drv_usart.c 8.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347
  1. /*
  2. * Copyright (c) 2006-2021, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2022-05-16 shelton first version
  9. */
  10. #include "drv_common.h"
  11. #include "drv_usart.h"
  12. #ifdef RT_USING_SERIAL
  13. #if !defined(BSP_USING_UART1) && !defined(BSP_USING_UART2) && \
  14. !defined(BSP_USING_UART3) && !defined(BSP_USING_UART4) && \
  15. !defined(BSP_USING_UART5) && !defined(BSP_USING_UART6) && \
  16. !defined(BSP_USING_UART7) && !defined(BSP_USING_UART8)
  17. #error "Please define at least one BSP_USING_UARTx"
  18. #endif
  19. struct at32_usart {
  20. char *name;
  21. usart_type* usart_x;
  22. IRQn_Type irqn;
  23. struct rt_serial_device serial;
  24. };
  25. enum {
  26. #ifdef BSP_USING_UART1
  27. UART1_INDEX,
  28. #endif
  29. #ifdef BSP_USING_UART2
  30. UART2_INDEX,
  31. #endif
  32. #ifdef BSP_USING_UART3
  33. UART3_INDEX,
  34. #endif
  35. #ifdef BSP_USING_UART4
  36. UART4_INDEX,
  37. #endif
  38. #ifdef BSP_USING_UART5
  39. UART5_INDEX,
  40. #endif
  41. #ifdef BSP_USING_UART6
  42. UART6_INDEX,
  43. #endif
  44. #ifdef BSP_USING_UART7
  45. UART7_INDEX,
  46. #endif
  47. #ifdef BSP_USING_UART8
  48. UART8_INDEX,
  49. #endif
  50. };
  51. static struct at32_usart usart_config[] = {
  52. #ifdef BSP_USING_UART1
  53. { "uart1",
  54. USART1,
  55. USART1_IRQn, },
  56. #endif
  57. #ifdef BSP_USING_UART2
  58. { "uart2",
  59. USART2,
  60. USART2_IRQn, },
  61. #endif
  62. #ifdef BSP_USING_UART3
  63. { "uart3",
  64. USART3,
  65. USART3_IRQn, },
  66. #endif
  67. #ifdef BSP_USING_UART4
  68. { "uart4",
  69. UART4,
  70. UART4_IRQn, },
  71. #endif
  72. #ifdef BSP_USING_UART5
  73. { "uart5",
  74. UART5,
  75. UART5_IRQn, },
  76. #endif
  77. #ifdef BSP_USING_UART6
  78. { "uart6",
  79. USART6,
  80. USART6_IRQn, },
  81. #endif
  82. #ifdef BSP_USING_UART7
  83. { "uart7",
  84. UART7,
  85. UART7_IRQn, },
  86. #endif
  87. #ifdef BSP_USING_UART8
  88. { "uart8",
  89. UART8,
  90. UART8_IRQn, },
  91. #endif
  92. };
  93. static rt_err_t at32_configure(struct rt_serial_device *serial,
  94. struct serial_configure *cfg) {
  95. struct at32_usart *usart_instance = (struct at32_usart *) serial->parent.user_data;
  96. usart_data_bit_num_type data_bit;
  97. usart_stop_bit_num_type stop_bit;
  98. usart_parity_selection_type parity_mode;
  99. RT_ASSERT(serial != RT_NULL);
  100. RT_ASSERT(cfg != RT_NULL);
  101. RT_ASSERT(usart_instance != RT_NULL);
  102. at32_msp_usart_init((void *)usart_instance->usart_x);
  103. usart_receiver_enable(usart_instance->usart_x, TRUE);
  104. usart_transmitter_enable(usart_instance->usart_x, TRUE);
  105. usart_hardware_flow_control_set(usart_instance->usart_x, USART_HARDWARE_FLOW_NONE);
  106. switch (cfg->data_bits) {
  107. case DATA_BITS_8:
  108. data_bit = USART_DATA_8BITS;
  109. break;
  110. case DATA_BITS_9:
  111. data_bit = USART_DATA_9BITS;
  112. break;
  113. default:
  114. data_bit = USART_DATA_8BITS;
  115. break;
  116. }
  117. switch (cfg->stop_bits) {
  118. case STOP_BITS_1:
  119. stop_bit = USART_STOP_1_BIT;
  120. break;
  121. case STOP_BITS_2:
  122. stop_bit = USART_STOP_2_BIT;
  123. break;
  124. default:
  125. stop_bit = USART_STOP_1_BIT;
  126. break;
  127. }
  128. switch (cfg->parity) {
  129. case PARITY_NONE:
  130. parity_mode = USART_PARITY_NONE;
  131. break;
  132. case PARITY_ODD:
  133. parity_mode = USART_PARITY_ODD;
  134. break;
  135. case PARITY_EVEN:
  136. parity_mode = USART_PARITY_EVEN;
  137. break;
  138. default:
  139. parity_mode = USART_PARITY_NONE;
  140. break;
  141. }
  142. usart_parity_selection_config(usart_instance->usart_x, parity_mode);
  143. usart_init(usart_instance->usart_x, cfg->baud_rate, data_bit, stop_bit);
  144. usart_enable(usart_instance->usart_x, TRUE);
  145. return RT_EOK;
  146. }
  147. static rt_err_t at32_control(struct rt_serial_device *serial, int cmd, void *arg) {
  148. struct at32_usart *usart;
  149. RT_ASSERT(serial != RT_NULL);
  150. usart = (struct at32_usart *) serial->parent.user_data;
  151. RT_ASSERT(usart != RT_NULL);
  152. switch (cmd) {
  153. case RT_DEVICE_CTRL_CLR_INT:
  154. nvic_irq_disable(usart->irqn);
  155. usart_interrupt_enable(usart->usart_x, USART_RDBF_INT, FALSE);
  156. break;
  157. case RT_DEVICE_CTRL_SET_INT:
  158. nvic_irq_enable(usart->irqn, 2, 1);
  159. usart_interrupt_enable(usart->usart_x, USART_RDBF_INT, TRUE);
  160. break;
  161. }
  162. return RT_EOK;
  163. }
  164. static int at32_putc(struct rt_serial_device *serial, char ch) {
  165. struct at32_usart *usart;
  166. RT_ASSERT(serial != RT_NULL);
  167. usart = (struct at32_usart *) serial->parent.user_data;
  168. RT_ASSERT(usart != RT_NULL);
  169. usart_data_transmit(usart->usart_x, (uint8_t)ch);
  170. while (usart_flag_get(usart->usart_x, USART_TDC_FLAG) == RESET);
  171. return 1;
  172. }
  173. static int at32_getc(struct rt_serial_device *serial) {
  174. int ch;
  175. struct at32_usart *usart;
  176. RT_ASSERT(serial != RT_NULL);
  177. usart = (struct at32_usart *) serial->parent.user_data;
  178. RT_ASSERT(usart != RT_NULL);
  179. ch = -1;
  180. if (usart_flag_get(usart->usart_x, USART_RDBF_FLAG) != RESET) {
  181. ch = usart_data_receive(usart->usart_x) & 0xff;
  182. }
  183. return ch;
  184. }
  185. static const struct rt_uart_ops at32_usart_ops = {
  186. at32_configure,
  187. at32_control,
  188. at32_putc,
  189. at32_getc,
  190. RT_NULL
  191. };
  192. static void usart_isr(struct rt_serial_device *serial) {
  193. struct at32_usart *usart_instance;
  194. RT_ASSERT(serial != RT_NULL);
  195. usart_instance = (struct at32_usart *) serial->parent.user_data;
  196. RT_ASSERT(usart_instance != RT_NULL);
  197. if (usart_flag_get(usart_instance->usart_x, USART_RDBF_FLAG) != RESET) {
  198. rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_IND);
  199. usart_flag_clear(usart_instance->usart_x, USART_RDBF_FLAG);
  200. }
  201. else
  202. {
  203. if (usart_flag_get(usart_instance->usart_x, USART_CTSCF_FLAG) != RESET) {
  204. usart_flag_clear(usart_instance->usart_x, USART_CTSCF_FLAG);
  205. }
  206. if (usart_flag_get(usart_instance->usart_x, USART_BFF_FLAG) != RESET) {
  207. usart_flag_clear(usart_instance->usart_x, USART_BFF_FLAG);
  208. }
  209. if (usart_flag_get(usart_instance->usart_x, USART_TDC_FLAG) != RESET) {
  210. usart_flag_clear(usart_instance->usart_x, USART_TDC_FLAG);
  211. }
  212. }
  213. }
  214. #ifdef BSP_USING_UART1
  215. void USART1_IRQHandler(void) {
  216. rt_interrupt_enter();
  217. usart_isr(&usart_config[UART1_INDEX].serial);
  218. rt_interrupt_leave();
  219. }
  220. #endif
  221. #ifdef BSP_USING_UART2
  222. void USART2_IRQHandler(void) {
  223. rt_interrupt_enter();
  224. usart_isr(&usart_config[UART2_INDEX].serial);
  225. rt_interrupt_leave();
  226. }
  227. #endif
  228. #ifdef BSP_USING_UART3
  229. void USART3_IRQHandler(void) {
  230. rt_interrupt_enter();
  231. usart_isr(&usart_config[UART3_INDEX].serial);
  232. rt_interrupt_leave();
  233. }
  234. #endif
  235. #ifdef BSP_USING_UART4
  236. void UART4_IRQHandler(void) {
  237. rt_interrupt_enter();
  238. usart_isr(&usart_config[UART4_INDEX].serial);
  239. rt_interrupt_leave();
  240. }
  241. #endif
  242. #ifdef BSP_USING_UART5
  243. void UART5_IRQHandler(void) {
  244. rt_interrupt_enter();
  245. usart_isr(&usart_config[UART5_INDEX].serial);
  246. rt_interrupt_leave();
  247. }
  248. #endif
  249. #ifdef BSP_USING_UART6
  250. void USART6_IRQHandler(void) {
  251. rt_interrupt_enter();
  252. usart_isr(&usart_config[UART6_INDEX].serial);
  253. rt_interrupt_leave();
  254. }
  255. #endif
  256. #ifdef BSP_USING_UART7
  257. void UART7_IRQHandler(void) {
  258. rt_interrupt_enter();
  259. usart_isr(&usart_config[UART7_INDEX].serial);
  260. rt_interrupt_leave();
  261. }
  262. #endif
  263. #ifdef BSP_USING_UART8
  264. void UART8_IRQHandler(void) {
  265. rt_interrupt_enter();
  266. usart_isr(&usart_config[UART8_INDEX].serial);
  267. rt_interrupt_leave();
  268. }
  269. #endif
  270. int rt_hw_usart_init(void) {
  271. rt_size_t obj_num;
  272. int index;
  273. obj_num = sizeof(usart_config) / sizeof(struct at32_usart);
  274. struct serial_configure config = RT_SERIAL_CONFIG_DEFAULT;
  275. rt_err_t result = 0;
  276. for (index = 0; index < obj_num; index++) {
  277. usart_config[index].serial.ops = &at32_usart_ops;
  278. usart_config[index].serial.config = config;
  279. /* register uart device */
  280. result = rt_hw_serial_register(&usart_config[index].serial,
  281. usart_config[index].name,
  282. RT_DEVICE_FLAG_RDWR |
  283. RT_DEVICE_FLAG_INT_RX |
  284. RT_DEVICE_FLAG_INT_TX,
  285. &usart_config[index]);
  286. RT_ASSERT(result == RT_EOK);
  287. }
  288. return result;
  289. }
  290. #endif /* BSP_USING_SERIAL */