gd32f3x0_rcu.c 42 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204
  1. /*!
  2. \file gd32f3x0_rcu.c
  3. \brief RCU driver
  4. \version 2017-06-06, V1.0.0, firmware for GD32F3x0
  5. \version 2019-06-01, V2.0.0, firmware for GD32F3x0
  6. */
  7. /*
  8. Copyright (c) 2019, GigaDevice Semiconductor Inc.
  9. Redistribution and use in source and binary forms, with or without modification,
  10. are permitted provided that the following conditions are met:
  11. 1. Redistributions of source code must retain the above copyright notice, this
  12. list of conditions and the following disclaimer.
  13. 2. Redistributions in binary form must reproduce the above copyright notice,
  14. this list of conditions and the following disclaimer in the documentation
  15. and/or other materials provided with the distribution.
  16. 3. Neither the name of the copyright holder nor the names of its contributors
  17. may be used to endorse or promote products derived from this software without
  18. specific prior written permission.
  19. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  20. AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
  21. WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
  22. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
  23. INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  24. NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
  25. PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
  26. WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  27. ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
  28. OF SUCH DAMAGE.
  29. */
  30. #include "gd32f3x0_rcu.h"
  31. /* define clock source */
  32. #define SEL_IRC8M ((uint32_t)0x00000000U)
  33. #define SEL_HXTAL ((uint32_t)0x00000001U)
  34. #define SEL_PLL ((uint32_t)0x00000002U)
  35. /* define startup timeout count */
  36. #define OSC_STARTUP_TIMEOUT ((uint32_t)0x000FFFFFU)
  37. #define LXTAL_STARTUP_TIMEOUT ((uint32_t)0x03FFFFFFU)
  38. /*!
  39. \brief deinitialize the RCU
  40. \param[in] none
  41. \param[out] none
  42. \retval none
  43. */
  44. void rcu_deinit(void)
  45. {
  46. /* enable IRC8M */
  47. RCU_CTL0 |= RCU_CTL0_IRC8MEN;
  48. while(0U == (RCU_CTL0 & RCU_CTL0_IRC8MSTB)){
  49. }
  50. /* reset RCU */
  51. RCU_CFG0 &= ~(RCU_CFG0_SCS | RCU_CFG0_AHBPSC | RCU_CFG0_APB1PSC | RCU_CFG0_APB2PSC |\
  52. RCU_CFG0_ADCPSC | RCU_CFG0_CKOUTSEL | RCU_CFG0_CKOUTDIV | RCU_CFG0_PLLDV);
  53. RCU_CFG0 &= ~(RCU_CFG0_PLLSEL | RCU_CFG0_PLLMF | RCU_CFG0_PLLMF4 | RCU_CFG0_PLLDV);
  54. #if (defined(GD32F350))
  55. RCU_CFG0 &= ~(RCU_CFG0_USBFSPSC);
  56. RCU_CFG2 &= ~(RCU_CFG2_CECSEL | RCU_CFG2_USBFSPSC2);
  57. #endif /* GD32F350 */
  58. RCU_CTL0 &= ~(RCU_CTL0_HXTALEN | RCU_CTL0_CKMEN | RCU_CTL0_PLLEN | RCU_CTL0_HXTALBPS);
  59. RCU_CFG1 &= ~(RCU_CFG1_PREDV | RCU_CFG1_PLLMF5 | RCU_CFG1_PLLPRESEL);
  60. RCU_CFG2 &= ~(RCU_CFG2_USART0SEL | RCU_CFG2_ADCSEL);
  61. RCU_CFG2 &= ~RCU_CFG2_IRC28MDIV;
  62. RCU_CFG2 &= ~RCU_CFG2_ADCPSC2;
  63. RCU_CTL1 &= ~RCU_CTL1_IRC28MEN;
  64. RCU_ADDCTL &= ~RCU_ADDCTL_IRC48MEN;
  65. RCU_INT = 0x00000000U;
  66. RCU_ADDINT = 0x00000000U;
  67. }
  68. /*!
  69. \brief enable the peripherals clock
  70. \param[in] periph: RCU peripherals, refer to rcu_periph_enum
  71. only one parameter can be selected which is shown as below:
  72. \arg RCU_GPIOx (x=A,B,C,D,F): GPIO ports clock
  73. \arg RCU_DMA: DMA clock
  74. \arg RCU_CRC: CRC clock
  75. \arg RCU_TSI: TSI clock
  76. \arg RCU_CFGCMP: CFGCMP clock
  77. \arg RCU_ADC: ADC clock
  78. \arg RCU_TIMERx (x=0,1,2,5,13,14,15,16): TIMER clock (RCU_TIMER5 only for GD32F350)
  79. \arg RCU_SPIx (x=0,1): SPI clock
  80. \arg RCU_USARTx (x=0,1): USART clock
  81. \arg RCU_WWDGT: WWDGT clock
  82. \arg RCU_I2Cx (x=0,1): I2C clock
  83. \arg RCU_USBFS: USBFS clock (only for GD32F350)
  84. \arg RCU_PMU: PMU clock
  85. \arg RCU_DAC: DAC clock (only for GD32F350)
  86. \arg RCU_CEC: CEC clock (only for GD32F350)
  87. \arg RCU_CTC: CTC clock
  88. \arg RCU_RTC: RTC clock
  89. \param[out] none
  90. \retval none
  91. */
  92. void rcu_periph_clock_enable(rcu_periph_enum periph)
  93. {
  94. RCU_REG_VAL(periph) |= BIT(RCU_BIT_POS(periph));
  95. }
  96. /*!
  97. \brief disable the peripherals clock
  98. \param[in] periph: RCU peripherals, refer to rcu_periph_enum
  99. only one parameter can be selected which is shown as below:
  100. \arg RCU_GPIOx (x=A,B,C,D,F): GPIO ports clock
  101. \arg RCU_DMA: DMA clock
  102. \arg RCU_CRC: CRC clock
  103. \arg RCU_TSI: TSI clock
  104. \arg RCU_CFGCMP: CFGCMP clock
  105. \arg RCU_ADC: ADC clock
  106. \arg RCU_TIMERx (x=0,1,2,5,13,14,15,16): TIMER clock (RCU_TIMER5 only for GD32F350)
  107. \arg RCU_SPIx (x=0,1): SPI clock
  108. \arg RCU_USARTx (x=0,1): USART clock
  109. \arg RCU_WWDGT: WWDGT clock
  110. \arg RCU_I2Cx (x=0,1): I2C clock
  111. \arg RCU_USBFS: USBFS clock (only for GD32F350)
  112. \arg RCU_PMU: PMU clock
  113. \arg RCU_DAC: DAC clock (only for GD32F350)
  114. \arg RCU_CEC: CEC clock (only for GD32F350)
  115. \arg RCU_CTC: CTC clock
  116. \arg RCU_RTC: RTC clock
  117. \param[out] none
  118. \retval none
  119. */
  120. void rcu_periph_clock_disable(rcu_periph_enum periph)
  121. {
  122. RCU_REG_VAL(periph) &= ~BIT(RCU_BIT_POS(periph));
  123. }
  124. /*!
  125. \brief enable the peripherals clock when sleep mode
  126. \param[in] periph: RCU peripherals, refer to rcu_periph_sleep_enum
  127. only one parameter can be selected which is shown as below:
  128. \arg RCU_FMC_SLP: FMC clock
  129. \arg RCU_SRAM_SLP: SRAM clock
  130. \param[out] none
  131. \retval none
  132. */
  133. void rcu_periph_clock_sleep_enable(rcu_periph_sleep_enum periph)
  134. {
  135. RCU_REG_VAL(periph) |= BIT(RCU_BIT_POS(periph));
  136. }
  137. /*!
  138. \brief disable the peripherals clock when sleep mode
  139. \param[in] periph: RCU peripherals, refer to rcu_periph_sleep_enum
  140. only one parameter can be selected which is shown as below:
  141. \arg RCU_FMC_SLP: FMC clock
  142. \arg RCU_SRAM_SLP: SRAM clock
  143. \param[out] none
  144. \retval none
  145. */
  146. void rcu_periph_clock_sleep_disable(rcu_periph_sleep_enum periph)
  147. {
  148. RCU_REG_VAL(periph) &= ~BIT(RCU_BIT_POS(periph));
  149. }
  150. /*!
  151. \brief reset the peripherals
  152. \param[in] periph_reset: RCU peripherals reset, refer to rcu_periph_reset_enum
  153. only one parameter can be selected which is shown as below:
  154. \arg RCU_GPIOxRST (x=A,B,C,D,F): reset GPIO ports
  155. \arg RCU_TSIRST: reset TSI
  156. \arg RCU_CFGCMPRST: reset CFGCMP
  157. \arg RCU_ADCRST: reset ADC
  158. \arg RCU_TIMERxRST (x=0,1,2,5,13,14,15,16): reset TIMER (RCU_TIMER5 only for GD32F350)
  159. \arg RCU_SPIxRST (x=0,1): reset SPI
  160. \arg RCU_USARTxRST (x=0,1): reset USART
  161. \arg RCU_WWDGTRST: reset WWDGT
  162. \arg RCU_I2CxRST (x=0,1): reset I2C
  163. \arg RCU_USBFSRST: reset USBFS (only for GD32F350)
  164. \arg RCU_PMURST: reset PMU
  165. \arg RCU_DACRST: reset DAC (only for GD32F350)
  166. \arg RCU_CECRST: reset CEC (only for GD32F350)
  167. \arg RCU_CTCRST: reset CTC
  168. \param[out] none
  169. \retval none
  170. */
  171. void rcu_periph_reset_enable(rcu_periph_reset_enum periph_reset)
  172. {
  173. RCU_REG_VAL(periph_reset) |= BIT(RCU_BIT_POS(periph_reset));
  174. }
  175. /*!
  176. \brief disable reset the peripheral
  177. \param[in] periph_reset: RCU peripherals reset, refer to rcu_periph_reset_enum
  178. only one parameter can be selected which is shown as below:
  179. \arg RCU_GPIOxRST (x=A,B,C,D,F): reset GPIO ports
  180. \arg RCU_TSIRST: reset TSI
  181. \arg RCU_CFGCMPRST: reset CFGCMP
  182. \arg RCU_ADCRST: reset ADC
  183. \arg RCU_TIMERxRST (x=0,1,2,5,13,14,15,16): reset TIMER (RCU_TIMER5 only for GD32F350)
  184. \arg RCU_SPIxRST (x=0,1,2): reset SPI
  185. \arg RCU_USARTxRST (x=0,1): reset USART
  186. \arg RCU_WWDGTRST: reset WWDGT
  187. \arg RCU_I2CxRST (x=0,1,2): reset I2C
  188. \arg RCU_USBFSRST: reset USBFS (only for GD32F350)
  189. \arg RCU_PMURST: reset PMU
  190. \arg RCU_DACRST: reset DAC (only for GD32F350)
  191. \arg RCU_CECRST: reset CEC (only for GD32F350)
  192. \arg RCU_CTCRST: reset CTC
  193. \param[out] none
  194. \retval none
  195. */
  196. void rcu_periph_reset_disable(rcu_periph_reset_enum periph_reset)
  197. {
  198. RCU_REG_VAL(periph_reset) &= ~BIT(RCU_BIT_POS(periph_reset));
  199. }
  200. /*!
  201. \brief reset the BKP
  202. \param[in] none
  203. \param[out] none
  204. \retval none
  205. */
  206. void rcu_bkp_reset_enable(void)
  207. {
  208. RCU_BDCTL |= RCU_BDCTL_BKPRST;
  209. }
  210. /*!
  211. \brief disable the BKP reset
  212. \param[in] none
  213. \param[out] none
  214. \retval none
  215. */
  216. void rcu_bkp_reset_disable(void)
  217. {
  218. RCU_BDCTL &= ~RCU_BDCTL_BKPRST;
  219. }
  220. /*!
  221. \brief configure the system clock source
  222. \param[in] ck_sys: system clock source select
  223. only one parameter can be selected which is shown as below:
  224. \arg RCU_CKSYSSRC_IRC8M: select CK_IRC8M as the CK_SYS source
  225. \arg RCU_CKSYSSRC_HXTAL: select CK_HXTAL as the CK_SYS source
  226. \arg RCU_CKSYSSRC_PLL: select CK_PLL as the CK_SYS source
  227. \param[out] none
  228. \retval none
  229. */
  230. void rcu_system_clock_source_config(uint32_t ck_sys)
  231. {
  232. uint32_t cksys_source = 0U;
  233. cksys_source = RCU_CFG0;
  234. /* reset the SCS bits and set according to ck_sys */
  235. cksys_source &= ~RCU_CFG0_SCS;
  236. RCU_CFG0 = (ck_sys | cksys_source);
  237. }
  238. /*!
  239. \brief get the system clock source
  240. \param[in] none
  241. \param[out] none
  242. \retval which clock is selected as CK_SYS source
  243. only one parameter can be selected which is shown as below:
  244. \arg RCU_SCSS_IRC8M: select CK_IRC8M as the CK_SYS source
  245. \arg RCU_SCSS_HXTAL: select CK_HXTAL as the CK_SYS source
  246. \arg RCU_SCSS_PLL: select CK_PLL as the CK_SYS source
  247. */
  248. uint32_t rcu_system_clock_source_get(void)
  249. {
  250. return (RCU_CFG0 & RCU_CFG0_SCSS);
  251. }
  252. /*!
  253. \brief configure the AHB clock prescaler selection
  254. \param[in] ck_ahb: AHB clock prescaler selection
  255. only one parameter can be selected which is shown as below:
  256. \arg RCU_AHB_CKSYS_DIVx, x=1, 2, 4, 8, 16, 64, 128, 256, 512
  257. \param[out] none
  258. \retval none
  259. */
  260. void rcu_ahb_clock_config(uint32_t ck_ahb)
  261. {
  262. uint32_t ahbpsc = 0U;
  263. ahbpsc = RCU_CFG0;
  264. /* reset the AHBPSC bits and set according to ck_ahb */
  265. ahbpsc &= ~RCU_CFG0_AHBPSC;
  266. RCU_CFG0 = (ck_ahb | ahbpsc);
  267. }
  268. /*!
  269. \brief configure the APB1 clock prescaler selection
  270. \param[in] ck_apb1: APB1 clock prescaler selection
  271. only one parameter can be selected which is shown as below:
  272. \arg RCU_APB1_CKAHB_DIV1: select CK_AHB as CK_APB1
  273. \arg RCU_APB1_CKAHB_DIV2: select CK_AHB/2 as CK_APB1
  274. \arg RCU_APB1_CKAHB_DIV4: select CK_AHB/4 as CK_APB1
  275. \arg RCU_APB1_CKAHB_DIV8: select CK_AHB/8 as CK_APB1
  276. \arg RCU_APB1_CKAHB_DIV16: select CK_AHB/16 as CK_APB1
  277. \param[out] none
  278. \retval none
  279. */
  280. void rcu_apb1_clock_config(uint32_t ck_apb1)
  281. {
  282. uint32_t apb1psc = 0U;
  283. apb1psc = RCU_CFG0;
  284. /* reset the APB1PSC and set according to ck_apb1 */
  285. apb1psc &= ~RCU_CFG0_APB1PSC;
  286. RCU_CFG0 = (ck_apb1 | apb1psc);
  287. }
  288. /*!
  289. \brief configure the APB2 clock prescaler selection
  290. \param[in] ck_apb2: APB2 clock prescaler selection
  291. only one parameter can be selected which is shown as below:
  292. \arg RCU_APB2_CKAHB_DIV1: select CK_AHB as CK_APB2
  293. \arg RCU_APB2_CKAHB_DIV2: select CK_AHB/2 as CK_APB2
  294. \arg RCU_APB2_CKAHB_DIV4: select CK_AHB/4 as CK_APB2
  295. \arg RCU_APB2_CKAHB_DIV8: select CK_AHB/8 as CK_APB2
  296. \arg RCU_APB2_CKAHB_DIV16: select CK_AHB/16 as CK_APB2
  297. \param[out] none
  298. \retval none
  299. */
  300. void rcu_apb2_clock_config(uint32_t ck_apb2)
  301. {
  302. uint32_t apb2psc = 0U;
  303. apb2psc = RCU_CFG0;
  304. /* reset the APB2PSC and set according to ck_apb2 */
  305. apb2psc &= ~RCU_CFG0_APB2PSC;
  306. RCU_CFG0 = (ck_apb2 | apb2psc);
  307. }
  308. /*!
  309. \brief configure the ADC clock prescaler selection
  310. \param[in] ck_adc: ADC clock prescaler selection, refer to rcu_adc_clock_enum
  311. only one parameter can be selected which is shown as below:
  312. \arg RCU_ADCCK_IRC28M_DIV2: select CK_IRC28M/2 as CK_ADC
  313. \arg RCU_ADCCK_IRC28M: select CK_IRC28M as CK_ADC
  314. \arg RCU_ADCCK_APB2_DIV2: select CK_APB2/2 as CK_ADC
  315. \arg RCU_ADCCK_AHB_DIV3: select CK_AHB/3 as CK_ADC
  316. \arg RCU_ADCCK_APB2_DIV4: select CK_APB2/4 as CK_ADC
  317. \arg RCU_ADCCK_AHB_DIV5: select CK_AHB/5 as CK_ADC
  318. \arg RCU_ADCCK_APB2_DIV6: select CK_APB2/6 as CK_ADC
  319. \arg RCU_ADCCK_AHB_DIV7: select CK_AHB/7 as CK_ADC
  320. \arg RCU_ADCCK_APB2_DIV8: select CK_APB2/8 as CK_ADC
  321. \arg RCU_ADCCK_AHB_DIV9: select CK_AHB/9 as CK_ADC
  322. \param[out] none
  323. \retval none
  324. */
  325. void rcu_adc_clock_config(rcu_adc_clock_enum ck_adc)
  326. {
  327. /* reset the ADCPSC, ADCSEL, IRC28MDIV bits */
  328. RCU_CFG0 &= ~RCU_CFG0_ADCPSC;
  329. RCU_CFG2 &= ~(RCU_CFG2_ADCSEL | RCU_CFG2_IRC28MDIV | RCU_CFG2_ADCPSC2);
  330. /* set the ADC clock according to ck_adc */
  331. switch(ck_adc){
  332. case RCU_ADCCK_IRC28M_DIV2:
  333. RCU_CFG2 &= ~RCU_CFG2_IRC28MDIV;
  334. RCU_CFG2 &= ~RCU_CFG2_ADCSEL;
  335. break;
  336. case RCU_ADCCK_IRC28M:
  337. RCU_CFG2 |= RCU_CFG2_IRC28MDIV;
  338. RCU_CFG2 &= ~RCU_CFG2_ADCSEL;
  339. break;
  340. case RCU_ADCCK_APB2_DIV2:
  341. RCU_CFG0 |= RCU_ADC_CKAPB2_DIV2;
  342. RCU_CFG2 |= RCU_CFG2_ADCSEL;
  343. break;
  344. case RCU_ADCCK_AHB_DIV3:
  345. RCU_CFG0 |= RCU_ADC_CKAPB2_DIV2;
  346. RCU_CFG2 |= RCU_CFG2_ADCPSC2;
  347. RCU_CFG2 |= RCU_CFG2_ADCSEL;
  348. break;
  349. case RCU_ADCCK_APB2_DIV4:
  350. RCU_CFG0 |= RCU_ADC_CKAPB2_DIV4;
  351. RCU_CFG2 |= RCU_CFG2_ADCSEL;
  352. break;
  353. case RCU_ADCCK_AHB_DIV5:
  354. RCU_CFG0 |= RCU_ADC_CKAPB2_DIV4;
  355. RCU_CFG2 |= RCU_CFG2_ADCPSC2;
  356. RCU_CFG2 |= RCU_CFG2_ADCSEL;
  357. break;
  358. case RCU_ADCCK_APB2_DIV6:
  359. RCU_CFG0 |= RCU_ADC_CKAPB2_DIV6;
  360. RCU_CFG2 |= RCU_CFG2_ADCSEL;
  361. break;
  362. case RCU_ADCCK_AHB_DIV7:
  363. RCU_CFG0 |= RCU_ADC_CKAPB2_DIV6;
  364. RCU_CFG2 |= RCU_CFG2_ADCPSC2;
  365. RCU_CFG2 |= RCU_CFG2_ADCSEL;
  366. break;
  367. case RCU_ADCCK_APB2_DIV8:
  368. RCU_CFG0 |= RCU_ADC_CKAPB2_DIV8;
  369. RCU_CFG2 |= RCU_CFG2_ADCSEL;
  370. break;
  371. case RCU_ADCCK_AHB_DIV9:
  372. RCU_CFG0 |= RCU_ADC_CKAPB2_DIV8;
  373. RCU_CFG2 |= RCU_CFG2_ADCPSC2;
  374. RCU_CFG2 |= RCU_CFG2_ADCSEL;
  375. break;
  376. default:
  377. break;
  378. }
  379. }
  380. /*!
  381. \brief configure the USBFS clock prescaler selection
  382. \param[in] ck_usbfs: USBFS clock prescaler selection
  383. only one parameter can be selected which is shown as below:
  384. \arg RCU_USBFS_CKPLL_DIV1_5: select CK_PLL/1.5 as CK_USBFS
  385. \arg RCU_USBFS_CKPLL_DIV1: select CK_PLL as CK_USBFS
  386. \arg RCU_USBFS_CKPLL_DIV2_5: select CK_PLL/2.5 as CK_USBFS
  387. \arg RCU_USBFS_CKPLL_DIV2: select CK_PLL/2 as CK_USBFS
  388. \arg RCU_USBFS_CKPLL_DIV3: select CK_PLL/3 as CK_USBFS
  389. \arg RCU_USBFS_CKPLL_DIV3_5: select CK_PLL/3.5 as CK_USBFS
  390. \param[out] none
  391. \retval none
  392. */
  393. void rcu_usbfs_clock_config(uint32_t ck_usbfs)
  394. {
  395. /* reset the USBFSPSC bits and set according to ck_usbfs */
  396. RCU_CFG0 &= ~RCU_CFG0_USBFSPSC;
  397. RCU_CFG2 &= ~RCU_CFG2_USBFSPSC2;
  398. RCU_CFG0 |= (ck_usbfs & (~RCU_CFG2_USBFSPSC2));
  399. RCU_CFG2 |= (ck_usbfs & RCU_CFG2_USBFSPSC2);
  400. }
  401. /*!
  402. \brief configure the CK_OUT clock source and divider
  403. \param[in] ckout_src: CK_OUT clock source selection
  404. only one parameter can be selected which is shown as below:
  405. \arg RCU_CKOUTSRC_NONE: no clock selected
  406. \arg RCU_CKOUTSRC_IRC28M: IRC28M selected
  407. \arg RCU_CKOUTSRC_IRC40K: IRC40K selected
  408. \arg RCU_CKOUTSRC_LXTAL: LXTAL selected
  409. \arg RCU_CKOUTSRC_CKSYS: CKSYS selected
  410. \arg RCU_CKOUTSRC_IRC8M: IRC8M selected
  411. \arg RCU_CKOUTSRC_HXTAL: HXTAL selected
  412. \arg RCU_CKOUTSRC_CKPLL_DIV1: CK_PLL selected
  413. \arg RCU_CKOUTSRC_CKPLL_DIV2: CK_PLL/2 selected
  414. \param[in] ckout_div: CK_OUT divider
  415. \arg RCU_CKOUT_DIVx(x=1,2,4,8,16,32,64,128): CK_OUT is divided by x
  416. \param[out] none
  417. \retval none
  418. */
  419. void rcu_ckout_config(uint32_t ckout_src, uint32_t ckout_div)
  420. {
  421. uint32_t ckout = 0U;
  422. ckout = RCU_CFG0;
  423. /* reset the CKOUTSEL, CKOUTDIV and PLLDV bits and set according to ckout_src and ckout_div */
  424. ckout &= ~(RCU_CFG0_CKOUTSEL | RCU_CFG0_CKOUTDIV | RCU_CFG0_PLLDV);
  425. RCU_CFG0 = (ckout | ckout_src | ckout_div);
  426. }
  427. /*!
  428. \brief configure the PLL clock source preselection
  429. \param[in] pll_presel: PLL clock source preselection
  430. only one parameter can be selected which is shown as below:
  431. \arg RCU_PLLPRESEL_IRC48M: select IRC48M as PLL preselection clock
  432. \arg RCU_PLLPRESEL_HXTAL: select HXTAL as PLL preselection clock
  433. \param[out] none
  434. \retval none
  435. */
  436. void rcu_pll_preselection_config(uint32_t pll_presel)
  437. {
  438. RCU_CFG1 &= ~(RCU_CFG1_PLLPRESEL);
  439. RCU_CFG1 |= pll_presel;
  440. }
  441. /*!
  442. \brief configure the PLL clock source selection and PLL multiply factor
  443. \param[in] pll_src: PLL clock source selection
  444. only one parameter can be selected which is shown as below:
  445. \arg RCU_PLLSRC_IRC8M_DIV2: select CK_IRC8M/2 as PLL source clock
  446. \arg RCU_PLLSRC_HXTAL_IRC48M: select HXTAL or IRC48M as PLL source clock
  447. \param[in] pll_mul: PLL multiply factor
  448. only one parameter can be selected which is shown as below:
  449. \arg RCU_PLL_MULx(x=2..64): PLL source clock * x
  450. \param[out] none
  451. \retval none
  452. */
  453. void rcu_pll_config(uint32_t pll_src, uint32_t pll_mul)
  454. {
  455. RCU_CFG0 &= ~(RCU_CFG0_PLLSEL | RCU_CFG0_PLLMF);
  456. RCU_CFG1 &= ~(RCU_CFG1_PLLMF5);
  457. RCU_CFG0 |= (pll_src | (pll_mul & (~RCU_CFG1_PLLMF5)));
  458. RCU_CFG1 |= (pll_mul & RCU_CFG1_PLLMF5);
  459. }
  460. /*!
  461. \brief configure the USART clock source selection
  462. \param[in] ck_usart: USART clock source selection
  463. only one parameter can be selected which is shown as below:
  464. \arg RCU_USART0SRC_CKAPB2: CK_USART0 select CK_APB2
  465. \arg RCU_USART0SRC_CKSYS: CK_USART0 select CK_SYS
  466. \arg RCU_USART0SRC_LXTAL: CK_USART0 select CK_LXTAL
  467. \arg RCU_USART0SRC_IRC8M: CK_USART0 select CK_IRC8M
  468. \param[out] none
  469. \retval none
  470. */
  471. void rcu_usart_clock_config(uint32_t ck_usart)
  472. {
  473. /* reset the USART0SEL bits and set according to ck_usart */
  474. RCU_CFG2 &= ~RCU_CFG2_USART0SEL;
  475. RCU_CFG2 |= ck_usart;
  476. }
  477. /*!
  478. \brief configure the CEC clock source selection
  479. \param[in] ck_cec: CEC clock source selection
  480. only one parameter can be selected which is shown as below:
  481. \arg RCU_CECSRC_IRC8M_DIV244: CK_CEC select CK_IRC8M/244
  482. \arg RCU_CECSRC_LXTAL: CK_CEC select CK_LXTAL
  483. \param[out] none
  484. \retval none
  485. */
  486. void rcu_cec_clock_config(uint32_t ck_cec)
  487. {
  488. /* reset the CECSEL bit and set according to ck_cec */
  489. RCU_CFG2 &= ~RCU_CFG2_CECSEL;
  490. RCU_CFG2 |= ck_cec;
  491. }
  492. /*!
  493. \brief configure the RTC clock source selection
  494. \param[in] rtc_clock_source: RTC clock source selection
  495. only one parameter can be selected which is shown as below:
  496. \arg RCU_RTCSRC_NONE: no clock selected
  497. \arg RCU_RTCSRC_LXTAL: CK_LXTAL selected as RTC source clock
  498. \arg RCU_RTCSRC_IRC40K: CK_IRC40K selected as RTC source clock
  499. \arg RCU_RTCSRC_HXTAL_DIV32: CK_HXTAL/32 selected as RTC source clock
  500. \param[out] none
  501. \retval none
  502. */
  503. void rcu_rtc_clock_config(uint32_t rtc_clock_source)
  504. {
  505. /* reset the RTCSRC bits and set according to rtc_clock_source */
  506. RCU_BDCTL &= ~RCU_BDCTL_RTCSRC;
  507. RCU_BDCTL |= rtc_clock_source;
  508. }
  509. /*!
  510. \brief configure the CK48M clock source selection
  511. \param[in] ck48m_clock_source: CK48M clock source selection
  512. only one parameter can be selected which is shown as below:
  513. \arg RCU_CK48MSRC_PLL48M: CK_PLL48M selected as CK48M source clock
  514. \arg RCU_CK48MSRC_IRC48M: CK_IRC48M selected as CK48M source clock
  515. \param[out] none
  516. \retval none
  517. */
  518. void rcu_ck48m_clock_config(uint32_t ck48m_clock_source)
  519. {
  520. uint32_t reg;
  521. reg = RCU_ADDCTL;
  522. /* reset the CK48MSEL bit and set according to ck48m_clock_source */
  523. reg &= ~RCU_ADDCTL_CK48MSEL;
  524. RCU_ADDCTL = (reg | ck48m_clock_source);
  525. }
  526. /*!
  527. \brief configure the HXTAL divider used as input of PLL
  528. \param[in] hxtal_prediv: HXTAL divider used as input of PLL
  529. only one parameter can be selected which is shown as below:
  530. \arg RCU_PLL_PREDVx(x=1..16): HXTAL or IRC48M divided x used as input of PLL
  531. \param[out] none
  532. \retval none
  533. */
  534. void rcu_hxtal_prediv_config(uint32_t hxtal_prediv)
  535. {
  536. uint32_t prediv = 0U;
  537. prediv = RCU_CFG1;
  538. /* reset the HXTALPREDV bits and set according to hxtal_prediv */
  539. prediv &= ~RCU_CFG1_PREDV;
  540. RCU_CFG1 = (prediv | hxtal_prediv);
  541. }
  542. /*!
  543. \brief configure the LXTAL drive capability
  544. \param[in] lxtal_dricap: drive capability of LXTAL
  545. only one parameter can be selected which is shown as below:
  546. \arg RCU_LXTAL_LOWDRI: lower driving capability
  547. \arg RCU_LXTAL_MED_LOWDRI: medium low driving capability
  548. \arg RCU_LXTAL_MED_HIGHDRI: medium high driving capability
  549. \arg RCU_LXTAL_HIGHDRI: higher driving capability
  550. \param[out] none
  551. \retval none
  552. */
  553. void rcu_lxtal_drive_capability_config(uint32_t lxtal_dricap)
  554. {
  555. /* reset the LXTALDRI bits and set according to lxtal_dricap */
  556. RCU_BDCTL &= ~RCU_BDCTL_LXTALDRI;
  557. RCU_BDCTL |= lxtal_dricap;
  558. }
  559. /*!
  560. \brief get the clock stabilization and periphral reset flags
  561. \param[in] flag: the clock stabilization and periphral reset flags, refer to rcu_flag_enum
  562. only one parameter can be selected which is shown as below:
  563. \arg RCU_FLAG_IRC40KSTB: IRC40K stabilization flag
  564. \arg RCU_FLAG_LXTALSTB: LXTAL stabilization flag
  565. \arg RCU_FLAG_IRC8MSTB: IRC8M stabilization flag
  566. \arg RCU_FLAG_HXTALSTB: HXTAL stabilization flag
  567. \arg RCU_FLAG_PLLSTB: PLL stabilization flag
  568. \arg RCU_FLAG_IRC28MSTB: IRC28M stabilization flag
  569. \arg RCU_FLAG_IRC48MSTB: IRC48M stabilization flag
  570. \arg RCU_FLAG_V12RST: V12 domain power reset flag
  571. \arg RCU_FLAG_OBLRST: option byte loader reset flag
  572. \arg RCU_FLAG_EPRST: external pin reset flag
  573. \arg RCU_FLAG_PORRST: power reset flag
  574. \arg RCU_FLAG_SWRST: software reset flag
  575. \arg RCU_FLAG_FWDGTRST: free watchdog timer reset flag
  576. \arg RCU_FLAG_WWDGTRST: window watchdog timer reset flag
  577. \arg RCU_FLAG_LPRST: low-power reset flag
  578. \param[out] none
  579. \retval FlagStatus: SET or RESET
  580. */
  581. FlagStatus rcu_flag_get(rcu_flag_enum flag)
  582. {
  583. if(RESET != (RCU_REG_VAL(flag) & BIT(RCU_BIT_POS(flag)))){
  584. return SET;
  585. }else{
  586. return RESET;
  587. }
  588. }
  589. /*!
  590. \brief clear the reset flag
  591. \param[in] none
  592. \param[out] none
  593. \retval none
  594. */
  595. void rcu_all_reset_flag_clear(void)
  596. {
  597. RCU_RSTSCK |= RCU_RSTSCK_RSTFC;
  598. }
  599. /*!
  600. \brief get the clock stabilization interrupt and ckm flags
  601. \param[in] int_flag: interrupt and ckm flags, refer to rcu_int_flag_enum
  602. only one parameter can be selected which is shown as below:
  603. \arg RCU_INT_FLAG_IRC40KSTB: IRC40K stabilization interrupt flag
  604. \arg RCU_INT_FLAG_LXTALSTB: LXTAL stabilization interrupt flag
  605. \arg RCU_INT_FLAG_IRC8MSTB: IRC8M stabilization interrupt flag
  606. \arg RCU_INT_FLAG_HXTALSTB: HXTAL stabilization interrupt flag
  607. \arg RCU_INT_FLAG_PLLSTB: PLL stabilization interrupt flag
  608. \arg RCU_INT_FLAG_IRC28MSTB: IRC28M stabilization interrupt flag
  609. \arg RCU_INT_FLAG_IRC48MSTB: IRC48M stabilization interrupt flag
  610. \arg RCU_INT_FLAG_CKM: HXTAL clock stuck interrupt flag
  611. \param[out] none
  612. \retval FlagStatus: SET or RESET
  613. */
  614. FlagStatus rcu_interrupt_flag_get(rcu_int_flag_enum int_flag)
  615. {
  616. if(RESET != (RCU_REG_VAL(int_flag) & BIT(RCU_BIT_POS(int_flag)))){
  617. return SET;
  618. }else{
  619. return RESET;
  620. }
  621. }
  622. /*!
  623. \brief clear the interrupt flags
  624. \param[in] int_flag_clear: clock stabilization and stuck interrupt flags clear, refer to rcu_int_flag_clear_enum
  625. only one parameter can be selected which is shown as below:
  626. \arg RCU_INT_FLAG_IRC40KSTB_CLR: IRC40K stabilization interrupt flag clear
  627. \arg RCU_INT_FLAG_LXTALSTB_CLR: LXTAL stabilization interrupt flag clear
  628. \arg RCU_INT_FLAG_IRC8MSTB_CLR: IRC8M stabilization interrupt flag clear
  629. \arg RCU_INT_FLAG_HXTALSTB_CLR: HXTAL stabilization interrupt flag clear
  630. \arg RCU_INT_FLAG_PLLSTB_CLR: PLL stabilization interrupt flag clear
  631. \arg RCU_INT_FLAG_IRC28MSTB_CLR: IRC28M stabilization interrupt flag clear
  632. \arg RCU_INT_FLAG_IRC48MSTB_CLR: IRC48M stabilization interrupt flag clear
  633. \arg RCU_INT_FLAG_CKM_CLR: clock stuck interrupt flag clear
  634. \param[out] none
  635. \retval none
  636. */
  637. void rcu_interrupt_flag_clear(rcu_int_flag_clear_enum int_flag_clear)
  638. {
  639. RCU_REG_VAL(int_flag_clear) |= BIT(RCU_BIT_POS(int_flag_clear));
  640. }
  641. /*!
  642. \brief enable the stabilization interrupt
  643. \param[in] stab_int: clock stabilization interrupt, refer to rcu_int_enum
  644. only one parameter can be selected which is shown as below:
  645. \arg RCU_INT_IRC40KSTB: IRC40K stabilization interrupt enable
  646. \arg RCU_INT_LXTALSTB: LXTAL stabilization interrupt enable
  647. \arg RCU_INT_IRC8MSTB: IRC8M stabilization interrupt enable
  648. \arg RCU_INT_HXTALSTB: HXTAL stabilization interrupt enable
  649. \arg RCU_INT_PLLSTB: PLL stabilization interrupt enable
  650. \arg RCU_INT_IRC28MSTB: IRC28M stabilization interrupt enable
  651. \arg RCU_INT_IRC48MSTB: IRC48M stabilization interrupt enable
  652. \param[out] none
  653. \retval none
  654. */
  655. void rcu_interrupt_enable(rcu_int_enum stab_int)
  656. {
  657. RCU_REG_VAL(stab_int) |= BIT(RCU_BIT_POS(stab_int));
  658. }
  659. /*!
  660. \brief disable the stabilization interrupt
  661. \param[in] stab_int: clock stabilization interrupt, refer to rcu_int_enum
  662. only one parameter can be selected which is shown as below:
  663. \arg RCU_INT_IRC40KSTB: IRC40K stabilization interrupt disable
  664. \arg RCU_INT_LXTALSTB: LXTAL stabilization interrupt disable
  665. \arg RCU_INT_IRC8MSTB: IRC8M stabilization interrupt disable
  666. \arg RCU_INT_HXTALSTB: HXTAL stabilization interrupt disable
  667. \arg RCU_INT_PLLSTB: PLL stabilization interrupt disable
  668. \arg RCU_INT_IRC28MSTB: IRC28M stabilization interrupt disable
  669. \arg RCU_INT_IRC48MSTB: IRC48M stabilization interrupt disable
  670. \param[out] none
  671. \retval none
  672. */
  673. void rcu_interrupt_disable(rcu_int_enum stab_int)
  674. {
  675. RCU_REG_VAL(stab_int) &= ~BIT(RCU_BIT_POS(stab_int));
  676. }
  677. /*!
  678. \brief wait until oscillator stabilization flags is SET
  679. \param[in] osci: oscillator types, refer to rcu_osci_type_enum
  680. only one parameter can be selected which is shown as below:
  681. \arg RCU_HXTAL: HXTAL
  682. \arg RCU_LXTAL: LXTAL
  683. \arg RCU_IRC8M: IRC8M
  684. \arg RCU_IRC28M: IRC28M
  685. \arg RCU_IRC48M: IRC48M
  686. \arg RCU_IRC40K: IRC40K
  687. \arg RCU_PLL_CK: PLL
  688. \param[out] none
  689. \retval ErrStatus: SUCCESS or ERROR
  690. */
  691. ErrStatus rcu_osci_stab_wait(rcu_osci_type_enum osci)
  692. {
  693. uint32_t stb_cnt = 0U;
  694. ErrStatus reval = ERROR;
  695. FlagStatus osci_stat = RESET;
  696. switch(osci){
  697. case RCU_HXTAL:
  698. /* wait until HXTAL is stabilization and osci_stat is not more than timeout */
  699. while((RESET == osci_stat) && (HXTAL_STARTUP_TIMEOUT != stb_cnt)){
  700. osci_stat = rcu_flag_get(RCU_FLAG_HXTALSTB);
  701. stb_cnt++;
  702. }
  703. if(RESET != rcu_flag_get(RCU_FLAG_HXTALSTB)){
  704. reval = SUCCESS;
  705. }
  706. break;
  707. /* wait LXTAL stable */
  708. case RCU_LXTAL:
  709. while((RESET == osci_stat) && (LXTAL_STARTUP_TIMEOUT != stb_cnt)){
  710. osci_stat = rcu_flag_get(RCU_FLAG_LXTALSTB);
  711. stb_cnt++;
  712. }
  713. /* check whether flag is set or not */
  714. if(RESET != rcu_flag_get(RCU_FLAG_LXTALSTB)){
  715. reval = SUCCESS;
  716. }
  717. break;
  718. /* wait IRC8M stable */
  719. case RCU_IRC8M:
  720. while((RESET == osci_stat) && (IRC8M_STARTUP_TIMEOUT != stb_cnt)){
  721. osci_stat = rcu_flag_get(RCU_FLAG_IRC8MSTB);
  722. stb_cnt++;
  723. }
  724. /* check whether flag is set or not */
  725. if(RESET != rcu_flag_get(RCU_FLAG_IRC8MSTB)){
  726. reval = SUCCESS;
  727. }
  728. break;
  729. /* wait IRC28M stable */
  730. case RCU_IRC28M:
  731. while((RESET == osci_stat) && (OSC_STARTUP_TIMEOUT != stb_cnt)){
  732. osci_stat = rcu_flag_get(RCU_FLAG_IRC28MSTB);
  733. stb_cnt++;
  734. }
  735. /* check whether flag is set or not */
  736. if(RESET != rcu_flag_get(RCU_FLAG_IRC28MSTB)){
  737. reval = SUCCESS;
  738. }
  739. break;
  740. /* wait IRC48M stable */
  741. case RCU_IRC48M:
  742. while((RESET == osci_stat) && (OSC_STARTUP_TIMEOUT != stb_cnt)){
  743. osci_stat = rcu_flag_get(RCU_FLAG_IRC48MSTB);
  744. stb_cnt++;
  745. }
  746. /* check whether flag is set or not */
  747. if (RESET != rcu_flag_get(RCU_FLAG_IRC48MSTB)){
  748. reval = SUCCESS;
  749. }
  750. break;
  751. /* wait IRC40K stable */
  752. case RCU_IRC40K:
  753. while((RESET == osci_stat) && (OSC_STARTUP_TIMEOUT != stb_cnt)){
  754. osci_stat = rcu_flag_get(RCU_FLAG_IRC40KSTB);
  755. stb_cnt++;
  756. }
  757. /* check whether flag is set or not */
  758. if(RESET != rcu_flag_get(RCU_FLAG_IRC40KSTB)){
  759. reval = SUCCESS;
  760. }
  761. break;
  762. /* wait PLL stable */
  763. case RCU_PLL_CK:
  764. while((RESET == osci_stat) && (OSC_STARTUP_TIMEOUT != stb_cnt)){
  765. osci_stat = rcu_flag_get(RCU_FLAG_PLLSTB);
  766. stb_cnt++;
  767. }
  768. /* check whether flag is set or not */
  769. if(RESET != rcu_flag_get(RCU_FLAG_PLLSTB)){
  770. reval = SUCCESS;
  771. }
  772. break;
  773. default:
  774. break;
  775. }
  776. /* return value */
  777. return reval;
  778. }
  779. /*!
  780. \brief turn on the oscillator
  781. \param[in] osci: oscillator types, refer to rcu_osci_type_enum
  782. only one parameter can be selected which is shown as below:
  783. \arg RCU_HXTAL: HXTAL
  784. \arg RCU_LXTAL: LXTAL
  785. \arg RCU_IRC8M: IRC8M
  786. \arg RCU_IRC28M: IRC28M
  787. \arg RCU_IRC48M: IRC48M
  788. \arg RCU_IRC40K: IRC40K
  789. \arg RCU_PLL_CK: PLL
  790. \param[out] none
  791. \retval none
  792. */
  793. void rcu_osci_on(rcu_osci_type_enum osci)
  794. {
  795. RCU_REG_VAL(osci) |= BIT(RCU_BIT_POS(osci));
  796. }
  797. /*!
  798. \brief turn off the oscillator
  799. \param[in] osci: oscillator types, refer to rcu_osci_type_enum
  800. only one parameter can be selected which is shown as below:
  801. \arg RCU_HXTAL: HXTAL
  802. \arg RCU_LXTAL: LXTAL
  803. \arg RCU_IRC8M: IRC8M
  804. \arg RCU_IRC28M: IRC28M
  805. \arg RCU_IRC48M: IRC48M
  806. \arg RCU_IRC40K: IRC40K
  807. \arg RCU_PLL_CK: PLL
  808. \param[out] none
  809. \retval none
  810. */
  811. void rcu_osci_off(rcu_osci_type_enum osci)
  812. {
  813. RCU_REG_VAL(osci) &= ~BIT(RCU_BIT_POS(osci));
  814. }
  815. /*!
  816. \brief enable the oscillator bypass mode, HXTALEN or LXTALEN must be reset before it
  817. \param[in] osci: oscillator types, refer to rcu_osci_type_enum
  818. only one parameter can be selected which is shown as below:
  819. \arg RCU_HXTAL: HXTAL
  820. \arg RCU_LXTAL: LXTAL
  821. \param[out] none
  822. \retval none
  823. */
  824. void rcu_osci_bypass_mode_enable(rcu_osci_type_enum osci)
  825. {
  826. uint32_t reg;
  827. switch(osci){
  828. case RCU_HXTAL:
  829. /* HXTALEN must be reset before enable the oscillator bypass mode */
  830. reg = RCU_CTL0;
  831. RCU_CTL0 &= ~RCU_CTL0_HXTALEN;
  832. RCU_CTL0 = (reg | RCU_CTL0_HXTALBPS);
  833. break;
  834. case RCU_LXTAL:
  835. /* LXTALEN must be reset before enable the oscillator bypass mode */
  836. reg = RCU_BDCTL;
  837. RCU_BDCTL &= ~RCU_BDCTL_LXTALEN;
  838. RCU_BDCTL = (reg | RCU_BDCTL_LXTALBPS);
  839. break;
  840. case RCU_IRC8M:
  841. case RCU_IRC28M:
  842. case RCU_IRC48M:
  843. case RCU_IRC40K:
  844. case RCU_PLL_CK:
  845. break;
  846. default:
  847. break;
  848. }
  849. }
  850. /*!
  851. \brief disable the oscillator bypass mode, HXTALEN or LXTALEN must be reset before it
  852. \param[in] osci: oscillator types, refer to rcu_osci_type_enum
  853. only one parameter can be selected which is shown as below:
  854. \arg RCU_HXTAL: HXTAL
  855. \arg RCU_LXTAL: LXTAL
  856. \param[out] none
  857. \retval none
  858. */
  859. void rcu_osci_bypass_mode_disable(rcu_osci_type_enum osci)
  860. {
  861. uint32_t reg;
  862. switch(osci){
  863. case RCU_HXTAL:
  864. /* HXTALEN must be reset before disable the oscillator bypass mode */
  865. reg = RCU_CTL0;
  866. RCU_CTL0 &= ~RCU_CTL0_HXTALEN;
  867. RCU_CTL0 = (reg & (~RCU_CTL0_HXTALBPS));
  868. break;
  869. case RCU_LXTAL:
  870. /* LXTALEN must be reset before disable the oscillator bypass mode */
  871. reg = RCU_BDCTL;
  872. RCU_BDCTL &= ~RCU_BDCTL_LXTALEN;
  873. RCU_BDCTL = (reg & (~RCU_BDCTL_LXTALBPS));
  874. break;
  875. case RCU_IRC8M:
  876. case RCU_IRC28M:
  877. case RCU_IRC48M:
  878. case RCU_IRC40K:
  879. case RCU_PLL_CK:
  880. break;
  881. default:
  882. break;
  883. }
  884. }
  885. /*!
  886. \brief enable the HXTAL clock monitor
  887. \param[in] none
  888. \param[out] none
  889. \retval none
  890. */
  891. void rcu_hxtal_clock_monitor_enable(void)
  892. {
  893. RCU_CTL0 |= RCU_CTL0_CKMEN;
  894. }
  895. /*!
  896. \brief disable the HXTAL clock monitor
  897. \param[in] none
  898. \param[out] none
  899. \retval none
  900. */
  901. void rcu_hxtal_clock_monitor_disable(void)
  902. {
  903. RCU_CTL0 &= ~RCU_CTL0_CKMEN;
  904. }
  905. /*!
  906. \brief set the IRC8M adjust value
  907. \param[in] irc8m_adjval: IRC8M adjust value, must be between 0 and 0x1F
  908. \param[out] none
  909. \retval none
  910. */
  911. void rcu_irc8m_adjust_value_set(uint8_t irc8m_adjval)
  912. {
  913. uint32_t adjust = 0U;
  914. adjust = RCU_CTL0;
  915. /* reset the IRC8MADJ bits and set according to irc8m_adjval */
  916. adjust &= ~RCU_CTL0_IRC8MADJ;
  917. RCU_CTL0 = (adjust | (((uint32_t)irc8m_adjval)<<3));
  918. }
  919. /*!
  920. \brief set the IRC28M adjust value
  921. \param[in] irc28m_adjval: IRC28M adjust value, must be between 0 and 0x1F
  922. \param[out] none
  923. \retval none
  924. */
  925. void rcu_irc28m_adjust_value_set(uint8_t irc28m_adjval)
  926. {
  927. uint32_t adjust = 0U;
  928. adjust = RCU_CTL1;
  929. /* reset the IRC28MADJ bits and set according to irc28m_adjval */
  930. adjust &= ~RCU_CTL1_IRC28MADJ;
  931. RCU_CTL1 = (adjust | (((uint32_t)irc28m_adjval)<<3));
  932. }
  933. /*!
  934. \brief unlock the voltage key
  935. \param[in] none
  936. \param[out] none
  937. \retval none
  938. */
  939. void rcu_voltage_key_unlock(void)
  940. {
  941. /* reset the KEY bits and set 0x1A2B3C4D */
  942. RCU_VKEY &= ~RCU_VKEY_KEY;
  943. RCU_VKEY |= RCU_VKEY_UNLOCK;
  944. }
  945. /*!
  946. \brief set voltage in deep sleep mode
  947. \param[in] dsvol: deep sleep mode voltage
  948. only one parameter can be selected which is shown as below:
  949. \arg RCU_DEEPSLEEP_V_1_0: the core voltage is 1.0V
  950. \arg RCU_DEEPSLEEP_V_0_9: the core voltage is 0.9V
  951. \arg RCU_DEEPSLEEP_V_0_8: the core voltage is 0.8V
  952. \arg RCU_DEEPSLEEP_V_0_7: the core voltage is 0.7V
  953. \param[out] none
  954. \retval none
  955. */
  956. void rcu_deepsleep_voltage_set(uint32_t dsvol)
  957. {
  958. /* reset the DSLPVS bits and set according to dsvol */
  959. RCU_DSV &= ~RCU_DSV_DSLPVS;
  960. RCU_DSV |= dsvol;
  961. }
  962. /*!
  963. \brief get the system clock, bus and peripheral clock frequency
  964. \param[in] clock: the clock frequency which to get
  965. only one parameter can be selected which is shown as below:
  966. \arg CK_SYS: system clock frequency
  967. \arg CK_AHB: AHB clock frequency
  968. \arg CK_APB1: APB1 clock frequency
  969. \arg CK_APB2: APB2 clock frequency
  970. \arg CK_ADC: ADC clock frequency
  971. \arg CK_CEC: CEC clock frequency
  972. \arg CK_USART: USART clock frequency
  973. \param[out] none
  974. \retval clock frequency of system, AHB, APB1, APB2, ADC, CEC or USRAT
  975. */
  976. uint32_t rcu_clock_freq_get(rcu_clock_freq_enum clock)
  977. {
  978. uint32_t sws = 0U, adcps = 0U, adcps2 = 0U, ck_freq = 0U;
  979. uint32_t cksys_freq = 0U, ahb_freq = 0U, apb1_freq = 0U, apb2_freq = 0U;
  980. uint32_t adc_freq = 0U, cec_freq = 0U, usart_freq = 0U;
  981. uint32_t pllmf = 0U, pllmf4 = 0U, pllmf5 = 0U, pllsel = 0U, pllpresel = 0U, prediv = 0U, idx = 0U, clk_exp = 0U;
  982. /* exponent of AHB, APB1 and APB2 clock divider */
  983. const uint8_t ahb_exp[16] = {0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 7, 8, 9};
  984. const uint8_t apb1_exp[8] = {0, 0, 0, 0, 1, 2, 3, 4};
  985. const uint8_t apb2_exp[8] = {0, 0, 0, 0, 1, 2, 3, 4};
  986. sws = GET_BITS(RCU_CFG0, 2, 3);
  987. switch(sws){
  988. /* IRC8M is selected as CK_SYS */
  989. case SEL_IRC8M:
  990. cksys_freq = IRC8M_VALUE;
  991. break;
  992. /* HXTAL is selected as CK_SYS */
  993. case SEL_HXTAL:
  994. cksys_freq = HXTAL_VALUE;
  995. break;
  996. /* PLL is selected as CK_SYS */
  997. case SEL_PLL:
  998. /* get the value of PLLMF[3:0] */
  999. pllmf = GET_BITS(RCU_CFG0, 18, 21);
  1000. pllmf4 = GET_BITS(RCU_CFG0, 27, 27);
  1001. pllmf5 = GET_BITS(RCU_CFG1, 31, 31);
  1002. /* high 16 bits */
  1003. if(1U == pllmf4){
  1004. pllmf += 17U;
  1005. }else{
  1006. if(pllmf == 15U){
  1007. pllmf += 1U;
  1008. }else{
  1009. pllmf += 2U;
  1010. }
  1011. }
  1012. if(1U == pllmf5){
  1013. pllmf += 31U;
  1014. }
  1015. /* PLL clock source selection, HXTAL or IRC48M or IRC8M/2 */
  1016. pllsel = GET_BITS(RCU_CFG0, 16, 16);
  1017. pllpresel = GET_BITS(RCU_CFG1, 30, 30);
  1018. if(0U != pllsel){
  1019. prediv = (GET_BITS(RCU_CFG1,0, 3) + 1U);
  1020. if(0U == pllpresel){
  1021. cksys_freq = (HXTAL_VALUE / prediv) * pllmf;
  1022. }else{
  1023. cksys_freq = (IRC48M_VALUE / prediv) * pllmf;
  1024. }
  1025. }else{
  1026. cksys_freq = (IRC8M_VALUE >> 1) * pllmf;
  1027. }
  1028. break;
  1029. /* IRC8M is selected as CK_SYS */
  1030. default:
  1031. cksys_freq = IRC8M_VALUE;
  1032. break;
  1033. }
  1034. /* calculate AHB clock frequency */
  1035. idx = GET_BITS(RCU_CFG0, 4, 7);
  1036. clk_exp = ahb_exp[idx];
  1037. ahb_freq = cksys_freq >> clk_exp;
  1038. /* calculate APB1 clock frequency */
  1039. idx = GET_BITS(RCU_CFG0, 8, 10);
  1040. clk_exp = apb1_exp[idx];
  1041. apb1_freq = ahb_freq >> clk_exp;
  1042. /* calculate APB2 clock frequency */
  1043. idx = GET_BITS(RCU_CFG0, 11, 13);
  1044. clk_exp = apb2_exp[idx];
  1045. apb2_freq = ahb_freq >> clk_exp;
  1046. /* return the clocks frequency */
  1047. switch(clock){
  1048. case CK_SYS:
  1049. ck_freq = cksys_freq;
  1050. break;
  1051. case CK_AHB:
  1052. ck_freq = ahb_freq;
  1053. break;
  1054. case CK_APB1:
  1055. ck_freq = apb1_freq;
  1056. break;
  1057. case CK_APB2:
  1058. ck_freq = apb2_freq;
  1059. break;
  1060. case CK_ADC:
  1061. /* calculate ADC clock frequency */
  1062. if(RCU_ADCSRC_AHB_APB2DIV != (RCU_CFG2 & RCU_CFG2_ADCSEL)){
  1063. if(RCU_ADC_IRC28M_DIV1 != (RCU_CFG2 & RCU_CFG2_IRC28MDIV)){
  1064. adc_freq = IRC28M_VALUE >> 1;
  1065. }else{
  1066. adc_freq = IRC28M_VALUE;
  1067. }
  1068. }else{
  1069. /* ADC clock select CK_APB2 divided by 2/4/6/8 or CK_AHB divided by 3/5/7/9 */
  1070. adcps = GET_BITS(RCU_CFG0, 14, 15);
  1071. adcps2 = GET_BITS(RCU_CFG2, 31, 31);
  1072. switch(adcps){
  1073. case 0:
  1074. if(0U == adcps2){
  1075. adc_freq = apb2_freq / 2U;
  1076. }else{
  1077. adc_freq = ahb_freq / 3U;
  1078. }
  1079. break;
  1080. case 1:
  1081. if(0U == adcps2){
  1082. adc_freq = apb2_freq / 4U;
  1083. }else{
  1084. adc_freq = ahb_freq / 5U;
  1085. }
  1086. break;
  1087. case 2:
  1088. if(0U == adcps2){
  1089. adc_freq = apb2_freq / 6U;
  1090. }else{
  1091. adc_freq = ahb_freq / 7U;
  1092. }
  1093. break;
  1094. case 3:
  1095. if(0U == adcps2){
  1096. adc_freq = apb2_freq / 8U;
  1097. }else{
  1098. adc_freq = ahb_freq / 9U;
  1099. }
  1100. break;
  1101. default:
  1102. break;
  1103. }
  1104. }
  1105. ck_freq = adc_freq;
  1106. break;
  1107. case CK_CEC:
  1108. /* calculate CEC clock frequency */
  1109. if(RCU_CECSRC_LXTAL != (RCU_CFG2 & RCU_CFG2_CECSEL)){
  1110. cec_freq = IRC8M_VALUE / 244U;
  1111. }else{
  1112. cec_freq = LXTAL_VALUE;
  1113. }
  1114. ck_freq = cec_freq;
  1115. break;
  1116. case CK_USART:
  1117. /* calculate USART clock frequency */
  1118. if(RCU_USART0SRC_CKAPB2 == (RCU_CFG2 & RCU_CFG2_USART0SEL)){
  1119. usart_freq = apb2_freq;
  1120. }else if(RCU_USART0SRC_CKSYS == (RCU_CFG2 & RCU_CFG2_USART0SEL)){
  1121. usart_freq = cksys_freq;
  1122. }else if(RCU_USART0SRC_LXTAL == (RCU_CFG2 & RCU_CFG2_USART0SEL)){
  1123. usart_freq = LXTAL_VALUE;
  1124. }else if(RCU_USART0SRC_IRC8M == (RCU_CFG2 & RCU_CFG2_USART0SEL)){
  1125. usart_freq = IRC8M_VALUE;
  1126. }else{
  1127. }
  1128. ck_freq = usart_freq;
  1129. break;
  1130. default:
  1131. break;
  1132. }
  1133. return ck_freq;
  1134. }