fsl_sai.c 39 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192
  1. /*
  2. * Copyright (c) 2016, Freescale Semiconductor, Inc.
  3. * Copyright 2016-2017 NXP
  4. *
  5. * Redistribution and use in source and binary forms, with or without modification,
  6. * are permitted provided that the following conditions are met:
  7. *
  8. * o Redistributions of source code must retain the above copyright notice, this list
  9. * of conditions and the following disclaimer.
  10. *
  11. * o Redistributions in binary form must reproduce the above copyright notice, this
  12. * list of conditions and the following disclaimer in the documentation and/or
  13. * other materials provided with the distribution.
  14. *
  15. * o Neither the name of the copyright holder nor the names of its
  16. * contributors may be used to endorse or promote products derived from this
  17. * software without specific prior written permission.
  18. *
  19. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
  20. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
  21. * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  22. * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
  23. * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
  24. * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  25. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
  26. * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  27. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  28. * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  29. */
  30. #include "fsl_sai.h"
  31. /*******************************************************************************
  32. * Definitations
  33. ******************************************************************************/
  34. enum _sai_transfer_state
  35. {
  36. kSAI_Busy = 0x0U, /*!< SAI is busy */
  37. kSAI_Idle, /*!< Transfer is done. */
  38. kSAI_Error /*!< Transfer error occured. */
  39. };
  40. /*! @brief Typedef for sai tx interrupt handler. */
  41. typedef void (*sai_tx_isr_t)(I2S_Type *base, sai_handle_t *saiHandle);
  42. /*! @brief Typedef for sai rx interrupt handler. */
  43. typedef void (*sai_rx_isr_t)(I2S_Type *base, sai_handle_t *saiHandle);
  44. /*******************************************************************************
  45. * Prototypes
  46. ******************************************************************************/
  47. #if defined(FSL_FEATURE_SAI_HAS_MCLKDIV_REGISTER) && (FSL_FEATURE_SAI_HAS_MCLKDIV_REGISTER)
  48. /*!
  49. * @brief Set the master clock divider.
  50. *
  51. * This API will compute the master clock divider according to master clock frequency and master
  52. * clock source clock source frequency.
  53. *
  54. * @param base SAI base pointer.
  55. * @param mclk_Hz Mater clock frequency in Hz.
  56. * @param mclkSrcClock_Hz Master clock source frequency in Hz.
  57. */
  58. static void SAI_SetMasterClockDivider(I2S_Type *base, uint32_t mclk_Hz, uint32_t mclkSrcClock_Hz);
  59. #endif /* FSL_FEATURE_SAI_HAS_MCLKDIV_REGISTER */
  60. /*!
  61. * @brief Get the instance number for SAI.
  62. *
  63. * @param base SAI base pointer.
  64. */
  65. uint32_t SAI_GetInstance(I2S_Type *base);
  66. /*!
  67. * @brief sends a piece of data in non-blocking way.
  68. *
  69. * @param base SAI base pointer
  70. * @param channel Data channel used.
  71. * @param bitWidth How many bits in a audio word, usually 8/16/24/32 bits.
  72. * @param buffer Pointer to the data to be written.
  73. * @param size Bytes to be written.
  74. */
  75. static void SAI_WriteNonBlocking(I2S_Type *base, uint32_t channel, uint32_t bitWidth, uint8_t *buffer, uint32_t size);
  76. /*!
  77. * @brief Receive a piece of data in non-blocking way.
  78. *
  79. * @param base SAI base pointer
  80. * @param channel Data channel used.
  81. * @param bitWidth How many bits in a audio word, usually 8/16/24/32 bits.
  82. * @param buffer Pointer to the data to be read.
  83. * @param size Bytes to be read.
  84. */
  85. static void SAI_ReadNonBlocking(I2S_Type *base, uint32_t channel, uint32_t bitWidth, uint8_t *buffer, uint32_t size);
  86. /*******************************************************************************
  87. * Variables
  88. ******************************************************************************/
  89. /* Base pointer array */
  90. static I2S_Type *const s_saiBases[] = I2S_BASE_PTRS;
  91. /*!@brief SAI handle pointer */
  92. sai_handle_t *s_saiHandle[ARRAY_SIZE(s_saiBases)][2];
  93. /* IRQ number array */
  94. static const IRQn_Type s_saiTxIRQ[] = I2S_TX_IRQS;
  95. static const IRQn_Type s_saiRxIRQ[] = I2S_RX_IRQS;
  96. #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
  97. /* Clock name array */
  98. static const clock_ip_name_t s_saiClock[] = SAI_CLOCKS;
  99. #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
  100. /*! @brief Pointer to tx IRQ handler for each instance. */
  101. static sai_tx_isr_t s_saiTxIsr;
  102. /*! @brief Pointer to tx IRQ handler for each instance. */
  103. static sai_rx_isr_t s_saiRxIsr;
  104. /*******************************************************************************
  105. * Code
  106. ******************************************************************************/
  107. #if defined(FSL_FEATURE_SAI_HAS_MCLKDIV_REGISTER) && (FSL_FEATURE_SAI_HAS_MCLKDIV_REGISTER)
  108. static void SAI_SetMasterClockDivider(I2S_Type *base, uint32_t mclk_Hz, uint32_t mclkSrcClock_Hz)
  109. {
  110. uint32_t freq = mclkSrcClock_Hz;
  111. uint16_t fract, divide;
  112. uint32_t remaind = 0;
  113. uint32_t current_remainder = 0xFFFFFFFFU;
  114. uint16_t current_fract = 0;
  115. uint16_t current_divide = 0;
  116. uint32_t mul_freq = 0;
  117. uint32_t max_fract = 256;
  118. /*In order to prevent overflow */
  119. freq /= 100;
  120. mclk_Hz /= 100;
  121. /* Compute the max fract number */
  122. max_fract = mclk_Hz * 4096 / freq + 1;
  123. if (max_fract > 256)
  124. {
  125. max_fract = 256;
  126. }
  127. /* Looking for the closet frequency */
  128. for (fract = 1; fract < max_fract; fract++)
  129. {
  130. mul_freq = freq * fract;
  131. remaind = mul_freq % mclk_Hz;
  132. divide = mul_freq / mclk_Hz;
  133. /* Find the exactly frequency */
  134. if (remaind == 0)
  135. {
  136. current_fract = fract;
  137. current_divide = mul_freq / mclk_Hz;
  138. break;
  139. }
  140. /* Closer to next one, set the closest to next data */
  141. if (remaind > mclk_Hz / 2)
  142. {
  143. remaind = mclk_Hz - remaind;
  144. divide += 1;
  145. }
  146. /* Update the closest div and fract */
  147. if (remaind < current_remainder)
  148. {
  149. current_fract = fract;
  150. current_divide = divide;
  151. current_remainder = remaind;
  152. }
  153. }
  154. /* Fill the computed fract and divider to registers */
  155. base->MDR = I2S_MDR_DIVIDE(current_divide - 1) | I2S_MDR_FRACT(current_fract - 1);
  156. /* Waiting for the divider updated */
  157. while (base->MCR & I2S_MCR_DUF_MASK)
  158. {
  159. }
  160. }
  161. #endif /* FSL_FEATURE_SAI_HAS_MCLKDIV_REGISTER */
  162. uint32_t SAI_GetInstance(I2S_Type *base)
  163. {
  164. uint32_t instance;
  165. /* Find the instance index from base address mappings. */
  166. for (instance = 0; instance < ARRAY_SIZE(s_saiBases); instance++)
  167. {
  168. if (s_saiBases[instance] == base)
  169. {
  170. break;
  171. }
  172. }
  173. assert(instance < ARRAY_SIZE(s_saiBases));
  174. return instance;
  175. }
  176. static void SAI_WriteNonBlocking(I2S_Type *base, uint32_t channel, uint32_t bitWidth, uint8_t *buffer, uint32_t size)
  177. {
  178. uint32_t i = 0;
  179. uint8_t j = 0;
  180. uint8_t bytesPerWord = bitWidth / 8U;
  181. uint32_t data = 0;
  182. uint32_t temp = 0;
  183. for (i = 0; i < size / bytesPerWord; i++)
  184. {
  185. for (j = 0; j < bytesPerWord; j++)
  186. {
  187. temp = (uint32_t)(*buffer);
  188. data |= (temp << (8U * j));
  189. buffer++;
  190. }
  191. base->TDR[channel] = data;
  192. data = 0;
  193. }
  194. }
  195. static void SAI_ReadNonBlocking(I2S_Type *base, uint32_t channel, uint32_t bitWidth, uint8_t *buffer, uint32_t size)
  196. {
  197. uint32_t i = 0;
  198. uint8_t j = 0;
  199. uint8_t bytesPerWord = bitWidth / 8U;
  200. uint32_t data = 0;
  201. for (i = 0; i < size / bytesPerWord; i++)
  202. {
  203. data = base->RDR[channel];
  204. for (j = 0; j < bytesPerWord; j++)
  205. {
  206. *buffer = (data >> (8U * j)) & 0xFF;
  207. buffer++;
  208. }
  209. }
  210. }
  211. void SAI_TxInit(I2S_Type *base, const sai_config_t *config)
  212. {
  213. uint32_t val = 0;
  214. #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
  215. /* Enable the SAI clock */
  216. CLOCK_EnableClock(s_saiClock[SAI_GetInstance(base)]);
  217. #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
  218. #if defined(FSL_FEATURE_SAI_HAS_MCR) && (FSL_FEATURE_SAI_HAS_MCR)
  219. /* Master clock source setting */
  220. val = (base->MCR & ~I2S_MCR_MICS_MASK);
  221. base->MCR = (val | I2S_MCR_MICS(config->mclkSource));
  222. /* Configure Master clock output enable */
  223. val = (base->MCR & ~I2S_MCR_MOE_MASK);
  224. base->MCR = (val | I2S_MCR_MOE(config->mclkOutputEnable));
  225. #endif /* FSL_FEATURE_SAI_HAS_MCR */
  226. /* Configure audio protocol */
  227. switch (config->protocol)
  228. {
  229. case kSAI_BusLeftJustified:
  230. base->TCR2 |= I2S_TCR2_BCP_MASK;
  231. base->TCR3 &= ~I2S_TCR3_WDFL_MASK;
  232. base->TCR4 = I2S_TCR4_MF(1U) | I2S_TCR4_SYWD(31U) | I2S_TCR4_FSE(0U) | I2S_TCR4_FSP(0U) | I2S_TCR4_FRSZ(1U);
  233. break;
  234. case kSAI_BusRightJustified:
  235. base->TCR2 |= I2S_TCR2_BCP_MASK;
  236. base->TCR3 &= ~I2S_TCR3_WDFL_MASK;
  237. base->TCR4 = I2S_TCR4_MF(1U) | I2S_TCR4_SYWD(31U) | I2S_TCR4_FSE(0U) | I2S_TCR4_FSP(0U) | I2S_TCR4_FRSZ(1U);
  238. break;
  239. case kSAI_BusI2S:
  240. base->TCR2 |= I2S_TCR2_BCP_MASK;
  241. base->TCR3 &= ~I2S_TCR3_WDFL_MASK;
  242. base->TCR4 = I2S_TCR4_MF(1U) | I2S_TCR4_SYWD(31U) | I2S_TCR4_FSE(1U) | I2S_TCR4_FSP(1U) | I2S_TCR4_FRSZ(1U);
  243. break;
  244. case kSAI_BusPCMA:
  245. base->TCR2 &= ~I2S_TCR2_BCP_MASK;
  246. base->TCR3 &= ~I2S_TCR3_WDFL_MASK;
  247. base->TCR4 = I2S_TCR4_MF(1U) | I2S_TCR4_SYWD(0U) | I2S_TCR4_FSE(1U) | I2S_TCR4_FSP(0U) | I2S_TCR4_FRSZ(1U);
  248. break;
  249. case kSAI_BusPCMB:
  250. base->TCR2 &= ~I2S_TCR2_BCP_MASK;
  251. base->TCR3 &= ~I2S_TCR3_WDFL_MASK;
  252. base->TCR4 = I2S_TCR4_MF(1U) | I2S_TCR4_SYWD(0U) | I2S_TCR4_FSE(0U) | I2S_TCR4_FSP(0U) | I2S_TCR4_FRSZ(1U);
  253. break;
  254. default:
  255. break;
  256. }
  257. /* Set master or slave */
  258. if (config->masterSlave == kSAI_Master)
  259. {
  260. base->TCR2 |= I2S_TCR2_BCD_MASK;
  261. base->TCR4 |= I2S_TCR4_FSD_MASK;
  262. /* Bit clock source setting */
  263. val = base->TCR2 & (~I2S_TCR2_MSEL_MASK);
  264. base->TCR2 = (val | I2S_TCR2_MSEL(config->bclkSource));
  265. }
  266. else
  267. {
  268. base->TCR2 &= ~I2S_TCR2_BCD_MASK;
  269. base->TCR4 &= ~I2S_TCR4_FSD_MASK;
  270. }
  271. /* Set Sync mode */
  272. switch (config->syncMode)
  273. {
  274. case kSAI_ModeAsync:
  275. val = base->TCR2;
  276. val &= ~I2S_TCR2_SYNC_MASK;
  277. base->TCR2 = (val | I2S_TCR2_SYNC(0U));
  278. break;
  279. case kSAI_ModeSync:
  280. val = base->TCR2;
  281. val &= ~I2S_TCR2_SYNC_MASK;
  282. base->TCR2 = (val | I2S_TCR2_SYNC(1U));
  283. /* If sync with Rx, should set Rx to async mode */
  284. val = base->RCR2;
  285. val &= ~I2S_RCR2_SYNC_MASK;
  286. base->RCR2 = (val | I2S_RCR2_SYNC(0U));
  287. break;
  288. case kSAI_ModeSyncWithOtherTx:
  289. val = base->TCR2;
  290. val &= ~I2S_TCR2_SYNC_MASK;
  291. base->TCR2 = (val | I2S_TCR2_SYNC(2U));
  292. break;
  293. case kSAI_ModeSyncWithOtherRx:
  294. val = base->TCR2;
  295. val &= ~I2S_TCR2_SYNC_MASK;
  296. base->TCR2 = (val | I2S_TCR2_SYNC(3U));
  297. break;
  298. default:
  299. break;
  300. }
  301. }
  302. void SAI_RxInit(I2S_Type *base, const sai_config_t *config)
  303. {
  304. uint32_t val = 0;
  305. #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
  306. /* Enable SAI clock first. */
  307. CLOCK_EnableClock(s_saiClock[SAI_GetInstance(base)]);
  308. #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
  309. #if defined(FSL_FEATURE_SAI_HAS_MCR) && (FSL_FEATURE_SAI_HAS_MCR)
  310. /* Master clock source setting */
  311. val = (base->MCR & ~I2S_MCR_MICS_MASK);
  312. base->MCR = (val | I2S_MCR_MICS(config->mclkSource));
  313. /* Configure Master clock output enable */
  314. val = (base->MCR & ~I2S_MCR_MOE_MASK);
  315. base->MCR = (val | I2S_MCR_MOE(config->mclkOutputEnable));
  316. #endif /* FSL_FEATURE_SAI_HAS_MCR */
  317. /* Configure audio protocol */
  318. switch (config->protocol)
  319. {
  320. case kSAI_BusLeftJustified:
  321. base->RCR2 |= I2S_RCR2_BCP_MASK;
  322. base->RCR3 &= ~I2S_RCR3_WDFL_MASK;
  323. base->RCR4 = I2S_RCR4_MF(1U) | I2S_RCR4_SYWD(31U) | I2S_RCR4_FSE(0U) | I2S_RCR4_FSP(0U) | I2S_RCR4_FRSZ(1U);
  324. break;
  325. case kSAI_BusRightJustified:
  326. base->RCR2 |= I2S_RCR2_BCP_MASK;
  327. base->RCR3 &= ~I2S_RCR3_WDFL_MASK;
  328. base->RCR4 = I2S_RCR4_MF(1U) | I2S_RCR4_SYWD(31U) | I2S_RCR4_FSE(0U) | I2S_RCR4_FSP(0U) | I2S_RCR4_FRSZ(1U);
  329. break;
  330. case kSAI_BusI2S:
  331. base->RCR2 |= I2S_RCR2_BCP_MASK;
  332. base->RCR3 &= ~I2S_RCR3_WDFL_MASK;
  333. base->RCR4 = I2S_RCR4_MF(1U) | I2S_RCR4_SYWD(31U) | I2S_RCR4_FSE(1U) | I2S_RCR4_FSP(1U) | I2S_RCR4_FRSZ(1U);
  334. break;
  335. case kSAI_BusPCMA:
  336. base->RCR2 &= ~I2S_RCR2_BCP_MASK;
  337. base->RCR3 &= ~I2S_RCR3_WDFL_MASK;
  338. base->RCR4 = I2S_RCR4_MF(1U) | I2S_RCR4_SYWD(0U) | I2S_RCR4_FSE(1U) | I2S_RCR4_FSP(0U) | I2S_RCR4_FRSZ(1U);
  339. break;
  340. case kSAI_BusPCMB:
  341. base->RCR2 &= ~I2S_RCR2_BCP_MASK;
  342. base->RCR3 &= ~I2S_RCR3_WDFL_MASK;
  343. base->RCR4 = I2S_RCR4_MF(1U) | I2S_RCR4_SYWD(0U) | I2S_RCR4_FSE(0U) | I2S_RCR4_FSP(0U) | I2S_RCR4_FRSZ(1U);
  344. break;
  345. default:
  346. break;
  347. }
  348. /* Set master or slave */
  349. if (config->masterSlave == kSAI_Master)
  350. {
  351. base->RCR2 |= I2S_RCR2_BCD_MASK;
  352. base->RCR4 |= I2S_RCR4_FSD_MASK;
  353. /* Bit clock source setting */
  354. val = base->RCR2 & (~I2S_RCR2_MSEL_MASK);
  355. base->RCR2 = (val | I2S_RCR2_MSEL(config->bclkSource));
  356. }
  357. else
  358. {
  359. base->RCR2 &= ~I2S_RCR2_BCD_MASK;
  360. base->RCR4 &= ~I2S_RCR4_FSD_MASK;
  361. }
  362. /* Set Sync mode */
  363. switch (config->syncMode)
  364. {
  365. case kSAI_ModeAsync:
  366. val = base->RCR2;
  367. val &= ~I2S_RCR2_SYNC_MASK;
  368. base->RCR2 = (val | I2S_RCR2_SYNC(0U));
  369. break;
  370. case kSAI_ModeSync:
  371. val = base->RCR2;
  372. val &= ~I2S_RCR2_SYNC_MASK;
  373. base->RCR2 = (val | I2S_RCR2_SYNC(1U));
  374. /* If sync with Tx, should set Tx to async mode */
  375. val = base->TCR2;
  376. val &= ~I2S_TCR2_SYNC_MASK;
  377. base->TCR2 = (val | I2S_TCR2_SYNC(0U));
  378. break;
  379. case kSAI_ModeSyncWithOtherTx:
  380. val = base->RCR2;
  381. val &= ~I2S_RCR2_SYNC_MASK;
  382. base->RCR2 = (val | I2S_RCR2_SYNC(2U));
  383. break;
  384. case kSAI_ModeSyncWithOtherRx:
  385. val = base->RCR2;
  386. val &= ~I2S_RCR2_SYNC_MASK;
  387. base->RCR2 = (val | I2S_RCR2_SYNC(3U));
  388. break;
  389. default:
  390. break;
  391. }
  392. }
  393. void SAI_Deinit(I2S_Type *base)
  394. {
  395. SAI_TxEnable(base, false);
  396. SAI_RxEnable(base, false);
  397. #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
  398. CLOCK_DisableClock(s_saiClock[SAI_GetInstance(base)]);
  399. #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
  400. }
  401. void SAI_TxGetDefaultConfig(sai_config_t *config)
  402. {
  403. config->bclkSource = kSAI_BclkSourceMclkDiv;
  404. config->masterSlave = kSAI_Master;
  405. config->mclkSource = kSAI_MclkSourceSysclk;
  406. config->protocol = kSAI_BusLeftJustified;
  407. config->syncMode = kSAI_ModeAsync;
  408. #if defined(FSL_FEATURE_SAI_HAS_MCR) && (FSL_FEATURE_SAI_HAS_MCR)
  409. config->mclkOutputEnable = true;
  410. #endif /* FSL_FEATURE_SAI_HAS_MCR */
  411. }
  412. void SAI_RxGetDefaultConfig(sai_config_t *config)
  413. {
  414. config->bclkSource = kSAI_BclkSourceMclkDiv;
  415. config->masterSlave = kSAI_Master;
  416. config->mclkSource = kSAI_MclkSourceSysclk;
  417. config->protocol = kSAI_BusLeftJustified;
  418. config->syncMode = kSAI_ModeSync;
  419. #if defined(FSL_FEATURE_SAI_HAS_MCR) && (FSL_FEATURE_SAI_HAS_MCR)
  420. config->mclkOutputEnable = true;
  421. #endif /* FSL_FEATURE_SAI_HAS_MCR */
  422. }
  423. void SAI_TxReset(I2S_Type *base)
  424. {
  425. /* Set the software reset and FIFO reset to clear internal state */
  426. base->TCSR = I2S_TCSR_SR_MASK | I2S_TCSR_FR_MASK;
  427. /* Clear software reset bit, this should be done by software */
  428. base->TCSR &= ~I2S_TCSR_SR_MASK;
  429. /* Reset all Tx register values */
  430. base->TCR2 = 0;
  431. base->TCR3 = 0;
  432. base->TCR4 = 0;
  433. base->TCR5 = 0;
  434. base->TMR = 0;
  435. }
  436. void SAI_RxReset(I2S_Type *base)
  437. {
  438. /* Set the software reset and FIFO reset to clear internal state */
  439. base->RCSR = I2S_RCSR_SR_MASK | I2S_RCSR_FR_MASK;
  440. /* Clear software reset bit, this should be done by software */
  441. base->RCSR &= ~I2S_RCSR_SR_MASK;
  442. /* Reset all Rx register values */
  443. base->RCR2 = 0;
  444. base->RCR3 = 0;
  445. base->RCR4 = 0;
  446. base->RCR5 = 0;
  447. base->RMR = 0;
  448. }
  449. void SAI_TxEnable(I2S_Type *base, bool enable)
  450. {
  451. if (enable)
  452. {
  453. /* If clock is sync with Rx, should enable RE bit. */
  454. if (((base->TCR2 & I2S_TCR2_SYNC_MASK) >> I2S_TCR2_SYNC_SHIFT) == 0x1U)
  455. {
  456. base->RCSR = ((base->RCSR & 0xFFE3FFFFU) | I2S_RCSR_RE_MASK);
  457. }
  458. base->TCSR = ((base->TCSR & 0xFFE3FFFFU) | I2S_TCSR_TE_MASK);
  459. }
  460. else
  461. {
  462. /* Should not close RE even sync with Rx */
  463. base->TCSR = ((base->TCSR & 0xFFE3FFFFU) & (~I2S_TCSR_TE_MASK));
  464. }
  465. }
  466. void SAI_RxEnable(I2S_Type *base, bool enable)
  467. {
  468. if (enable)
  469. {
  470. /* If clock is sync with Tx, should enable TE bit. */
  471. if (((base->RCR2 & I2S_RCR2_SYNC_MASK) >> I2S_RCR2_SYNC_SHIFT) == 0x1U)
  472. {
  473. base->TCSR = ((base->TCSR & 0xFFE3FFFFU) | I2S_TCSR_TE_MASK);
  474. }
  475. base->RCSR = ((base->RCSR & 0xFFE3FFFFU) | I2S_RCSR_RE_MASK);
  476. }
  477. else
  478. {
  479. base->RCSR = ((base->RCSR & 0xFFE3FFFFU) & (~I2S_RCSR_RE_MASK));
  480. }
  481. }
  482. void SAI_TxSetFormat(I2S_Type *base,
  483. sai_transfer_format_t *format,
  484. uint32_t mclkSourceClockHz,
  485. uint32_t bclkSourceClockHz)
  486. {
  487. uint32_t bclk = format->sampleRate_Hz * 32U * 2U;
  488. /* Compute the mclk */
  489. #if defined(FSL_FEATURE_SAI_HAS_MCLKDIV_REGISTER) && (FSL_FEATURE_SAI_HAS_MCLKDIV_REGISTER)
  490. /* Check if master clock divider enabled, then set master clock divider */
  491. if (base->MCR & I2S_MCR_MOE_MASK)
  492. {
  493. SAI_SetMasterClockDivider(base, format->masterClockHz, mclkSourceClockHz);
  494. }
  495. #endif /* FSL_FEATURE_SAI_HAS_MCLKDIV_REGISTER */
  496. /* Set bclk if needed */
  497. if (base->TCR2 & I2S_TCR2_BCD_MASK)
  498. {
  499. base->TCR2 &= ~I2S_TCR2_DIV_MASK;
  500. base->TCR2 |= I2S_TCR2_DIV((bclkSourceClockHz / bclk) / 2U - 1U);
  501. }
  502. /* Set bitWidth */
  503. if (format->protocol == kSAI_BusRightJustified)
  504. {
  505. base->TCR5 = I2S_TCR5_WNW(31U) | I2S_TCR5_W0W(31U) | I2S_TCR5_FBT(31U);
  506. }
  507. else
  508. {
  509. base->TCR5 = I2S_TCR5_WNW(31U) | I2S_TCR5_W0W(31U) | I2S_TCR5_FBT(format->bitWidth - 1);
  510. }
  511. /* Set mono or stereo */
  512. base->TMR = (uint32_t)format->stereo;
  513. /* Set data channel */
  514. base->TCR3 &= ~I2S_TCR3_TCE_MASK;
  515. base->TCR3 |= I2S_TCR3_TCE(1U << format->channel);
  516. #if defined(FSL_FEATURE_SAI_FIFO_COUNT) && (FSL_FEATURE_SAI_FIFO_COUNT > 1)
  517. /* Set watermark */
  518. base->TCR1 = format->watermark;
  519. #endif /* FSL_FEATURE_SAI_FIFO_COUNT */
  520. }
  521. void SAI_RxSetFormat(I2S_Type *base,
  522. sai_transfer_format_t *format,
  523. uint32_t mclkSourceClockHz,
  524. uint32_t bclkSourceClockHz)
  525. {
  526. uint32_t bclk = format->sampleRate_Hz * 32U * 2U;
  527. /* Compute the mclk */
  528. #if defined(FSL_FEATURE_SAI_HAS_MCLKDIV_REGISTER) && (FSL_FEATURE_SAI_HAS_MCLKDIV_REGISTER)
  529. /* Check if master clock divider enabled */
  530. if (base->MCR & I2S_MCR_MOE_MASK)
  531. {
  532. SAI_SetMasterClockDivider(base, format->masterClockHz, mclkSourceClockHz);
  533. }
  534. #endif /* FSL_FEATURE_SAI_HAS_MCLKDIV_REGISTER */
  535. /* Set bclk if needed */
  536. if (base->RCR2 & I2S_RCR2_BCD_MASK)
  537. {
  538. base->RCR2 &= ~I2S_RCR2_DIV_MASK;
  539. base->RCR2 |= I2S_RCR2_DIV((bclkSourceClockHz / bclk) / 2U - 1U);
  540. }
  541. /* Set bitWidth */
  542. if (format->protocol == kSAI_BusRightJustified)
  543. {
  544. base->RCR5 = I2S_RCR5_WNW(31U) | I2S_RCR5_W0W(31U) | I2S_RCR5_FBT(31U);
  545. }
  546. else
  547. {
  548. base->RCR5 = I2S_RCR5_WNW(31U) | I2S_RCR5_W0W(31U) | I2S_RCR5_FBT(format->bitWidth - 1);
  549. }
  550. /* Set mono or stereo */
  551. base->RMR = (uint32_t)format->stereo;
  552. /* Set data channel */
  553. base->RCR3 &= ~I2S_RCR3_RCE_MASK;
  554. base->RCR3 |= I2S_RCR3_RCE(1U << format->channel);
  555. #if defined(FSL_FEATURE_SAI_FIFO_COUNT) && (FSL_FEATURE_SAI_FIFO_COUNT > 1)
  556. /* Set watermark */
  557. base->RCR1 = format->watermark;
  558. #endif /* FSL_FEATURE_SAI_FIFO_COUNT */
  559. }
  560. void SAI_WriteBlocking(I2S_Type *base, uint32_t channel, uint32_t bitWidth, uint8_t *buffer, uint32_t size)
  561. {
  562. uint32_t i = 0;
  563. uint8_t bytesPerWord = bitWidth / 8U;
  564. while (i < size)
  565. {
  566. /* Wait until it can write data */
  567. while (!(base->TCSR & I2S_TCSR_FWF_MASK))
  568. {
  569. }
  570. SAI_WriteNonBlocking(base, channel, bitWidth, buffer, bytesPerWord);
  571. buffer += bytesPerWord;
  572. i += bytesPerWord;
  573. }
  574. /* Wait until the last data is sent */
  575. while (!(base->TCSR & I2S_TCSR_FWF_MASK))
  576. {
  577. }
  578. }
  579. void SAI_ReadBlocking(I2S_Type *base, uint32_t channel, uint32_t bitWidth, uint8_t *buffer, uint32_t size)
  580. {
  581. uint32_t i = 0;
  582. uint8_t bytesPerWord = bitWidth / 8U;
  583. while (i < size)
  584. {
  585. /* Wait until data is received */
  586. while (!(base->RCSR & I2S_RCSR_FWF_MASK))
  587. {
  588. }
  589. SAI_ReadNonBlocking(base, channel, bitWidth, buffer, bytesPerWord);
  590. buffer += bytesPerWord;
  591. i += bytesPerWord;
  592. }
  593. }
  594. void SAI_TransferTxCreateHandle(I2S_Type *base, sai_handle_t *handle, sai_transfer_callback_t callback, void *userData)
  595. {
  596. assert(handle);
  597. /* Zero the handle */
  598. memset(handle, 0, sizeof(*handle));
  599. s_saiHandle[SAI_GetInstance(base)][0] = handle;
  600. handle->callback = callback;
  601. handle->userData = userData;
  602. /* Set the isr pointer */
  603. s_saiTxIsr = SAI_TransferTxHandleIRQ;
  604. /* Enable Tx irq */
  605. EnableIRQ(s_saiTxIRQ[SAI_GetInstance(base)]);
  606. }
  607. void SAI_TransferRxCreateHandle(I2S_Type *base, sai_handle_t *handle, sai_transfer_callback_t callback, void *userData)
  608. {
  609. assert(handle);
  610. /* Zero the handle */
  611. memset(handle, 0, sizeof(*handle));
  612. s_saiHandle[SAI_GetInstance(base)][1] = handle;
  613. handle->callback = callback;
  614. handle->userData = userData;
  615. /* Set the isr pointer */
  616. s_saiRxIsr = SAI_TransferRxHandleIRQ;
  617. /* Enable Rx irq */
  618. EnableIRQ(s_saiRxIRQ[SAI_GetInstance(base)]);
  619. }
  620. status_t SAI_TransferTxSetFormat(I2S_Type *base,
  621. sai_handle_t *handle,
  622. sai_transfer_format_t *format,
  623. uint32_t mclkSourceClockHz,
  624. uint32_t bclkSourceClockHz)
  625. {
  626. assert(handle);
  627. if ((mclkSourceClockHz < format->sampleRate_Hz) || (bclkSourceClockHz < format->sampleRate_Hz))
  628. {
  629. return kStatus_InvalidArgument;
  630. }
  631. /* Copy format to handle */
  632. handle->bitWidth = format->bitWidth;
  633. #if defined(FSL_FEATURE_SAI_FIFO_COUNT) && (FSL_FEATURE_SAI_FIFO_COUNT > 1)
  634. handle->watermark = format->watermark;
  635. #endif
  636. handle->channel = format->channel;
  637. SAI_TxSetFormat(base, format, mclkSourceClockHz, bclkSourceClockHz);
  638. return kStatus_Success;
  639. }
  640. status_t SAI_TransferRxSetFormat(I2S_Type *base,
  641. sai_handle_t *handle,
  642. sai_transfer_format_t *format,
  643. uint32_t mclkSourceClockHz,
  644. uint32_t bclkSourceClockHz)
  645. {
  646. assert(handle);
  647. if ((mclkSourceClockHz < format->sampleRate_Hz) || (bclkSourceClockHz < format->sampleRate_Hz))
  648. {
  649. return kStatus_InvalidArgument;
  650. }
  651. /* Copy format to handle */
  652. handle->bitWidth = format->bitWidth;
  653. #if defined(FSL_FEATURE_SAI_FIFO_COUNT) && (FSL_FEATURE_SAI_FIFO_COUNT > 1)
  654. handle->watermark = format->watermark;
  655. #endif
  656. handle->channel = format->channel;
  657. SAI_RxSetFormat(base, format, mclkSourceClockHz, bclkSourceClockHz);
  658. return kStatus_Success;
  659. }
  660. status_t SAI_TransferSendNonBlocking(I2S_Type *base, sai_handle_t *handle, sai_transfer_t *xfer)
  661. {
  662. assert(handle);
  663. /* Check if the queue is full */
  664. if (handle->saiQueue[handle->queueUser].data)
  665. {
  666. return kStatus_SAI_QueueFull;
  667. }
  668. /* Add into queue */
  669. handle->transferSize[handle->queueUser] = xfer->dataSize;
  670. handle->saiQueue[handle->queueUser].data = xfer->data;
  671. handle->saiQueue[handle->queueUser].dataSize = xfer->dataSize;
  672. handle->queueUser = (handle->queueUser + 1) % SAI_XFER_QUEUE_SIZE;
  673. /* Set the state to busy */
  674. handle->state = kSAI_Busy;
  675. /* Enable interrupt */
  676. #if defined(FSL_FEATURE_SAI_FIFO_COUNT) && (FSL_FEATURE_SAI_FIFO_COUNT > 1)
  677. /* Use FIFO request interrupt and fifo error*/
  678. SAI_TxEnableInterrupts(base, kSAI_FIFOErrorInterruptEnable | kSAI_FIFORequestInterruptEnable);
  679. #else
  680. SAI_TxEnableInterrupts(base, kSAI_FIFOErrorInterruptEnable | kSAI_FIFOWarningInterruptEnable);
  681. #endif /* FSL_FEATURE_SAI_FIFO_COUNT */
  682. /* Enable Tx transfer */
  683. SAI_TxEnable(base, true);
  684. return kStatus_Success;
  685. }
  686. status_t SAI_TransferReceiveNonBlocking(I2S_Type *base, sai_handle_t *handle, sai_transfer_t *xfer)
  687. {
  688. assert(handle);
  689. /* Check if the queue is full */
  690. if (handle->saiQueue[handle->queueUser].data)
  691. {
  692. return kStatus_SAI_QueueFull;
  693. }
  694. /* Add into queue */
  695. handle->transferSize[handle->queueUser] = xfer->dataSize;
  696. handle->saiQueue[handle->queueUser].data = xfer->data;
  697. handle->saiQueue[handle->queueUser].dataSize = xfer->dataSize;
  698. handle->queueUser = (handle->queueUser + 1) % SAI_XFER_QUEUE_SIZE;
  699. /* Set state to busy */
  700. handle->state = kSAI_Busy;
  701. /* Enable interrupt */
  702. #if defined(FSL_FEATURE_SAI_FIFO_COUNT) && (FSL_FEATURE_SAI_FIFO_COUNT > 1)
  703. /* Use FIFO request interrupt and fifo error*/
  704. SAI_RxEnableInterrupts(base, kSAI_FIFOErrorInterruptEnable | kSAI_FIFORequestInterruptEnable);
  705. #else
  706. SAI_RxEnableInterrupts(base, kSAI_FIFOErrorInterruptEnable | kSAI_FIFOWarningInterruptEnable);
  707. #endif /* FSL_FEATURE_SAI_FIFO_COUNT */
  708. /* Enable Rx transfer */
  709. SAI_RxEnable(base, true);
  710. return kStatus_Success;
  711. }
  712. status_t SAI_TransferGetSendCount(I2S_Type *base, sai_handle_t *handle, size_t *count)
  713. {
  714. assert(handle);
  715. status_t status = kStatus_Success;
  716. if (handle->state != kSAI_Busy)
  717. {
  718. status = kStatus_NoTransferInProgress;
  719. }
  720. else
  721. {
  722. *count = (handle->transferSize[handle->queueDriver] - handle->saiQueue[handle->queueDriver].dataSize);
  723. }
  724. return status;
  725. }
  726. status_t SAI_TransferGetReceiveCount(I2S_Type *base, sai_handle_t *handle, size_t *count)
  727. {
  728. assert(handle);
  729. status_t status = kStatus_Success;
  730. if (handle->state != kSAI_Busy)
  731. {
  732. status = kStatus_NoTransferInProgress;
  733. }
  734. else
  735. {
  736. *count = (handle->transferSize[handle->queueDriver] - handle->saiQueue[handle->queueDriver].dataSize);
  737. }
  738. return status;
  739. }
  740. void SAI_TransferAbortSend(I2S_Type *base, sai_handle_t *handle)
  741. {
  742. assert(handle);
  743. /* Stop Tx transfer and disable interrupt */
  744. SAI_TxEnable(base, false);
  745. #if defined(FSL_FEATURE_SAI_FIFO_COUNT) && (FSL_FEATURE_SAI_FIFO_COUNT > 1)
  746. /* Use FIFO request interrupt and fifo error */
  747. SAI_TxDisableInterrupts(base, kSAI_FIFOErrorInterruptEnable | kSAI_FIFORequestInterruptEnable);
  748. #else
  749. SAI_TxDisableInterrupts(base, kSAI_FIFOErrorInterruptEnable | kSAI_FIFOWarningInterruptEnable);
  750. #endif /* FSL_FEATURE_SAI_FIFO_COUNT */
  751. handle->state = kSAI_Idle;
  752. /* Clear the queue */
  753. memset(handle->saiQueue, 0, sizeof(sai_transfer_t) * SAI_XFER_QUEUE_SIZE);
  754. handle->queueDriver = 0;
  755. handle->queueUser = 0;
  756. }
  757. void SAI_TransferAbortReceive(I2S_Type *base, sai_handle_t *handle)
  758. {
  759. assert(handle);
  760. /* Stop Tx transfer and disable interrupt */
  761. SAI_RxEnable(base, false);
  762. #if defined(FSL_FEATURE_SAI_FIFO_COUNT) && (FSL_FEATURE_SAI_FIFO_COUNT > 1)
  763. /* Use FIFO request interrupt and fifo error */
  764. SAI_RxDisableInterrupts(base, kSAI_FIFOErrorInterruptEnable | kSAI_FIFORequestInterruptEnable);
  765. #else
  766. SAI_RxDisableInterrupts(base, kSAI_FIFOErrorInterruptEnable | kSAI_FIFOWarningInterruptEnable);
  767. #endif /* FSL_FEATURE_SAI_FIFO_COUNT */
  768. handle->state = kSAI_Idle;
  769. /* Clear the queue */
  770. memset(handle->saiQueue, 0, sizeof(sai_transfer_t) * SAI_XFER_QUEUE_SIZE);
  771. handle->queueDriver = 0;
  772. handle->queueUser = 0;
  773. }
  774. void SAI_TransferTxHandleIRQ(I2S_Type *base, sai_handle_t *handle)
  775. {
  776. assert(handle);
  777. uint8_t *buffer = handle->saiQueue[handle->queueDriver].data;
  778. uint8_t dataSize = handle->bitWidth / 8U;
  779. /* Handle Error */
  780. if (base->TCSR & I2S_TCSR_FEF_MASK)
  781. {
  782. /* Clear FIFO error flag to continue transfer */
  783. SAI_TxClearStatusFlags(base, kSAI_FIFOErrorFlag);
  784. /* Call the callback */
  785. if (handle->callback)
  786. {
  787. (handle->callback)(base, handle, kStatus_SAI_TxError, handle->userData);
  788. }
  789. }
  790. /* Handle transfer */
  791. #if defined(FSL_FEATURE_SAI_FIFO_COUNT) && (FSL_FEATURE_SAI_FIFO_COUNT > 1)
  792. if (base->TCSR & I2S_TCSR_FRF_MASK)
  793. {
  794. /* Judge if the data need to transmit is less than space */
  795. uint8_t size = MIN((handle->saiQueue[handle->queueDriver].dataSize),
  796. (size_t)((FSL_FEATURE_SAI_FIFO_COUNT - handle->watermark) * dataSize));
  797. /* Copy the data from sai buffer to FIFO */
  798. SAI_WriteNonBlocking(base, handle->channel, handle->bitWidth, buffer, size);
  799. /* Update the internal counter */
  800. handle->saiQueue[handle->queueDriver].dataSize -= size;
  801. handle->saiQueue[handle->queueDriver].data += size;
  802. }
  803. #else
  804. if (base->TCSR & I2S_TCSR_FWF_MASK)
  805. {
  806. uint8_t size = MIN((handle->saiQueue[handle->queueDriver].dataSize), dataSize);
  807. SAI_WriteNonBlocking(base, handle->channel, handle->bitWidth, buffer, size);
  808. /* Update internal counter */
  809. handle->saiQueue[handle->queueDriver].dataSize -= size;
  810. handle->saiQueue[handle->queueDriver].data += size;
  811. }
  812. #endif /* FSL_FEATURE_SAI_FIFO_COUNT */
  813. /* If finished a blcok, call the callback function */
  814. if (handle->saiQueue[handle->queueDriver].dataSize == 0U)
  815. {
  816. memset(&handle->saiQueue[handle->queueDriver], 0, sizeof(sai_transfer_t));
  817. handle->queueDriver = (handle->queueDriver + 1) % SAI_XFER_QUEUE_SIZE;
  818. if (handle->callback)
  819. {
  820. (handle->callback)(base, handle, kStatus_SAI_TxIdle, handle->userData);
  821. }
  822. }
  823. /* If all data finished, just stop the transfer */
  824. if (handle->saiQueue[handle->queueDriver].data == NULL)
  825. {
  826. SAI_TransferAbortSend(base, handle);
  827. }
  828. }
  829. void SAI_TransferRxHandleIRQ(I2S_Type *base, sai_handle_t *handle)
  830. {
  831. assert(handle);
  832. uint8_t *buffer = handle->saiQueue[handle->queueDriver].data;
  833. uint8_t dataSize = handle->bitWidth / 8U;
  834. /* Handle Error */
  835. if (base->RCSR & I2S_RCSR_FEF_MASK)
  836. {
  837. /* Clear FIFO error flag to continue transfer */
  838. SAI_RxClearStatusFlags(base, kSAI_FIFOErrorFlag);
  839. /* Call the callback */
  840. if (handle->callback)
  841. {
  842. (handle->callback)(base, handle, kStatus_SAI_RxError, handle->userData);
  843. }
  844. }
  845. /* Handle transfer */
  846. #if defined(FSL_FEATURE_SAI_FIFO_COUNT) && (FSL_FEATURE_SAI_FIFO_COUNT > 1)
  847. if (base->RCSR & I2S_RCSR_FRF_MASK)
  848. {
  849. /* Judge if the data need to transmit is less than space */
  850. uint8_t size = MIN((handle->saiQueue[handle->queueDriver].dataSize), (handle->watermark * dataSize));
  851. /* Copy the data from sai buffer to FIFO */
  852. SAI_ReadNonBlocking(base, handle->channel, handle->bitWidth, buffer, size);
  853. /* Update the internal counter */
  854. handle->saiQueue[handle->queueDriver].dataSize -= size;
  855. handle->saiQueue[handle->queueDriver].data += size;
  856. }
  857. #else
  858. if (base->RCSR & I2S_RCSR_FWF_MASK)
  859. {
  860. uint8_t size = MIN((handle->saiQueue[handle->queueDriver].dataSize), dataSize);
  861. SAI_ReadNonBlocking(base, handle->channel, handle->bitWidth, buffer, size);
  862. /* Update internal state */
  863. handle->saiQueue[handle->queueDriver].dataSize -= size;
  864. handle->saiQueue[handle->queueDriver].data += size;
  865. }
  866. #endif /* FSL_FEATURE_SAI_FIFO_COUNT */
  867. /* If finished a blcok, call the callback function */
  868. if (handle->saiQueue[handle->queueDriver].dataSize == 0U)
  869. {
  870. memset(&handle->saiQueue[handle->queueDriver], 0, sizeof(sai_transfer_t));
  871. handle->queueDriver = (handle->queueDriver + 1) % SAI_XFER_QUEUE_SIZE;
  872. if (handle->callback)
  873. {
  874. (handle->callback)(base, handle, kStatus_SAI_RxIdle, handle->userData);
  875. }
  876. }
  877. /* If all data finished, just stop the transfer */
  878. if (handle->saiQueue[handle->queueDriver].data == NULL)
  879. {
  880. SAI_TransferAbortReceive(base, handle);
  881. }
  882. }
  883. #if defined(I2S0)
  884. void I2S0_DriverIRQHandler(void)
  885. {
  886. #if defined(FSL_FEATURE_SAI_FIFO_COUNT) && (FSL_FEATURE_SAI_FIFO_COUNT > 1)
  887. if ((s_saiHandle[0][1]) && ((I2S0->RCSR & kSAI_FIFORequestFlag) || (I2S0->RCSR & kSAI_FIFOErrorFlag)) &&
  888. ((I2S0->RCSR & kSAI_FIFORequestInterruptEnable) || (I2S0->RCSR & kSAI_FIFOErrorInterruptEnable)))
  889. #else
  890. if ((s_saiHandle[0][1]) && ((I2S0->RCSR & kSAI_FIFOWarningFlag) || (I2S0->RCSR & kSAI_FIFOErrorFlag)) &&
  891. ((I2S0->RCSR & kSAI_FIFOWarningInterruptEnable) || (I2S0->RCSR & kSAI_FIFOErrorInterruptEnable)))
  892. #endif
  893. {
  894. s_saiRxIsr(I2S0, s_saiHandle[0][1]);
  895. }
  896. #if defined(FSL_FEATURE_SAI_FIFO_COUNT) && (FSL_FEATURE_SAI_FIFO_COUNT > 1)
  897. if ((s_saiHandle[0][0]) && ((I2S0->TCSR & kSAI_FIFORequestFlag) || (I2S0->TCSR & kSAI_FIFOErrorFlag)) &&
  898. ((I2S0->TCSR & kSAI_FIFORequestInterruptEnable) || (I2S0->TCSR & kSAI_FIFOErrorInterruptEnable)))
  899. #else
  900. if ((s_saiHandle[0][0]) && ((I2S0->TCSR & kSAI_FIFOWarningFlag) || (I2S0->TCSR & kSAI_FIFOErrorFlag)) &&
  901. ((I2S0->TCSR & kSAI_FIFOWarningInterruptEnable) || (I2S0->TCSR & kSAI_FIFOErrorInterruptEnable)))
  902. #endif
  903. {
  904. s_saiTxIsr(I2S0, s_saiHandle[0][0]);
  905. }
  906. }
  907. void I2S0_Tx_DriverIRQHandler(void)
  908. {
  909. assert(s_saiHandle[0][0]);
  910. s_saiTxIsr(I2S0, s_saiHandle[0][0]);
  911. }
  912. void I2S0_Rx_DriverIRQHandler(void)
  913. {
  914. assert(s_saiHandle[0][1]);
  915. s_saiRxIsr(I2S0, s_saiHandle[0][1]);
  916. }
  917. #endif /* I2S0*/
  918. #if defined(I2S1)
  919. void I2S1_DriverIRQHandler(void)
  920. {
  921. #if defined(FSL_FEATURE_SAI_FIFO_COUNT) && (FSL_FEATURE_SAI_FIFO_COUNT > 1)
  922. if ((s_saiHandle[1][1]) && ((I2S1->RCSR & kSAI_FIFORequestFlag) || (I2S1->RCSR & kSAI_FIFOErrorFlag)) &&
  923. ((I2S1->RCSR & kSAI_FIFORequestInterruptEnable) || (I2S1->RCSR & kSAI_FIFOErrorInterruptEnable)))
  924. #else
  925. if ((s_saiHandle[1][1]) && ((I2S1->RCSR & kSAI_FIFOWarningFlag) || (I2S1->RCSR & kSAI_FIFOErrorFlag)) &&
  926. ((I2S1->RCSR & kSAI_FIFOWarningInterruptEnable) || (I2S1->RCSR & kSAI_FIFOErrorInterruptEnable)))
  927. #endif
  928. {
  929. s_saiRxIsr(I2S1, s_saiHandle[1][1]);
  930. }
  931. #if defined(FSL_FEATURE_SAI_FIFO_COUNT) && (FSL_FEATURE_SAI_FIFO_COUNT > 1)
  932. if ((s_saiHandle[1][0]) && ((I2S1->TCSR & kSAI_FIFORequestFlag) || (I2S1->TCSR & kSAI_FIFOErrorFlag)) &&
  933. ((I2S1->TCSR & kSAI_FIFORequestInterruptEnable) || (I2S1->TCSR & kSAI_FIFOErrorInterruptEnable)))
  934. #else
  935. if ((s_saiHandle[1][0]) && ((I2S1->TCSR & kSAI_FIFOWarningFlag) || (I2S1->TCSR & kSAI_FIFOErrorFlag)) &&
  936. ((I2S1->TCSR & kSAI_FIFOWarningInterruptEnable) || (I2S1->TCSR & kSAI_FIFOErrorInterruptEnable)))
  937. #endif
  938. {
  939. s_saiTxIsr(I2S1, s_saiHandle[1][0]);
  940. }
  941. }
  942. void I2S1_Tx_DriverIRQHandler(void)
  943. {
  944. assert(s_saiHandle[1][0]);
  945. s_saiTxIsr(I2S1, s_saiHandle[1][0]);
  946. }
  947. void I2S1_Rx_DriverIRQHandler(void)
  948. {
  949. assert(s_saiHandle[1][1]);
  950. s_saiRxIsr(I2S1, s_saiHandle[1][1]);
  951. }
  952. #endif /* I2S1*/
  953. #if defined(I2S2)
  954. void I2S2_DriverIRQHandler(void)
  955. {
  956. #if defined(FSL_FEATURE_SAI_FIFO_COUNT) && (FSL_FEATURE_SAI_FIFO_COUNT > 1)
  957. if ((s_saiHandle[2][1]) && ((I2S2->RCSR & kSAI_FIFORequestFlag) || (I2S2->RCSR & kSAI_FIFOErrorFlag)) &&
  958. ((I2S2->RCSR & kSAI_FIFORequestInterruptEnable) || (I2S2->RCSR & kSAI_FIFOErrorInterruptEnable)))
  959. #else
  960. if ((s_saiHandle[2][1]) && ((I2S2->RCSR & kSAI_FIFOWarningFlag) || (I2S2->RCSR & kSAI_FIFOErrorFlag)) &&
  961. ((I2S2->RCSR & kSAI_FIFOWarningInterruptEnable) || (I2S2->RCSR & kSAI_FIFOErrorInterruptEnable)))
  962. #endif
  963. {
  964. s_saiRxIsr(I2S2, s_saiHandle[2][1]);
  965. }
  966. #if defined(FSL_FEATURE_SAI_FIFO_COUNT) && (FSL_FEATURE_SAI_FIFO_COUNT > 1)
  967. if ((s_saiHandle[2][0]) && ((I2S2->TCSR & kSAI_FIFORequestFlag) || (I2S2->TCSR & kSAI_FIFOErrorFlag)) &&
  968. ((I2S2->TCSR & kSAI_FIFORequestInterruptEnable) || (I2S2->TCSR & kSAI_FIFOErrorInterruptEnable)))
  969. #else
  970. if ((s_saiHandle[2][0]) && ((I2S2->TCSR & kSAI_FIFOWarningFlag) || (I2S2->TCSR & kSAI_FIFOErrorFlag)) &&
  971. ((I2S2->TCSR & kSAI_FIFOWarningInterruptEnable) || (I2S2->TCSR & kSAI_FIFOErrorInterruptEnable)))
  972. #endif
  973. {
  974. s_saiTxIsr(I2S2, s_saiHandle[2][0]);
  975. }
  976. }
  977. void I2S2_Tx_DriverIRQHandler(void)
  978. {
  979. assert(s_saiHandle[2][0]);
  980. s_saiTxIsr(I2S2, s_saiHandle[2][0]);
  981. }
  982. void I2S2_Rx_DriverIRQHandler(void)
  983. {
  984. assert(s_saiHandle[2][1]);
  985. s_saiRxIsr(I2S2, s_saiHandle[2][1]);
  986. }
  987. #endif /* I2S2*/
  988. #if defined(I2S3)
  989. void I2S3_DriverIRQHandler(void)
  990. {
  991. #if defined(FSL_FEATURE_SAI_FIFO_COUNT) && (FSL_FEATURE_SAI_FIFO_COUNT > 1)
  992. if ((s_saiHandle[3][1]) && ((I2S3->RCSR & kSAI_FIFORequestFlag) || (I2S3->RCSR & kSAI_FIFOErrorFlag)) &&
  993. ((I2S3->RCSR & kSAI_FIFORequestInterruptEnable) || (I2S3->RCSR & kSAI_FIFOErrorInterruptEnable)))
  994. #else
  995. if ((s_saiHandle[3][1]) && ((I2S3->RCSR & kSAI_FIFOWarningFlag) || (I2S3->RCSR & kSAI_FIFOErrorFlag)) &&
  996. ((I2S3->RCSR & kSAI_FIFOWarningInterruptEnable) || (I2S3->RCSR & kSAI_FIFOErrorInterruptEnable)))
  997. #endif
  998. {
  999. s_saiRxIsr(I2S3, s_saiHandle[3][1]);
  1000. }
  1001. #if defined(FSL_FEATURE_SAI_FIFO_COUNT) && (FSL_FEATURE_SAI_FIFO_COUNT > 1)
  1002. if ((s_saiHandle[3][0]) && ((I2S3->TCSR & kSAI_FIFORequestFlag) || (I2S3->TCSR & kSAI_FIFOErrorFlag)) &&
  1003. ((I2S3->TCSR & kSAI_FIFORequestInterruptEnable) || (I2S3->TCSR & kSAI_FIFOErrorInterruptEnable)))
  1004. #else
  1005. if ((s_saiHandle[3][0]) && ((I2S3->TCSR & kSAI_FIFOWarningFlag) || (I2S3->TCSR & kSAI_FIFOErrorFlag)) &&
  1006. ((I2S3->TCSR & kSAI_FIFOWarningInterruptEnable) || (I2S3->TCSR & kSAI_FIFOErrorInterruptEnable)))
  1007. #endif
  1008. {
  1009. s_saiTxIsr(I2S3, s_saiHandle[3][0]);
  1010. }
  1011. }
  1012. void I2S3_Tx_DriverIRQHandler(void)
  1013. {
  1014. assert(s_saiHandle[3][0]);
  1015. s_saiTxIsr(I2S3, s_saiHandle[3][0]);
  1016. }
  1017. void I2S3_Rx_DriverIRQHandler(void)
  1018. {
  1019. assert(s_saiHandle[3][1]);
  1020. s_saiRxIsr(I2S3, s_saiHandle[3][1]);
  1021. }
  1022. #endif /* I2S3*/