interrupt)
- {
- //
- // Validate parameters
- //
- if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
- {
- return;
- }
- AM_REGn(IOMSTR, ui32Module, INTCLR) = ui32Interrupt;
- }
- //*****************************************************************************
- //
- //! @brief Set selected IOM Interrupts.
- //!
- //! @param ui32Module - Module number.
- //! @param ui32Interrupt - Use the macro bit fields provided in am_hal_iom.h
- //!
- //! Use this function to set the IOM interrupts.
- //!
- //! @return None
- //
- //*****************************************************************************
- void
- am_hal_iom_int_set(uint32_t ui32Module, uint32_t ui32Interrupt)
- {
- //
- // Validate parameters
- //
- if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
- {
- return;
- }
- AM_REGn(IOMSTR, ui32Module, INTSET) = ui32Interrupt;
- }
- //*****************************************************************************
- //
- //! @brief Return the IOM Interrupt status.
- //!
- //! @param ui32Module - Module number.
- //! @param bEnabledOnly - return only the enabled interrupts.
- //!
- //! Use this function to get the IOM interrupt status.
- //!
- //! @return interrupt status
- //
- //*****************************************************************************
- uint32_t
- am_hal_iom_int_status_get(uint32_t ui32Module, bool bEnabledOnly)
- {
- //
- // Validate parameters
- //
- if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
- {
- return 0;
- }
- if ( bEnabledOnly )
- {
- uint32_t u32RetVal = AM_REGn(IOMSTR, ui32Module, INTSTAT);
- return u32RetVal & AM_REGn(IOMSTR, ui32Module, INTEN);
- }
- else
- {
- return AM_REGn(IOMSTR, ui32Module, INTSTAT);
- }
- }
- //*****************************************************************************
- //
- // End Doxygen group.
- //! @}
- //
- //*****************************************************************************
|